首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Control of human telomere length by TRF1 and TRF2   总被引:52,自引:0,他引:52       下载免费PDF全文
Telomere length in human cells is controlled by a homeostasis mechanism that involves telomerase and the negative regulator of telomere length, TRF1 (TTAGGG repeat binding factor 1). Here we report that TRF2, a TRF1-related protein previously implicated in protection of chromosome ends, is a second negative regulator of telomere length. Overexpression of TRF2 results in the progressive shortening of telomere length, similar to the phenotype observed with TRF1. However, while induction of TRF1 could be maintained over more than 300 population doublings and resulted in stable, short telomeres, the expression of exogenous TRF2 was extinguished and the telomeres eventually regained their original length. Consistent with their role in measuring telomere length, indirect immunofluorescence indicated that both TRF1 and TRF2 bind to duplex telomeric DNA in vivo and are more abundant on telomeres with long TTAGGG repeat tracts. Neither TRF1 nor TRF2 affected the expression level of telomerase. Furthermore, the presence of TRF1 or TRF2 on a short linear telomerase substrate did not inhibit the enzymatic activity of telomerase in vitro. These findings are consistent with the recently proposed t loop model of telomere length homeostasis in which telomerase-dependent telomere elongation is blocked by sequestration of the 3' telomere terminus in TRF1- and TRF2-induced telomeric loops.  相似文献   

2.
Importance of TRF1 for functional telomere structure   总被引:10,自引:0,他引:10  
Telomeres are comprised of telomeric DNA sequences and associated binding molecules. Their structure functions to protect the ends of linear chromosomes and ensure chromosomal stability. One of the mammalian telomere-binding factors, TRF1, localizes telomeres by binding to double-stranded telomeric DNA arrays. Because the overexpression of wild-type and dominant-negative TRF1 induces progressive telomere shortening and elongation in human cells, respectively, a proposed major role of TRF1 is that of a negative regulator of telomere length. Here we report another crucial function of TRF1 in telomeres. In conditional mouse TRF1 null mutant embryonic stem cells, TRF1 deletion induced growth defect and chromosomal instability. Although no clear telomere shortening or elongation was observed in short term cultured TRF1-deficient cells, abnormal telomere signals were observed, and TRF1-interacting telomere-binding factor, TIN2, lost telomeric association. Furthermore, another double-stranded telomeric DNA-binding factor, TRF2, also showed decreased telomeric association. Importantly, end-to-end fusions with detectable telomere signals at fusion points accumulated in TRF1-deficient cells. These results strongly suggest that TRF1 interacts with other telomere-binding molecules and integrates into the functional telomere structure.  相似文献   

3.
4.
Pin2/TRF1 was identified previously as both a protein (TRF1) that binds to telomeric DNA repeats and as a protein (Pin2) that associates with the kinase NIMA and suppresses its mitosis inducing activity. Pin2/TRF1 negatively regulates telomere length and also plays a critical role in cell cycle checkpoint control. Pin2/TRF1 is down-regulated in many human cancers and may be degraded by the ubiquitin-proteasome pathway, but components of the pathway involved in Pin2/TRF1 turnover have not been elucidated. By using the two-hybrid system, we recently identified Pin2/TRF1-interacting proteins, PinX1-4, and we demonstrated that PinX1 is a conserved telomerase inhibitor and a putative tumor suppressor. Here we report the characterization of PinX3. PinX3 was later found to be identical to Fbx4, a member of the F-box family of proteins, which function as substrate-specific adaptors of Cul1-based ubiquitin ligases. Fbx4 interacts with both Pin2 and TRF1 isoforms and promotes their ubiquitination in vitro and in vivo. Moreover, overexpression of Fbx4 reduces endogenous Pin2/TRF1 protein levels and causes progressive telomere elongation in human cells. In contrast, inhibition of Fbx4 by RNA interference stabilizes Pin2/TRF1 and promotes telomere shortening, thereby impairing cell growth. These results demonstrate that Fbx4 is a central regulator of Pin2/TRF1 protein abundance and that alterations in the stability of Pin2/TRF1 can have a dramatic impact on telomere length. Thus, Fbx4 may play a critical role in telomere maintenance.  相似文献   

5.
Mammalian telomeres are composed of G-rich repetitive double-stranded (ds) DNA with a 3' single-stranded (ss) overhang and associated proteins that together maintain chromosome end stability. Complete replication of telomeric DNA requires de novo elongation of the ssDNA by the enzyme telomerase, with telomeric proteins playing a key role in regulating telomerase-mediated telomere replication. In regards to the protein component of mammalian telomeres, TRF1 and TRF2 bind to the dsDNA of telomeres, whereas POT1 binds to the ssDNA portion. These three proteins are linked through either direct interactions or by the proteins TIN2 and TPP1. To determine the biological consequence of connecting telomeric dsDNA to ssDNA through a multiprotein assembly, we compared the effect of expressing TRF1 and POT1 in trans versus in cis in the form of a fusion of these two proteins, on telomere length in telomerase-positive cells. When expressed in trans these two proteins induced extensive telomere elongation. Fusing TRF1 to POT1 abrogated this effect, inducing mild telomere shortening, and generated looped DNA structures, as assessed by electron microscopy, consistent with the protein forming a complex with dsDNA and ssDNA. We speculate that such a protein bridge between dsDNA and ssDNA may inhibit telomerase access, promoting telomere shortening.  相似文献   

6.
The ends of eukaryotic chromosomes need to be protected from the activation of a DNA damage response that leads the cell to replicative senescence or apoptosis. In mammals, protection is accomplished by a six-factor complex named shelterin, which organizes the terminal TTAGGG repeats in a still ill-defined structure, the telomere. The stable interaction of shelterin with telomeres mainly depends on the binding of two of its components, TRF1 and TRF2, to double-stranded telomeric repeats. Tethering of TRF proteins to telomeres occurs in a chromatin environment characterized by a very compact nucleosomal organization. In this work we show that binding of TRF1 and TRF2 to telomeric sequences is modulated by the histone octamer. By means of in vitro models, we found that TRF2 binding is strongly hampered by the presence of telomeric nucleosomes, whereas TRF1 binds efficiently to telomeric DNA in a nucleosomal context and is able to remodel telomeric nucleosomal arrays. Our results indicate that the different behavior of TRF proteins partly depends on the interaction with histone tails of their divergent N-terminal domains. We propose that the interplay between the histone octamer and TRF proteins plays a role in the steps leading to telomere deprotection.  相似文献   

7.
Werner syndrome (WS) is characterized by features of premature aging and is caused by loss of the RecQ helicase protein WRN. WS fibroblasts display defects associated with telomere dysfunction, including accelerated telomere erosion and premature senescence. In yeast, RecQ helicases act in an alternative pathway for telomere lengthening (ALT) via homologous recombination. We found that WRN associates with telomeres when dissociation of telomeric D loops is likely during replication and recombination. In human ALT cells, WRN associates directly with telomeric DNA. The majority of TRF1/PCNA colocalizing foci contained WRN in live S phase ALT cells but not in telomerase-positive HeLa cells. Biochemically, the WRN helicase and 3' to 5' exonuclease act simultaneously and cooperate to release the 3' invading tail from a telomeric D loop in vitro. The telomere binding proteins TRF1 and TRF2 limit digestion by WRN. We propose roles for WRN in dissociating telomeric structures in telomerase-deficient cells.  相似文献   

8.
Wu Y  Zacal NJ  Rainbow AJ  Zhu XD 《DNA Repair》2007,6(2):157-166
TRF2, a telomere-binding protein, is a crucial player in telomere length maintenance. Overexpression of TRF2 results in telomere shortening in both normal primary fibroblasts and telomerase-positive cancer cells. TRF2 is found to be associated with XPF-ERCC1, a structure-specific endonuclease involved in nucleotide excision repair, crosslink repair and DNA recombination. XPF-ERCC1 is implicated in TRF2-dependent telomere loss in mouse keratinocytes, however, whether XPF-ERCC1 and its nuclease activity are required for TRF2-mediated telomere shortening in human cells is unknown. Here we report that TRF2-induced telomere shortening is abrogated in human cells deficient in XPF, demonstrating that XPF-ERCC1 is required for TRF2-promoted telomere shortening. To further understand the role of XPF in TRF2-dependent telomere shortening, we generated constructs containing either wild type XPF or mutant XPF proteins carrying amino acid substitutions in its conserved nuclease domain. We show that wild type XPF can complement XPF-deficient cells for repair of UV-induced DNA damage whereas the nuclease-inactive XPF proteins fail to do so, indicating that the nuclease activity of XPF is essential for nucleotide excision repair. In contrast, both wild type XPF and nuclease-inactive XPF proteins, when expressed in XPF-deficient cells, are able to rescue TRF2-mediated telomere shortening. Thus, our results suggest that the function of XPF in TRF2-mediated telomere shortening is conserved between mouse and human. Furthermore, our findings reveal an unanticipated nuclease-independent function of XPF in TRF2-mediated telomere shortening.  相似文献   

9.
Telomere maintenance is essential for protecting chromosome ends. Aberrations in telomere length have been implicated in cancer and aging. Telomere elongation by human telomerase is inhibited in cis by the telomeric protein TRF1 and its associated proteins. However, the link between TRF1 and inhibition of telomerase elongation of telomeres remains elusive because TRF1 has no direct effect on telomerase activity. We have previously identified one Pin2/TRF1-interacting protein, PinX1, that has the unique property of directly binding and inhibiting telomerase catalytic activity (Zhou, X. Z., and Lu, K. P. (2001) Cell 107, 347-359). However, nothing is known about the role of the PinX1-TRF1 interaction in the regulation of telomere maintenance. By identifying functional domains and key amino acid residues in PinX1 and TRF1 responsible for the PinX1-TRF1 interaction, we show that the TRF homology domain of TRF1 interacts with a minimal 20-amino acid sequence of PinX1 via hydrophilic and hydrophobic interactions. Significantly, either disrupting this interaction by mutating the critical Leu-291 residue in PinX1 or knocking down endogenous TRF1 by RNAi abolishes the ability of PinX1 to localize to telomeres and to inhibit telomere elongation in cells even though neither has any effect on telomerase activity per se. Thus, the telomerase inhibitor PinX1 is recruited to telomeres by TRF1 and provides a critical link between TRF1 and telomerase inhibition to prevent telomere elongation and help maintain telomere homeostasis.  相似文献   

10.
Tankyrase1 is a multifunctional poly(ADP-ribose) polymerase that can localize to telomeres through its interaction with the shelterin component TRF1. Tankyrase1 poly(ADP-ribosyl)ates TRF1 in vitro, and its nuclear overexpression leads to loss of TRF1 and telomere elongation, suggesting that tankyrase1 is a positive regulator of telomere length. In agreement with this proposal, we show that tankyrase1 RNA interference results in telomere shortening proportional to the level of knockdown. Furthermore, we show that a tankyrase1-resistant form of TRF1 enforced normal telomere length control, indicating that tankyrase1 is not required downstream of TRF1 in this pathway. Thus, in human cells, tankyrase1 appears to act upstream of TRF1, promoting telomere elongation through the removal of TRF1. This pathway appears absent from mouse cells. We show that murine TRF1, which lacks the canonical tankyrase1-binding site, is not a substrate for tankyrase1 poly(ADP-ribosyl)sylation in vitro. Furthermore, overexpression of tankyrase1 in mouse nuclei did not remove TRF1 from telomeres and had no detectable effect on other components of mouse shelterin. We propose that the tankyrase1-controlled telomere extension is a human-specific elaboration that allows additional control over telomere length in telomerase positive cells.  相似文献   

11.
A variety of telomere protection programs are utilized to preserve telomere structure. However, the complex nature of telomere maintenance remains elusive. The Timeless protein associates with the replication fork and is thought to support efficient progression of the replication fork through natural impediments, including replication fork block sites. However, the mechanism by which Timeless regulates such genomic regions is not understood. Here, we report the role of Timeless in telomere length maintenance. We demonstrate that Timeless depletion leads to telomere shortening in human cells. This length maintenance is independent of telomerase, and Timeless depletion causes increased levels of DNA damage, leading to telomere aberrations. We also show that Timeless is associated with Shelterin components TRF1 and TRF2. Timeless depletion slows telomere replication in vitro, and Timeless-depleted cells fail to maintain TRF1-mediated accumulation of replisome components at telomeric regions. Furthermore, telomere replication undergoes a dramatic delay in Timeless-depleted cells. These results suggest that Timeless functions together with TRF1 to prevent fork collapse at telomere repeat DNA and ensure stable maintenance of telomere length and integrity.  相似文献   

12.
Cells derived from patients with the human genetic disorder ataxia-telangiectasia (A-T) display many abnormalities, including telomere shortening, premature senescence, and defects in the activation of S phase and G(2)/M checkpoints in response to double-strand DNA breaks induced by ionizing radiation. We have previously demonstrated that one of the ATM substrates is Pin2/TRF1, a telomeric protein that binds the potent telomerase inhibitor PinX1, negatively regulates telomere elongation, and specifically affects mitotic progression. Following DNA damage, ATM phosphorylates Pin2/TRF1 and suppresses its ability to induce abortive mitosis and apoptosis (Kishi, S., Zhou, X. Z., Nakamura, N., Ziv, Y., Khoo, C., Hill, D. E., Shiloh, Y., and Lu, K. P. (2001) J. Biol. Chem. 276, 29282-29291). However, the functional importance of Pin2/TRF1 in mediating ATM-dependent regulation remains to be established. To address this question, we directly inhibited the function of endogenous Pin2/TRF1 in A-T cells by stable expression of two different dominant-negative Pin2/TRF1 mutants and then examined their effects on telomere length and DNA damage response. Both the Pin2/TRF1 mutants increased telomere length in A-T cells, as shown in other cells. Surprisingly, both the Pin2/TRF1 mutants reduced radiosensitivity and complemented the G(2)/M checkpoint defect without inhibiting Cdc2 activity in A-T cells. In contrast, neither of the Pin2/TRF1 mutants corrected the S phase checkpoint defect in the same cells. These results indicate that inhibition of Pin2/TRF1 in A-T cells is able to bypass the requirement for ATM in specifically restoring telomere shortening, the G(2)/M checkpoint defect, and radiosensitivity and demonstrate a critical role for Pin2/TRF1 in the ATM-dependent regulation of telomeres and DNA damage response.  相似文献   

13.
A variety of telomere protection programs are utilized to preserve telomere structure. However, the complex nature of telomere maintenance remains elusive. The Timeless protein associates with the replication fork and is thought to support efficient progression of the replication fork through natural impediments, including replication fork block sites. However, the mechanism by which Timeless regulates such genomic regions is not understood. Here, we report the role of Timeless in telomere length maintenance. We demonstrate that Timeless depletion leads to telomere shortening in human cells. This length maintenance is independent of telomerase, and Timeless depletion causes increased levels of DNA damage, leading to telomere aberrations. We also show that Timeless is associated with Shelterin components TRF1 and TRF2. Timeless depletion slows telomere replication in vitro, and Timeless-depleted cells fail to maintain TRF1-mediated accumulation of replisome components at telomeric regions. Furthermore, telomere replication undergoes a dramatic delay in Timeless-depleted cells. These results suggest that Timeless functions together with TRF1 to prevent fork collapse at telomere repeat DNA and ensure stable maintenance of telomere length and integrity.  相似文献   

14.
The telomere is a functional chromatin structure that consists of G-rich repetitive sequences and various associated proteins. Telomeres protect chromosomal ends from degradation, provide escape from the DNA damage response, and regulate telomere lengthening by telomerase. Multiple proteins that localize at telomeres form a complex called shelterin/telosome. One component, TRF1, is a double-stranded telomeric DNA binding protein. Inactivation of TRF1 disrupts telomeric localization of other shelterin components and induces chromosomal instability. Here, we examined how the telomeric localization of shelterin components is crucial for TRF1-mediated telomere-associated functions. We found that many of the mTRF1 deficient phenotypes, including chromosomal instability, growth defects, and dysfunctional telomere damage response, were suppressed by the telomere localization of shelterin components in the absence of functional mTRF1. However, abnormal telomere signals and telomere elongation phenotypes were either not rescued or only partially rescued, respectively. These data suggest that TRF1 regulates telomere length and function by at least two mechanisms; in one TRF1 acts through the recruiting/tethering of other shelterin components to telomeres, and in the other TRF1 seems to play a more direct role.  相似文献   

15.
Human telomeres contain two related telomeric DNA-binding proteins, TRF1 and TRF2. The TRF1 complex contains the TRF1 interacting partner, TIN2, as well as PIP1 and POT1 and regulates telomere-length homeostasis. The TRF2 complex is primarily involved in telomere protection and contains the TRF2 interacting partner human (h)Rap1 as well as several factors involved in the DNA damage response. A prior report showed that conditional deletion of murine TRF1 reduced the presence of TRF2 on telomeres. Here we showed that TRF2 is also lost from human telomeres upon TRF1 depletion with small interfering RNA prompting a search for the connection between the TRF1 and TRF2 complexes. Using mass spectrometry and co-immunoprecipitation, we found that TRF1, TIN2, PIP1, and POT1 are associated with the TRF2-hRap1 complex. Gel filtration identified a TRF2 complex containing TIN2 and POT1 but not TRF1 indicating that TRF1 is not required for this interaction. Co-immunoprecipitation, Far-Western assays, and two-hybrid assays showed that TIN2, but not POT1 or PIP1, interacts directly with TRF2. Furthermore, TIN2 was found to bind TRF1 and TRF2 simultaneously, showing that TIN2 can link these telomeric proteins. This connection appeared to stabilize TRF2 on the telomeres as the treatment of cells with TIN2 small interfering RNA resulted in a decreased presence of TRF2 and hRap1 at chromosome ends. The TIN2-mediated cooperative binding of TRF1 and TRF2 to telomeres has important implications for the mechanism of telomere length regulation and protection.  相似文献   

16.
Oxidative damage in telomeric DNA disrupts recognition by TRF1 and TRF2   总被引:3,自引:1,他引:2  
The ends of linear chromosomes are capped by protein–DNA complexes termed telomeres. Telomere repeat binding factors 1 and 2 (TRF1 and TRF2) bind specifically to duplex telomeric DNA and are critical components of functional telomeres. Consequences of telomere dysfunction include genomic instability, cellular apoptosis or senescence and organismal aging. Mild oxidative stress induces increased erosion and loss of telomeric DNA in human fibroblasts. We performed binding assays to determine whether oxidative DNA damage in telomeric DNA alters the binding activity of TRF1 and TRF2 proteins. Here, we report that a single 8-oxo-guanine lesion in a defined telomeric substrate reduced the percentage of bound TRF1 and TRF2 proteins by at least 50%, compared with undamaged telomeric DNA. More dramatic effects on TRF1 and TRF2 binding were observed with multiple 8-oxo-guanine lesions in the tandem telomeric repeats. Binding was likewise disrupted when certain intermediates of base excision repair were present within the telomeric tract, namely abasic sites or single nucleotide gaps. These studies indicate that oxidative DNA damage may exert deleterious effects on telomeres by disrupting the association of telomere-maintenance proteins TRF1 and TRF2.  相似文献   

17.
Topoisomerase (Topo) IIIalpha associates with BLM helicase, which is proposed to be important in the alternative lengthening of telomeres (ALT) pathway that allows telomere recombination in the absence of telomerase. Here, we show that human Topo IIIalpha colocalizes with telomeric proteins at ALT-associated promyelocytic bodies from ALT cells. In these cells, Topo IIIalpha immunoprecipitated with telomere binding protein (TRF) 2 and BLM and was shown to be associated with telomeric DNA by chromatin immunoprecipitation, suggesting that these proteins form a complex at telomere sequences. Topo IIIalpha depletion by small interfering RNA reduced ALT cell survival, but did not affect telomerase-positive cell lines. Moreover, repression of Topo IIIalpha expression in ALT cells reduced the levels of TRF2 and BLM proteins, provoked a strong increase in the formation of anaphase bridges, induced the degradation of the G-overhang signal, and resulted in the appearance of DNA damage at telomeres. In contrast, telomere maintenance and TRF2 levels were unaffected in telomerase-positive cells. We conclude that Topo IIIalpha is an important telomere-associated factor, essential for telomere maintenance and chromosome stability in ALT cells, and speculate on its potential mechanistic function.  相似文献   

18.
Tankyrase promotes telomere elongation in human cells   总被引:44,自引:0,他引:44  
  相似文献   

19.
20.
P Knig  L Fairall    D Rhodes 《Nucleic acids research》1998,26(7):1731-1740
Telomeres consist of tandem arrays of short G-rich sequence motifs packaged by specific DNA binding proteins. In humans the double-stranded telomeric TTAGGG repeats are specifically bound by TRF1 and TRF2. Although telomere binding proteins from evolutionarily distant species are not sequence homologues, they share a Myb-like DNA binding motif. Here we have used gel retardation, primer extension and DNase I footprinting analyses to define the binding site of the isolated Myb-like domain of TRF1 and present a three-dimensional model for its interaction with human telomeric DNA. Our results suggest that the Myb-like domain of TRF1 recognizes a binding site centred on the sequence GGGTTA and that its DNA binding mode is similar to that of the homeodomain-like motifs of the yeast telomere binding protein RAP1. The implications of these findings for recognition of telomeric DNA in general are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号