首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copper nanoparticles have been the focus of intensive study due to their potential applications in diverse fields including biomedicine, electronics, and optics. Copper-based nanostructured materials have been used in conductive films, lubrification, nanofluids, catalysis, and also as potent antimicrobial agent. The biogenic synthesis of metallic nanostructured nanoparticles is considered to be a green and eco-friendly technology since neither harmful chemicals nor high temperatures are involved in the process. The present review discusses the synthesis of copper nanostructured nanoparticles by bacteria, fungi, and plant extracts, showing that biogenic synthesis is an economically feasible, simple and non-polluting process. Applications for biogenic copper nanoparticles are also discussed.  相似文献   

2.
Serum copper and zinc levels were determined in 20 healthy women and in 100 women with gynecological tumors. Malignant and benign tumor cases were separated according to their postoperative, histopathological examinations. The stages of malignant and benign tumors were also established histologically. Seventy benign and 30 malignant genital tumors (carcinoma of cervix in situ, cervix, ovary endometrium, and vulva) of the patients were differentiated histopathologically. The serum Cu/Zn ratios of patients were increased significantly from the control group (0.32±0.35) to the benign group (1.22±0.63) and from the benign group to the malignant group (2.24±1.03). Nine of 30 malignant cases were determined as false negative (30%) and 15 of 70 benign cases were determined as false positive (14.2%) according to the serum Cu/Zn ratios of patients. Serum copper levels of 30 malignant and 10 benign tumor cases showed linear correlation with serum ceruloplasmin values.  相似文献   

3.
Intracellular copper routing: the role of copper chaperones   总被引:9,自引:0,他引:9  
Copper is required by all living systems. Cells have a variety of mechanisms to deal with this essential, yet toxic trace element. A recently discovered facet of homeostatic mechanisms is the protein-mediated, intracellular delivery of copper to target proteins. This routing is accomplished by a novel class of proteins, the 'copper chaperones'. They are a family of conserved proteins present in prokaryotes and eukaryotes, which suggests that copper chaperones are used throughout nature for intracellular copper routing.  相似文献   

4.
Hereditary forms of copper toxicosis exist in man and dogs. In man, Wilson's disease is the best studied disorder of copper overload, resulting from mutations in the gene coding for the copper transporter ATP7B. Forms of copper toxicosis for which no causal gene is known yet are recognized as well, often in young children. Although advances have been made in unraveling the genetic background of disorders of copper metabolism in man, many questions regarding disease mechanisms and copper homeostasis remain unanswered. Genetic studies in the Bedlington terrier, a dog breed affected with copper toxicosis, identified COMMD1, a gene that was previously unknown to be involved in copper metabolism. Besides the Bedlington terrier, a number of other dog breeds suffer from hereditary copper toxicosis and show similar phenotypes to humans with copper storage disorders. Unlike the heterogeneity of most human populations, the genetic structure within a purebred dog population is homogeneous, which is advantageous for unraveling the molecular genetics of complex diseases. This article reviews the work that has been done on the Bedlington terrier, summarizes what was learned from studies into COMMD1 function, describes hereditary copper toxicosis phenotypes in other dog breeds, and discusses the opportunities for genome-wide association studies on copper toxicosis in the dog to contribute to the understanding of mammalian copper metabolism and copper metabolism disorders in man.  相似文献   

5.
Copper is essential for human growth and survival. Enterocytes mediate the absorption of dietary copper from the intestinal lumen into blood as well as utilizing copper for their biosynthetic needs. Currently, the pathways for copper entry into enterocytes remain poorly understood. We demonstrate that the basolateral copper uptake into intestinal cells greatly exceeds the apical uptake. The basolateral but not apical transport is mediated by the high affinity copper transporter hCTR1. This unanticipated conclusion is supported by cell surface biotinylation and confocal microscopy of endogenous hCTR1 in Caco2 cells as well as copper influx measurements that show saturable high affinity uptake at the basolateral but not the apical membrane. Basolateral localization of hCTR1 and polarized copper uptake are also conserved in T84 cells, models for intestinal crypt cells. The lateral localization of hCTR1 seen in intestinal cell lines is recapitulated in immunohistochemical staining of mouse intestinal sections. Biochemical and functional assays reveal the basolateral localization of hCTR1 also in renal Madin-Darby canine kidney cells and opossum kidney cells. Overexpression of hCTR1 in Madin-Darby canine kidney cells results in both apical and basolateral delivery of the overexpressed protein and greatly enhanced copper uptake at both cell surfaces. We propose a model of intestinal copper uptake in which basolateral hCTR1 plays a key role in the physiologically important delivery of copper from blood to intracellular proteins, whereas its role in the initial apical uptake of dietary copper is indirect.  相似文献   

6.
7.
The nature of the bonding in acetohydroxamic acid, copper acetohydroxamate and copper n-octanohydroxamate has been investigated by chemical analysis, XPS, FTIR and Raman spectroscopy. Vibrational spectra show the acid to be in the keto Z conformation as was previously established for the n-octano homologue. Chemical analysis established that the copper compounds have a copper:hydroxamate stoichiometry of 1:1. XPS confirms that they are CuII compounds. The absence of vibrational spectral bands that were previously identified with N-H vibrations for n-octanohydroxamic acid and its potassium compound, together with the presence of a CN stretch band that shifts when the nitrogen is labelled with 15N, confirms that the hydroxamate moieties in the CuII compounds are in the enol configuration. Some interaction between Cu and N is indicated by the spectra and could explain the 1:1 stoichiometry of the CuII hydroxamates investigated.  相似文献   

8.
9.
Leaching of sulfide-oxidized copper concentrate of the Udokan deposit ore with a copper content of 37.4% was studied. In the course of treatment in a sulfuric acid solution with pH 1.2, a copper leaching rate was 6.9 g/kg h for 22 hours, which allowed extraction of 40.6% of copper. At subsequent chemical leaching at 80°C during 7 hours with a solution of ferric sulfate obtained after biooxidation by an association of micro-organisms, the rate of copper recovery was 52.7 g/kg h. The total copper recovery was 94.5% (over 29 hours). Regeneration of the Fe3+ ions was carried out by an association of moderately thermophilic microorganisms, including bacteria of genus Sulfobacillus and archaea Ferroplasma acidiphilum, at 1.0 g/L h at 40°C in the presence of 3% solids obtained by chemical leaching of copper concentrate. A flowsheet scheme of a complex copper concentrate process with the use of bacterial-chemical leaching is proposed.  相似文献   

10.
11.
Copper chaperones, soluble copper-binding proteins, are essential for ensuring proper distribution of copper to cellular compartments and to proteins requiring copper prosthetic groups. They are found in all eukaryotic organisms. Orthologues of the three copper chaperones characterized in yeast, ATX1, CCS and COX17, are present in Arabidopsis thaliana. Plants are faced with unique challenges to maintain metal homoeostasis, and thus their copper chaperones have evolved by diversifying and gaining additional functions. In this paper we present our current knowledge of copper chaperones in A. thaliana based on the information available from the complete sequence of its genome.  相似文献   

12.
D M Hunt 《Life sciences》1976,19(12):1913-1919
The injection of copper chloride overcomes the lethality and pigment deficiency in the brindled (Mobr) mouse mutant but copper levels remain depressed in the liver and brain, and a further accumulation occurs in the kidney. The copper-dependent synthesis of brain noradrenaline returns to normal but the activity of brain cytochrome c oxidase, although increased, remains depressed. Significant changes in tissue copper content of female brindled heterozygotes are reported and in each case, the changes exceed those expected on the basis of X-inactivation. The significance of these results to the development of a satisfactory treatment regime for this disease is discussed.  相似文献   

13.
The feeding of diets enriched with ascorbic acid (10 g/kg) to rats has previously been shown to lower plasma and liver copper concentrations. The present studies corroborate this. We hypothesized that ascorbic acid initially reduces copper absorption, this effect being masked later by the stimulatory effect on copper absorption of the impaired copper status. We also hypothesized that the impaired copper status as induced by ascorbic acid feeding is followed by a diminished biliary excretion of copper in an attempt to preserve copper homeostasis. Our hypotheses are supported by the present studies. Ascorbic acid feeding initially reduced apparent copper absorption, and in the course of the experiment this effect tended to turn over into a stimulatory effect. Copper deficiency, as induced by feeding a diet containing 1 mg Cu/kg instead of 5 mg Cu/kg, systematically increased copper absorption. Biliary excretion of copper in rats given ascorbic acid was unaffected initialy but became depressed after prolonged ascorbic acid feeding. A similar time course was seen for fecal endogenous copper excretion that was calculated as the difference between true and apparent copper absorption. Copper deficiency systematically reduced biliary copper excretion and fecal endogenous copper loss.  相似文献   

14.
15.
In bacterial extraction of copper from low-grade copper sulfide ores, at least three contributions are made by Thiobacillus ferrooxidans. They are: (1) enzymatic oxidation and consequent solubilization of insoluble sulfides; (2) regeneration of ferric lixiviant for chemical oxidation and solubilization of insoluble sulfides; and (3) partial fixation of externally introduced iron in the ore. Although it is not possible at the present time to measure each of these contributions separately, it is possible to measure the combined contributions. Such measurements reveal a strong dependence of extraction efficiency on various physical, chemical, and biological factors. The following physical factors may affect the rate of bacterial copper extraction: particle-size of ore, oxygen and carbondioxide supply, oxidation-reduction potential, pH, temperature, adsorption and ion exchange capacity of ore, and surface tension effects. The following chemical factors may influence the rate of copper extraction: the mineralogy of the ore, the nature of the gangue, the distribution of the sulfide minerals in the host rock, the external supply of ferrous or ferric iron, and the availability of inorganic and organic nutrients. Finally, the following biological agents in addition to T. ferrooxidans may influence the rate of copper extraction: fungi, protozoa, Thiobacillus thiooxidans, and heterotrophic bacteria. Proper control of these various factors is essential for efficient bacterial extraction of copper from low-grade ore. It is recognized that the foregoing environmental factors also influence chemical copper extraction.  相似文献   

16.
Hepatic copper storage in man (Wilson's disease), Bedtington and West Highland white terriers, and white perch ( Morone americana ) is characterized by the progressive accumulation of copper in hepatic lysosomes bound to cytoprotective metallothionein. In man, saturation of the liver storage capacity results in the distribution of copper to extrahepatic tissues with multiple organ system dysfunction. To determine if extrahepatic tissue copper concentrations also increase in white perch, copper and zinc levels in liver, brain, heart, gills, serum, and bile were determined by atomic absorption spectrophotometry and compared to striped bass ( Morone saxatilis ). Results showed that brain copper concentrations in. white perch were elevated and significantly correlated with liver copper. Bile and serum copper also increased significantly with liver copper. Copper levels in heart and gill tissues were low. Liver zinc was increased in white perch but not to the same magnitude as copper, and was correlated significantly with liver copper; possibly a non-specific secondary increase related to an overall increase in hepatic metallothionein. Histochemical staining of liver with rubeimc acid for copper was proportional to copper concentrations, and clusters of positive mononuclear cells were also seen in brain and spleen. Foci of macrophages in spleen were also intensely positive with Perl's iron stain which may have been indicative of haemolysis. The patterns of copper distribution seen in white perch present a useful comparative model to study alterations in copper metabolism.  相似文献   

17.
生物耐铜的分子机理及铜污染环境的生物联合修复   总被引:2,自引:0,他引:2  
李杰  贺纪正  马延和  朱永官  张蕾 《生态学报》2007,27(6):2615-2626
铜是动植物和人类必需的微量元素,缺乏或过多都将产生不良影响。随着社会经济的发展,人类活动对环境的干扰日益加剧,工业和农业生产活动常可导致土壤铜污染,铜已成为土壤重金属污染的主要元素之一。总结了铜在植物体内的自发内稳态调节机制,在细菌和真菌体内的吸收、分布、解毒和调节因子,同时以蚯蚓为例简要阐述了土壤动物对铜的解毒机理;从分子生物学角度对重金属铜在生物体内的代谢机理及生物对环境中过量铜的联合修复研究进展进行了综述,以期为铜污染环境的植物、微生物和动物联合修复的分子机理研究提供借鉴。  相似文献   

18.
Canine copper toxicosis is an important inherited disease in Bedlington terriers, because of its high prevalence rate and similarity to human copper storage disease. It can lead to chronic liver disease and occasional haemolytic anaemia due to impaired copper excretion. The responsible gene for copper toxicosis in Bedlington terriers has been recently identified and was found not to be related to human Wilson’s disease gene ATP7B. Although our understanding of copper metabolism in mammals has improved through genetic molecular technology, the diversity of gene mutation related to copper metabolism in animals will help identify the responsible genes for non-Wilsonian copper toxicoses in human. This review paper discusses our knowledge of normal copper metabolism and the pathogenesis, molecular genetics and current research into copper toxicosis in Bedlington terriers, other animals and humans.  相似文献   

19.
20.
Copper is a highly utilized metal for electrical, automotive, household objects, and more recently as an effective antimicrobial surface. Copper-containing solutions applied to fruits and vegetables can prevent bacterial and fungal infections. Bacteria, such as Salmonellae and Cronobacter sakazakii, often found in food contamination, are rapidly killed on contact with copper alloys. The antimicrobial effectiveness of copper alloys in the healthcare environment against bacteria causing hospital-acquired infections such as methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli O157:H7, and Clostridium difficile has been described recently. The use of copper and copper-containing materials will continue to expand and may lead to an increase in copper mining and production. However, the copper mining and manufacturing industry and the consumer do not necessarily enjoy a favorable relationship. Open pit mining, copper mine tailings, leaching products, and deposits of toxic metals in the environment often raises concerns and sometimes public outrage. In addition, consumers may fear that copper alloys utilized as antimicrobial surfaces in food production will lead to copper toxicity in humans. Therefore, there is a need to mitigate some of the negative effects of increased copper use and copper mining. More thermo-tolerant, copper ion-resistant microorganisms could improve copper leaching and lessen copper groundwater contamination. Copper ion-resistant bacteria associated with plants might be useful in biostabilization and phytoremediation of copper-contaminated environments. In this review, recent progress in microbiological and biotechnological aspects of microorganisms in contact with copper will be presented and discussed, exploring their role in the improvement for the industries involved as well as providing better environmental outcomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号