首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
《The Journal of cell biology》1996,134(5):1333-1344
We have identified three DNase I-hypersensitive sites in chromatin between 15 and 17 kb upstream of the mouse pro alpha 2 (I) collagen gene. These sites were detected in cells that produce type I collagen but not in cells that do not express these genes. A construction containing the sequences from -17 kb to +54 bp of the mouse pro alpha 2 (I) collagen gene, cloned upstream of either the Escherichia coli beta- galactosidase or the firefly luciferase reporter gene, showed strong enhancer activity in transgenic mice when compared with the levels seen previously in animals harboring shorter promoter fragments. Especially high levels of expression of the reporter gene were seen in dermis, fascia, and the fibrous layers of many internal organs. High levels of expression could also be detected in some osteoblastic cells. When various fragments of the 5' flanking sequences were cloned upstream of the 350-bp proximal pro alpha 2(I) collagen promoter linked to the lacZ gene, the cis-acting elements responsible for enhancement were localized in the region between -13.5 and -19.5 kb, the same region that contains the three DNase I-hypersensitive sites. Moreover, the DNA segment from -13.5 to -19.5 kb was also able to drive the cell-specific expression of a 220-bp mouse pro alpha 1(I) collagen promoter, which is silent in transgenic mice. Hence, our data suggest that a far-upstream enhancer element plays a role in regulating high levels of expression of the mouse pro alpha 2(I) collagen gene.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
We have previously shown that type I procollagen pro-alpha1(I) chains from an osteogenesis imperfecta patient (OI26) with a frameshift mutation resulting in a truncated C-propeptide, have impaired assembly, and are degraded by an endoplasmic reticulum-associated pathway (Lamandé, S. R., Chessler, S. D., Golub, S. B., Byers, P. H., Chan, D., Cole, W. G., Sillence, D. O. and Bateman, J. F. (1995) J. Biol. Chem. 270, 8642-8649). To further explore the degradation of procollagen chains with mutant C-propeptides, mouse Mov13 cells, which produce no endogenous pro-alpha1(I), were stably transfected with a pro-alpha1(I) expression construct containing a frameshift mutation that predicts the synthesis of a protein 85 residues longer than normal. Despite high levels of mutant mRNA in transfected Mov13 cells, only minute amounts of mutant pro-alpha1(I) could be detected indicating that the majority of the mutant pro-alpha1(I) chains synthesized are targeted for rapid intracellular degradation. Degradation was not prevented by brefeldin A, monensin, or NH(4)Cl, agents that interfere with intracellular transport or lysosomal function. However, mutant pro-alpha1(I) chains in both transfected Mov13 cells and OI26 cells were protected from proteolysis by specific proteasome inhibitors. Together these data demonstrate for the first time that procollagen chains containing C-propeptide mutations that impair assembly are degraded by the cytoplasmic proteasome complex, and that the previously identified endoplasmic reticulum-associated degradation of mutant pro-alpha1(I) in OI26 is mediated by proteasomes.  相似文献   

11.
We have constructed a cDNA encoding the entire human pro-alpha 2(I) collagen molecule. Sequence determination for 2196 base pairs at the 5' end of the cDNA clone, and comparison with previously characterized human alpha 2(I) sequences, identified a number of nucleotide and amino acid polymorphisms. Functionality of the cDNA clone, under control of the long terminal repeat of Rous sarcoma virus, was demonstrated by its introduction into the W8 cell line. The W8 line, a chemically transformed variant of K16 rat liver epithelial cells, has been previously shown to lack detectable levels of alpha 2(I) RNA, but to secrete alpha 1(I) homotrimers. Introduction of the human cDNA into W8 cells, resulted in secretion of chimeric type I collagen comprised of rat alpha 1(I) and human alpha 2(I) chains. Availability of a functional full-length clone of human alpha 2(I) cDNA, combined with the W8 cell line as expression system, will allow detailed analysis, through site-directed mutagenesis, of domains on the pro-alpha 2(I) molecule involved in assembly, transport, secretion, and fibrillogenesis.  相似文献   

12.
13.
14.
15.
Multiple epiphyseal dysplasia (MED) is a genetically heterogeneous disorder with marked clinical and radiographic variability. Traditionally, the mild "Ribbing" and severe "Fairbank" types have been used to define a broad phenotypic spectrum. Mutations in the gene encoding cartilage oligomeric-matrix protein have been shown to result in several types of MED, whereas mutations in the gene encoding the alpha2 chain of type IX collagen (COL9A2) have so far been found only in two families with the Fairbank type of MED. Type IX collagen is a heterotrimer of pro-alpha chains derived from three distinct genes-COL9A1, COL9A2, and COL9A3. In this article, we describe two families with distinctive oligo-epiphyseal forms of MED, which are heterozygous for different mutations in the COL9A2 exon 3/intron 3 splice-donor site. Both of these mutations result in the skipping of exon 3 from COL9A2 mRNA, but the position of the mutation in the splice-donor site determines the stability of the mRNA produced from the mutant COL9A2 allele.  相似文献   

16.
F Fuller  H Boedtker 《Biochemistry》1981,20(4):996-1006
Three pro-alpha 1 collagen cDNA clones, pCg1, pCg26, and pCg54, and two pro-alpha 2 collagen cDNA clones, pCg 13 and pCg45, were subjected to extensive DNA sequence determination. The combined sequences specified the amino acid sequences for chicken pro-alpha 1 and pro-alpha 2 type I collagens starting at residue 814 in the collagen triple-helical region and continuing to the procollagen C-termini as determined by the first in-phase termination codon. Thus, the sequences of 272 pro-alpha 1 C-terminal, 260 pro-alpha 2 C-terminal, 201 pro-alpha 1 helical, and 201 pro-alpha 2 helical amino acids were established. In addition, the sequences of several hundred nucleotides corresponding to noncoding regions of both procollagen mRNAs were determined. In total, 1589 pro-alpha 1 base pairs and 1691 pro-alpha 2 base pairs were sequenced, corresponding to approximately one-third of the total length of each mRNA. Both procollagen mRNA sequences have a high G+C content. The pro-alpha 1 mRNA is 75% G+C in the helical coding region sequenced and 61% G&C in the C-terminal coding region while the pro-alpha 2 mRNA is 60% and 48% G+C, respectively, in these regions. The dinucleotide sequence pCG occurs at a higher frequence in both sequences than is normally found in vertebrate DNAs and is approximately 5 times more frequent in the pro-alpha 1 sequence than in the pro-alpha 2 sequence. Nucleotide homology in the helical coding regions is very limited given that these sequences code for the repeating Gly-X-Y tripeptide in a region where X and Y residues are 50% conserved. These differences are clearly reflected in the preferred codon usages of the two mRNAs.  相似文献   

17.
18.
19.
We have used site-directed mutagenesis to obtain human pro alpha 2(I) cDNAs containing novel mutations designed to inhibit cleavage at the C-proteinase site. Deletion of six relatively conserved amino acids which surround the cleavage site did not interfere with assembly of the triple helix in transfected rat cells, but blocked cleavage of the constituent mutated chains by endogenous C-proteinase. Substitution for a conserved Asp, which forms part of the Ala-Asp bond cleaved by C-proteinase, also blocked cleavage by endogenous C-proteinase. The conserved Asp is, therefore, a necessary component of the C-proteinase cleavage site. Incubation in vitro with a purified mouse C-proteinase, confirmed both mutations to be resistant to cleavage by high concentrations of the physiologically relevant enzyme. Mutant pro alpha 2(I) chains, resistant to cleavage by C-proteinase in culture media, were processed in cell layers by a different protease which cleaved telopeptide domains. Naturally occurring mutations at the C-proteinase site have not been described in human patients. The mutations characterized here, further define the C-proteinase cleavage site and provide reagents which may be informative when introduced into transgenic mice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号