首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both the muscle and endothelium of the vertebrate limb derive from somites. We have used replication-defective retroviral vectors to analyze the lineage relationships of these somite-derived cells in the chick. We find that myogenic precursors in the somites or proximal limb are not committed to forming slow or fast muscle fibers, particular anatomical muscles, or muscles within specific proximal/distal or dorsal/ventral limb regions. Somitic endothelial precursors are uncommitted to forming endothelium in particular proximal/distal or dorsal/ventral limb regions. Surprisingly, we also find that myogenic and endothelial cells are derived from a common somitic precursor. Thus, local extrinsic signals are critical for determining muscle and endothelial patterning as well as cell fate in the limb.  相似文献   

2.
Development of the musculature in chick limbs involves tissue and cellular patterning. Patterning at the tissue level leads to the precise arrangement of specific muscles; at the cellular level patterning gives rise to the fibre type diversity in muscles. Although the data suggests that the information controlling muscle patterning is localised within the limb mesenchyme and not in the somitic myogenic precursor cells themselves, the mechanisms underlying muscle organisation have still to be elucidated. The anterior-posterior axis of the limb is specified by a group of cells in the posterior region of the limb mesenchyme, called the zone of polarizing activity (ZPA). When polarizing-region cells are grafted to the anterior margin of the bud, they cause mirror-image digit duplications to be produced. The effect of ZPA grafts can be reproduced by application of retinoic acid (RA) beads and by grafting sonic hedgehog (SHH)-expressing cells to the anterior margin of the limb. Although most previous studies have looked at changes of the skeletal patterning, ZPA and RA also affect muscle patterning. In this report, we investigated the role of SHH in tissue and cellular patterning of forearm wing muscles. Ectopic application of a localised source of SHH to the anterior margin of the wing, leading to complete digit duplication, is able to transform anterior forearm muscles into muscles with a posterior identity. Moreover, the ectopic source of SHH induces a mirror image duplication of the normal posterior muscles fibre types in the new posterior muscles. The reorganisation of the slow fibres can be detected before muscle mass cleavage has started; suggesting that the appropriate fibre type arrangement is in place before the splitting process can be observed.  相似文献   

3.
Appendages, such as wings of a fly or limbs of a vertebrate, are excellent models to study the principles of patterning and morphogenesis. In the adult these structures are used for a variety of behaviors, including locomotion. Although support structures of the adult vertebrate limb are generated within the limb bud, its dynamic elements are derived from the somitic mesoderm and neural tube. Recent studies show that regional patterns set up in the mesenchyme-filled limb bud guide muscle precursors and developing motor axons to their proper location within the limb. Subsequent development of the neuromuscular system is regulated by cell surface interactions between pre-specified muscle fibers and motor axons.  相似文献   

4.
The somitic level of origin of embryonic chick hindlimb muscles   总被引:1,自引:0,他引:1  
Studies of avian chimeras made by transplanting groups of quail somites into chick embryos have consistently shown that the muscle cells of the hindlimb are derived from the adjacent somites, however, the pattern of cell distribution from individual somites to individual hindlimb muscles has not been characterized. I have mapped quail cell distribution in the chick hindlimb after single somite transplantation to determine if cells from an individual somite populate discrete limb muscle regions and if there is a spatial correspondence between a muscle's somitic level of origin and the known spinal cord position of its motoneuron pool. At stages 15-18 single chick somites or equivalent lengths of unsegmented somitic mesoderm adjacent to the prospective hindlimb region were replaced with the corresponding tissue from quail embryos. At stages 28-34, quail cell distribution was mapped within individual thigh muscles and shank muscle regions. A quail-specific antiserum and Feulgen staining were used to identify quail cells. Transplants from somite levels 26-33 each gave rise to consistent quail cell labeling in a unique subset of limb muscles. The anteroposterior positions of these subsets corresponded to that of the transplanted somitic tissue. For example, more anterior or anteromedial thigh muscles contained quail cells when more anterior somitic tissue had been transplanted. For the majority of thigh muscles studied and for shank muscle groups, there was also a clear correlation between somitic level of origin and motoneuron pool position. These data are compatible with the hypothesis that motoneurons and the muscle cells of their targets share axial position labels. The question of whether motoneurons from a specific spinal cord segment recognize and consequently innervate muscle cells derived from the same axial level during early axon outgrowth is addressed in the accompanying paper (C. Lance-Jones, 1988, Dev. Biol. 126, 408-419). Quail cell distribution was also mapped in chick embryos in which quail somites or unsegmented mesoderm had been placed 2-3 somites away from their position of origin. In all cases donor somitic tissues contributed to muscles in accord with their host position. These results indicate that muscle cell precursors within the somites are not specified to migrate to a predetermined target region.  相似文献   

5.
The vertebrate body wall is regionalized into thoracic and lumbosacral/abdominal regions that differ in their morphology and developmental origin. The thoracic body wall has ribs and intercostal muscles, which develops from thoracic somites, whereas the abdominal wall has abdominal muscles, which develops from lumbosacral somites without ribs cage. To examine whether limb-genesis interferes with body wall-genesis, and to test the possibility that limb generation leads to the regional differentiation, an ectopic limb was induced in the thoracic region by transplanting prospective limb somatopleural mesoderm of Japanese quail between the ectoderm and somatopleural mesoderm of the chick prospective thoracic region. This ectopic limb generation induced the somitic cells to migrate into the ectopic limb mesenchyme to become its muscles and caused the loss of distal thoracic body wall (sterno-distal rib and distal intercostal muscle), without causing any significant effect on the more proximal region (proximal rib, vertebro-distal rib and proximal intercostal muscle). According to a new primaxial–abaxial classification, the proximal region is classified as primaxial and the distal region, as well as limb, is classified as abaxial. We demonstrated that ectopic limb development interfered with body wall development via its influence on the abaxial somite derivatives. The present study supports the idea that the somitic cells give rise to the primaxial derivatives keeping their own identity and fate, whereas they produce the abaxial derivatives responding to the lateral plate mesoderm.  相似文献   

6.
Wnt signalling during limb development   总被引:7,自引:0,他引:7  
Wnts control a number of processes during limb development--from initiating outgrowth and controlling patterning, to regulating cell differentiation in a number of tissues. Interactions of Wnt signalling pathway components with those of other signalling pathways have revealed new mechanisms of modulating Wnt signalling, which may explain how different responses to Wnt signalling are elicited in different cells. Given the number of Wnts that are expressed in the limb and their ability to induce differential responses, the challenge will be to dissect precisely how Wnt signalling is regulated and how it controls limb development at a cellular level, together with the other signalling pathways, to produce the functional limb capable of coordinated precise movements.  相似文献   

7.
SF/HGF is a mediator between limb patterning and muscle development.   总被引:3,自引:0,他引:3  
Scatter factor/hepatocyte growth factor (SF/HGF) is known to be involved in the detachment of myogenic precursor cells from the lateral dermomyotomes and their subsequent migration into the newly formed limb buds. As yet, however, nothing has been known about the role of the persistent expression of SF/HGF in the limb bud mesenchyme during later stages of limb bud development. To test for a potential role of SF/HGF in early limb muscle patterning, we examined the regulation of SF/HGF expression in the limb bud as well as the influence of SF/HGF on direction control of myogenic precursor cells in limb bud mesenchyme. We demonstrate that SF/HGF expression is controlled by signals involved in limb bud patterning. In the absence of an apical ectodermal ridge (AER), no expression of SF/HGF in the limb bud is observed. However, FGF-2 application can rescue SF/HGF expression. Excision of the zone of polarizing activity (ZPA) results in ectopic and enhanced SF/HGF expression in the posterior limb bud mesenchyme. We could identify BMP-2 as a potential inhibitor of SF/HGF expression in the posterior limb bud mesenchyme. We further demonstrate that ZPA excision results in a shift of Pax-3-positive cells towards the posterior limb bud mesenchyme, indicating a role of the ZPA in positioning of the premuscle masses. Moreover, we present evidence that, in the limb bud mesenchyme, SF/HGF increases the motility of myogenic precursor cells and has a role in maintaining their undifferentiated state during migration. We present a model for a crucial role of SF/HGF during migration and early patterning of muscle precursor cells in the vertebrate limb.  相似文献   

8.
Summary In chick embryos, observations were made on serial semithin transverse sections of the wing level. In addition homo- or heterotopic replacements of the wing or leg somitic mesoderm by labelled somitic or nonsomitic mesoderm were made in 2-to 2.5-day embryos. The nuclear label used was either natural (quail donor embryos in heterotopic transplantations) or isotopic (chick donors labelled with tritiated thymidine).Histological examination revealed that the first somitic cells to leave somite 15 apparently did so at the 20 to 22 somite stage, while the last ones to leave somite 20 apparently did so shortly before the 36 somite stage.Transplantation experiments with labelled donor cells revealed the routes of migratory somitic cells and the time-course of their invasion into the outgrowing limb bud (non-somitic graft cells did not noticeably invade the limb anlage). They showed furthermore that the somitic mesoderm is not regionalized with respect to its limb myogenic properties.These results are compared with those obtained in other classes of vertebrates.
Ce travail a été subventionné en partie par la D.G.R.S.T. et le C.N.R.S.  相似文献   

9.
10.
An electron microscopic study of the components of anterior limb buds of the slow-worm (Anguis fragilis) and of the green lizard (Lacerta viridis) (embryos of Anguis whose allantoic bud reach 0,7 to 4 mm of length; embryos of Lacerta 2 to 7 days old) provides data on the cytological characteristics of the components of the limb bud at these early stages. 1. The cells of the distal extremity of the somitic processes extending in the limb bud of Anguis and Lacerta, are elongated cells with ovoid nuclei containing large nucleolus; they possess mitochondria always thin and with dense matrix; they are rich in lipid droplets; they possess cilia; they are devoid of myofilaments; endoplasmic reticulum, free ribosomes and polyribosomes are abundant. Golgi networks display signs of activity. These characteristics are also observed in the cells of the "dermatome" layer of the dermo-myotome; and so, it appears probable that the cells of the "dermatome". Furthermore, in Anguis embryos, the cells of the distal extremities of the somitic processes possess numerous lysosomes and a certain number of cells among them, degenerate early. 2. The somatopleural mesoblastic cells of the limb bud of Anguis and Lacerta embryos keep the characters of the cells of the mesodermic layer of lateral plate from which they originate; they have rounded nuclei, cilia, and their mitochondria are always larger and more transparent to electrons, than the ones of cells of the somitic processes and of cells of the epiblastic apical crest. Golgi networks are well developped, endoplasmic reticulum is abundant, lipid droplets are rare. 3. The processes of somites which extend in the dorsal part of the limb bud of Anguis embryos are cords of cells with thin lumina; at the stage of the allantoic bud of 0,6 to 0,8 mm long, the distal extremity of these processes dislocate in group of cells which afterwards dissociate, releasing individual somitic cells which are integrated among the mesoblastic somatopleural cells. In young lizard embryos (2 to 4 days old) the distal extremity of the somitic processes enlarges into a vesicle from which cells are released and penetrate in the mesoblast of the limb bud. 4. The somitic cells released from the somitic processes of Anguis and Lacerta keep--at least at early stages--the cytological characteristics they displayed when they were still in situ in the somitic processes: grounded on the presence or absence of lipid droplets, on the width and density of the mitochondria, the distinction, at these stages, between the somitic and mesoblastic somatoplerual cells is possible; and it is also possible to observe the integration of the somitic cells into the mesoblast. This study brings the demonstration of the cellular contribution of the somites to the formation of the limb bud in Reptiles. 5...  相似文献   

11.
12.
In avians and mice, trunk neural crest migration is restricted to the anterior half of each somite. Sclerotome has been shown to play an essential role in this restriction; the potential role of other somite components in specifying neural crest migration is currently unclear. By contrast, in zebrafish trunk neural crest, migration on the medial pathway is restricted to the middle of the medial surface of each somite. Sclerotome comprises only a minor part of zebrafish somites, and the pattern of neural crest migration is established before crest cells contact sclerotome cells, suggesting other somite components regulate the pattern of zebrafish neural crest migration. Here, we use mutants to investigate which components regulate the pattern of zebrafish trunk neural crest migration on the medial pathway. The pattern of trunk neural crest migration is aberrant in spadetail mutants that have very reduced somitic mesoderm, in no tail mutants injected with spadetail morpholino antisense oligonucleotides that entirely lack somitic mesoderm and in somite segmentation mutants that have normal somite components but disrupted segment borders. Fast muscle cells appear dispensable for patterning trunk neural crest migration. However, migration is abnormal in Hedgehog signaling mutants that lack slow muscle cells, providing evidence that slow muscle cells regulate the pattern of trunk neural crest migration. Consistent with this idea, surgical removal of adaxial cells, which are slow muscle precursors, results in abnormal patterning of neural crest migration; normal patterning can be restored by replacing the ablated adaxial cells with ones transplanted from wild-type embryos.  相似文献   

13.
The recombinant limb is a model system that has proved fruitful for analyzing epithelial-mesenchymal interactions and understanding the functional properties of the components of the limb bud. Here we present an overview of some of the insights obtained through the use of this technique. Among these are the understanding that fore or hind limb identity is inherent to the limb bud mesoderm, that the apical ectodermal ridge (AER) is a permissive signaling center and that the limb bud ectoderm plays a central role in the control of dorsoventral polarity. Recombinant limb studies have also allowed the identification of the affected tissue component in several limb mutants. More recently this model has been applied to the study of regulation of gene expressions related to patterning. In this report we use recombinant limbs to analyze pattering of the Pax3 expressing limb muscle cell lineage in the early stages of limb development. In recombinant limbs made without the zone of polarizing activity (ZPA), myoblasts appear intermingled with other mesodermal cells at the beginning of the recombinant limb development. Rapidly thereafter, the muscle precursors segregate and organize around the central forming chondrogenic core of the recombinant. Although this segregation is reminiscent of that occurring during normal development, the myoblasts in the recombinant fail to proliferate appropriately and also fail to migrate distally. Consequently, the muscle pattern in the recombinant limb is defective indicating that normal patterning cues are absent. However, recombinant limbs polarized with a ZPA exhibited a larger mass of muscle cells and a more normal morphogenesis, supporting a role for this signaling center in limb muscle development. Finally, we have ruled out host somite contributions to recombinant limbs by grafting chick recombinant limbs to quail hosts. This initial report demonstrates the value of the recombinant limb model system for dissecting the environmental cues required for normal muscle limb patterning. Received: 31 August 1998 / Accepted: 29 September 1998  相似文献   

14.
The products of Hox-4 genes appear to encode position in developing vertebrate limbs. In chick embryos, a number of different signalling regions when grafted to wing buds lead to duplicated digit patterns. We grafted tissue from the equivalent regions in mouse embryos to chick wing buds and assayed expression of Hox-4 genes in both the mouse cells in the grafts and in the chick cells in the responding limb bud using species specific probes. Tissue from the mouse limb polarizing region and anterior primitive streak respecify anterior chick limb bud cells to give posterior structures and lead to activation of all the genes in the complex. Mouse neural tube and genital tubercle grafts, which give much less extensive changes in pattern, do not activate 5'-located Hox-4 genes. Analysis of expression of Hox-4 genes in mouse cells in the grafted signalling regions reveals no relationship between expression of these genes and strength of their signalling activity. Endogenous signals in the chick limb bud activate Hox-4 genes in grafts of mouse anterior limb cells when placed posteriorly and in grafts of mouse anterior primitive streak tissue. The activation of the same gene network by different signalling regions points to a similarity in patterning mechanisms along the axes of the vertebrate body.  相似文献   

15.
Summary The migratory and organogenetic capacities of muscle cells at different stages of differentiation were tested in heterospecific chick/quail recombinants. Grafts containing muscle cells were taken from the premuscular masses from 4- to 5-day quail embryos, from the limb or trunk muscles of 12-day embryonic and 4-day post-natal quails, and from experimentally produced bispecific premuscular masses in which the myoblasts are of quail origin and the connective tissue cells of chick origin. Grafts were implanted into 2-day chick embryos in place of the somitic mesoderm at the limb level. Hosts were examined 4 to 7 days after operation.After implantation of a piece of premuscular mass, quail cells were found at and around the site of the graft in the truncal region and within the limb as far as the autopod. Quail cells participated predominantly in the trunk and limb musculature, which contained a number of quail myotubes and of bispecific quail/chick myotubes. Apart from skeletal muscles, quail cells contributed sporadically to nerve envelopes and blood vessel walls in the limb.When the graft was of bispecific constitution, quail nuclei in the limb and the trunk were found exclusively in monospecific and bispecific myotubes.After implantation of differentiated embryonic or post-natal muscle tissue, quail cells in the limb contributed only sporadically to nerve envelopes and blood vessel walls, while in the trunk they also participated in the formation of muscles and tendons.It is concluded that the myogenic cells in 4 to 5-day quail premuscular masses are still able to undergo an extensive migration into the limb buds and there participate in the formation of myotubes and anatomically normal muscles. They display developmental potentialities equivalent to those of the somitic myogenic stem cells. These capacities are lost in 12-day embryonic muscles.  相似文献   

16.
In vertebrate embryos, motor axons originating from a particular craniocaudal position in the neural tube innervate limb muscles derived from myoblasts of the same segmental level. We have investigated whether this relationship is important for the formation of specific nerve-muscle connections, by altering the segmental origin of muscles and examining their resulting innervation. First, by grafting quail wing somites to a new craniocaudal position opposite the chick wing, we established that the segmental origin of a muscle can be altered: presumptive muscle cells migrated according to their new, rather than their original, somitic level, colonizing a different subset of muscles. However, after reversal of a length of brachial somitic mesoderm along the craniocaudal axis, or exchange or shift of brachial somites, the craniocaudal position of wing muscle motoneurone pools within the spinal cord was undisturbed, despite the new segmental origin of the muscles themselves. While not excluding the possibility that muscles and their motor nerves are labelled segmentally, we conclude that specific motor axon guidance in the wing does not depend upon the existence of such labels.  相似文献   

17.
Skeletal muscle development in the mouse embryo   总被引:3,自引:0,他引:3  
  相似文献   

18.
The mesoderm, comprising the tissues that come to lie entirely in the deep layer, originates in both the superficial epithelial and the deep mesenchymal layers of the early amphibian embryo. Here, we characterize the mechanisms by which the superficial component of the presumptive mesoderm ingresses into the underlying deep mesenchymal layer in Xenopus tropicalis and extend our previous findings for Xenopus laevis. Fate mapping the superficial epithelium of pregastrula stage embryos demonstrates ingression of surface cells into both paraxial and axial mesoderm (including hypochord), in similar patterns and amounts in both species. Superficial presumptive notochord lies medially, flanked by presumptive hypochord and both overlie the deep region of the presumptive notochord. These tissues are flanked laterally by superficial presumptive somitic mesoderm, the anterior tip of which also appears to overlay the presumptive deep notochord. Time-lapse recordings show that presumptive somitic and notochordal cells move out of the roof of the gastrocoel and into the deep region during neurulation, whereas hypochordal cells ingress after neurulation. Scanning electron microscopy at the stage and position where ingression occurs suggests that superficial presumptive somitic cells in X. laevis ingress into the deep region as bottle cells whereas those in X. tropicalis ingress by "relamination" (e.g., [Dev. Biol. 174 (1996) 92]). In both species, the superficially derived presumptive somitic cells come to lie in the medial region of the presumptive somites during neurulation. By the early tailbud stages, these cells lie at the horizontal myoseptum of the somites. The morphogenic pathway of these cells strongly resembles that of the primary slow muscle pioneer cells of the zebrafish. We present a revised fate map of Xenopus, and we discuss the conservation of superficial mesoderm within amphibians and across the chordates and its implications for the role of this tissue in patterning the mesoderm.  相似文献   

19.
The limb musculature arises by delamination of premyogenic cells from the lateral dermomyotome. Initially the cells express Pax3 but, upon entering the limb bud, they switch on the expression of MyoD and Myf5 and undergo terminal differentiation into slow or fast fibres, which have distinct contractile properties that determine how a muscle will function. In the chick, the premyogenic cells express the Wnt antagonist Sfrp2, which is downregulated as the cells differentiate, suggesting that Wnts might regulate myogenic differentiation. Here, we have investigated the role of Wnt signalling during myogenic differentiation in the developing chick wing bud by gain- and loss-of-function studies in vitro and in vivo. We show that Wnt signalling changes the number of fast and/or slow fibres. For example, in vivo, Wnt11 decreases and increases the number of slow and fast fibres, respectively, whereas overexpression of Wnt5a or a dominant-negative Wnt11 protein have the opposite effect. The latter shows that endogenous Wnt11 signalling determines the number of fast and slow myocytes. The distinct effects of Wnt5a and Wnt11 are consistent with their different expression patterns, which correlate with the ultimate distribution of slow and fast fibres in the wing. Overexpression of activated calmodulin kinase II mimics the effect of Wnt5a, suggesting that it uses this pathway. Finally, we show that overexpression of the Wnt antagonist Sfrp2 and DeltaLef1 reduces the number of myocytes. In Sfrp2-infected limbs, the number of Pax3 expressing cells was increased, suggesting that Sfrp2 blocks myogenic differentiation. Therefore, Wnt signalling modulates both the number of terminally differentiated myogenic cells and the intricate slow/fast patterning of the limb musculature.  相似文献   

20.

Background

Secreted Hedgehog (Hh) signalling molecules have profound influences on many developing and regenerating tissues. Yet in most vertebrate tissues it is unclear which Hh-responses are the direct result of Hh action on a particular cell type because Hhs frequently elicit secondary signals. In developing skeletal muscle, Hhs promote slow myogenesis in zebrafish and are involved in specification of medial muscle cells in amniote somites. However, the extent to which non-myogenic cells, myoblasts or differentiating myocytes are direct or indirect targets of Hh signalling is not known.

Results

We show that Sonic hedgehog (Shh) can act directly on cultured C2 myoblasts, driving Gli1 expression, myogenin up-regulation and terminal differentiation, even in the presence of growth factors that normally prevent differentiation. Distinct myoblasts respond differently to Shh: in some slow myosin expression is increased, whereas in others Shh simply enhances terminal differentiation. Exposure of chick wing bud cells to Shh in culture increases numbers of both muscle and non-muscle cells, yet simultaneously enhances differentiation of myoblasts. The small proportion of differentiated muscle cells expressing definitive slow myosin can be doubled by Shh. Shh over-expression in chick limb bud reduces muscle mass at early developmental stages while inducing ectopic slow muscle fibre formation. Abundant later-differentiating fibres, however, do not express extra slow myosin. Conversely, Hh loss of function in the limb bud, caused by implanting hybridoma cells expressing a functionally blocking anti-Hh antibody, reduces early slow muscle formation and differentiation, but does not prevent later slow myogenesis. Analysis of Hh knockout mice indicates that Shh promotes early somitic slow myogenesis.

Conclusions

Taken together, the data show that Hh can have direct pro-differentiative effects on myoblasts and that early-developing muscle requires Hh for normal differentiation and slow myosin expression. We propose a simple model of how direct and indirect effects of Hh regulate early limb myogenesis.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号