首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purified thiocarbamate-inducible ThcF of Rhodococcus erythropolis NI86/21, overexpressed in Escherichia coli, displayed several characteristics of the HASH family of enzymes that groups prokaryotic proteins of the alpha/beta hydrolase superfamily possessing serine-dependent hydrolase and/or haloperoxidase activity. Kinetic analysis of bromination and ester hydrolysis revealed a low affinity of ThcF for model substrates. Sulfoxidation of thiocarbamates was demonstrated but probably represents a side activity due to peroxoacid generation by the enzyme. The thcF-linked thcG gene, encoding a LAL-type regulator, triggers expression of thcF in Rhodococcus. The tandem gene organization thcG-thcF is conserved in the thiocarbamate-degrading strain Rhodococcus sp. B30. It is proposed that HASH enzymes may be involved in the metabolism of plant-derived compounds.  相似文献   

2.
The 1,2-propanediol (1,2-PD) inducible membrane-bound L-pantoyl lactone (L-PL) dehydrogenase (LPLDH) has been isolated from Rhodococcus erythropolis AKU2103 (Kataoka et al. in Eur J Biochem 204:799, 1992). Based on the N-terminal amino acid sequence of LPLDH and the highly conserved amino acid sequence in homology search results, the LPLDH gene (lpldh) was cloned. The gene consists of 1,179 bases and encodes a protein of 392 amino acid residues. The deduced amino acid sequence showed high similarity to the proteins of the FMN-dependent α-hydroxy acid dehydrogenase/oxidase family. The overexpression vector pKLPLDH containing lpldh with its upstream region (1,940 bp) was constructed and introduced into R. erythropolis AKU2103. The recombinant R. erythropolis AKU2103 harboring pKLPLDH showed six times higher LPLDH activity than the wild-type strain. Conversion of L-PL to ketopantoyl lactone was achieved with 92% or 80% conversion yield when the substrate concentration was 0.768 or 1.15 M, respectively. Stereoinversion of L-PL to D-PL was also carried out by using the combination of recombinant R. erythropolis AKU2103 harboring pKLPLDH and ketopantoic acid-reducing Escherichia coli.  相似文献   

3.
The gene for an enantioselective amidase was cloned from Rhodococcus erythropolis MP50, which utilizes various aromatic nitriles via a nitrile hydratase/amidase system as nitrogen sources. The gene encoded a protein of 525 amino acids which corresponded to a protein with a molecular mass of 55.5 kDa. The deduced complete amino acid sequence showed homology to other enantioselective amidases from different bacterial genera. The nucleotide sequence approximately 2.5 kb upstream and downstream of the amidase gene was determined, but no indications for a structural coupling of the amidase gene with the genes for a nitrile hydratase were found. The amidase gene was carried by an approximately 40-kb circular plasmid in R. erythropolis MP50. The amidase was heterologously expressed in Escherichia coli and shown to hydrolyze 2-phenylpropionamide, alpha-chlorophenylacetamide, and alpha-methoxyphenylacetamide with high enantioselectivity; mandeloamide and 2-methyl-3-phenylpropionamide were also converted, but only with reduced enantioselectivity. The recombinant E. coli strain which synthesized the amidase gene was shown to grow with organic amides as nitrogen sources. A comparison of the amidase activities observed with whole cells or cell extracts of the recombinant E. coli strain suggested that the transport of the amides into the cells becomes the rate-limiting step for amide hydrolysis in recombinant E. coli strains.  相似文献   

4.
Escherichia coli cells are the most commonly used host cells for large-scale production of recombinant proteins, but some proteins are difficult to express in E. coli. Therefore, we tested the nocardioform actinomycete Rhodococcus erythropolis, which grows at temperatures ranging from 4 to 35 degrees C, as an expression host cell. We constructed inducible expression vectors, where the expression of the target genes could be controlled with the antibiotic thiostrepton. Using these expression vectors, several milligrams of reporter proteins could be isolated from 1 liter of culture of R. erythropolis cells grown at a temperature range from 4 to 35 degrees C. Moreover, we successfully purified serum amyloid A1, NADH dehydorogenase 1 alpha subcomplex 4, cytochrome b5-like protein, apolipoprotein A-V, cathepsin D, pancreatic Rnase, and HMG-1 that are all difficult to express in E. coli. In the case of kallikrein 6, mouse deoxyribonuclease I and Kid1, which are also difficult to express in E. coli, the expression level of each protein increased when proteins were expressed at low temperature (4 degrees C). Based on these results, we conclude that a recombinant protein expression system using R. erythropolis as the host cell is superior to respective E. coli systems.  相似文献   

5.
6.
The gene encoding NADP(+)-dependent L: -1-amino-2-propanol dehydrogenase (AADH) of Rhodococcus erythropolis MAK154 was cloned and sequenced. A 780-bp nucleotide fragment was confirmed to be the gene encoding AADH by agreement of the N-terminal and internal amino acid sequences of the purified AADH. The gene (aadh) codes a total of 259 amino acid residues, and the deduced amino acid sequence shows similarity to several short-chain dehydrogenase/reductase family proteins. An expression vector, pKKAADH, which contains the full length aadh was constructed. Escherichia coli cells possessing pKKAADH exhibited a 10.4-fold increase in specific activity as to catalysis of the reduction of (S)-1-phenyl-2-methylaminopropan-1-one (MAK), as compared with that of R. erythropolis MAK154 induced by 1-amino-2-propanol (1 mg/ml). Coexpression of aadh with a cofactor regeneration enzyme (glucose dehydrogenase) gene was also performed, and a system for sufficient production of d-pseudoephedrine from racemic MAK was constructed.  相似文献   

7.
The dibenzothiophene (DBT)-desulfurizing bacterium, Rhodococcus erythropolis D-1, removes sulfur from DBT to form 2-hydroxybiphenyl using four enzymes, DszC, DszA, DszB, and flavin reductase. In this study, we purified and characterized the flavin reductase from R. erythropolis D-1 grown in a medium containing DBT as the sole source of sulfur. It is conceivable that the enzyme is essential for two monooxygenase (DszC and DszA) reactions in vivo. The purified flavin reductase contains no chromogenic cofactors and was found to have a molecular mass of 86 kDa and four identical 22-kDa subunits. The enzyme catalyzed NADH-dependent reduction of flavin mononucleotide (FMN), and the K(m) values for NADH and FMN were 208 and 10.8 microM, respectively. Flavin adenine dinucleotide was a poor substrate, and NADPH was inert. The enzyme did not catalyze reduction of any nitroaromatic compound. The optimal temperature and optimal pH for enzyme activity were 35 degrees C and 6.0, respectively, and the enzyme retained 30% of its activity after heat treatment at 80 degrees C for 30 min. The N-terminal amino acid sequence of the purified flavin reductase was identical to that of DszD of R. erythropolis IGTS8 (K. A. Gray, O. S. Pogrebinsky, G. T. Mrachko, L. Xi, D. J. Monticello, and C. H. Squires, Nat. Biotechnol. 14:1705-1709, 1996). The flavin reductase gene was amplified with primers designed by using dszD of R. erythropolis IGTS8, and the enzyme was overexpressed in Escherichia coli. The specific activity in crude extracts of the overexpressed strain was about 275-fold that of the wild-type strain.  相似文献   

8.
A Rhodococcus erythropolis expression system for the bovine lactoferrin C-lobe was constructed. The DNA fragments encoding the BLF C-lobe were amplified and cloned into vector pTip LCH1.2. R. erythropolis carrying the pTip-C-lobe was cultured at 30 degrees C with shaking, and expression of the rBLF C-lobe was induced by adding 1 microg/ml (final concentration) thiostrepton. The rBLF C-lobe was isolated in native and denatured (8 M urea) form by Ni-NTA affinity chromatography. To obtain a bioactive rBLF C-lobe, the protein isolated in the denatured form was refolded by stepwise dialysis against refolding buffers. The antibacterial activity of the rBLF C-lobe was tested by the filter-disc plate assay method. The refolded rBLF C-lobe demonstrated antibacterial activity against selected strains of Escherichia coli.  相似文献   

9.
Recent studies on the metabolic activities of genus Rhodococcus have shown rhodococci to be of important use in industrial, pharmaceutical and environmental biotechnology. The increasing economic significance of Rhodococcus encourages renewed efforts to characterize their genetic systems, as Rhodococcus genetics are still poorly understood. The goal of this study is to adapt a transposon system for use in creating random mutagenesis in Rhodococcus erythropolis. A plasmid carrying IS1415, a member of IS21 family identified from Rerythropolis, has been constructed and designated as pTNR. pTNR is a non-replicating transposon tool introduced into target cells by electroporation. During its transposition, the transposable-marker gene is separated from the open reading frames (istAB) of IS1415, which should avoid secondary transposition. Transposition of pTNR into wild-type R. erythropolis created mutagenesis with a high efficiency of 1.23x10(6)mutants per microgram plasmid DNA. However, it could also be transposed into other Rhodococcus spp. at lower frequencies in comparison with that of R. erythropolis. It has been indicated by Southern hybridization that the generated kanamycin-resistant mutants were resulted from single transposition event of pTNR. The results also revealed that the transposable-marker gene of pTNR was randomly inserted into the chromosomal DNA of R. erythropolis. The affected DNA regions carrying the transposed DNA element could be conveniently recovered for further characterization using a plasmid rescue procedure. Sequence data of the insertion sites of 40 random mutants analyzed indicated that transposition of pTNR generated 6-bp direct target duplications in 36 cases, while in the remaining four mutants; it generated 5- or 7-bp target duplications (two cases each). This study concluded that pTNR could be served as an efficient genetic tool for construction of random mutagenesis system in Rhodococcus species.  相似文献   

10.
Organic solvent extracts of whole cells of the gram-positive bacterium Rhodococcus erythropolis contain a channel-forming protein. It was identified by lipid bilayer experiments and purified to homogeneity by preparative sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE). The pure protein had a rather low molecular mass of about 8.4 kDa, as judged by SDS-PAGE. SDS-resistant oligomers with a molecular mass of 67 kDa were also observed, suggesting that the channel is formed by a protein oligomer. The monomer was subjected to partial protein sequencing, and 45 amino acids were resolved. According to the partial sequence, the sequence has no significant homology to known protein sequences. To check whether the channel was indeed localized in the cell wall, the cell wall fraction was separated from the cytoplasmic membrane by sucrose step gradient centrifugation. The highest channel-forming activity was found in the cell wall fraction. The purified protein formed large ion-permeable channels in lipid bilayer membranes with a single-channel conductance of 6.0 nS in 1 M KCl. Zero-current membrane potential measurements with different salts suggested that the channel of R. erythropolis was highly cation selective because of negative charges localized at the channel mouth. The correction of single-channel conductance data for negatively charged point charges and the Renkin correction factor suggested that the diameter of the cell wall channel is about 2.0 nm. The channel-forming properties of the cell wall channel of R. erythropolis were compared with those of other members of the mycolata. These channels have common features because they form large, water-filled channels that contain net point charges.  相似文献   

11.
Yu B  Ma C  Zhou W  Wang Y  Cai X  Tao F  Zhang Q  Tong M  Qu J  Xu P 《FEMS microbiology letters》2006,258(2):284-289
Rhodococcus erythropolis XP could grow well with condensed thiophenes, mono-thiophenic compounds and mercaptans present in gasoline. Rhodococcus erythropolis XP was also capable of efficiently degrading the condensed thiophenes in resting cell as well as biphasic reactions in which n-octane served as a model oil phase. Free whole cells of R. erythropolis XP were adopted to desulfurize fluid catalytic cracking (FCC) and straight-run (SR) gasoline oils. About 30% of the sulfur content of FCC gasoline and 85% of sulfur in SR gasoline were reduced, respectively. Gas chromatography analysis with atomic emission detection also showed depletion of sulfur compounds in SR gasoline. Rhodococcus erythropolis XP could partly resist the toxicity of gasoline and had an application potential to biodesulfurization of gasoline.  相似文献   

12.
A plasmid transformation system for Rhodococcus sp. strain H13-A was developed by using an Escherichia coli-Rhodococcus shuttle plasmid constructed in this study. Rhodococcus sp. strain H13-A contains three cryptic indigenous plasmids, designated pMVS100, pMVS200, and pMVS300, of 75, 19.5, and 13.4 kilobases (kb), respectively. A 3.8-kb restriction fragment of pMVS300 was cloned into pIJ30, a 6.3-kb pBR322 derivative, containing the E. coli origin of replication (ori) and ampicillin resistance determinant (bla), as well as a Streptomyces gene for thiostrepton resistance, tsr. The resulting 10.1-kb recombinant plasmid, designated pMVS301, was isolated from E. coli DH1(pMVS301) and transformed into Rhodococcus sp. strain AS-50, a derivative of strain H13-A, by polyethylene glycol-assisted transformation of Rhodococcus protoplasts and selection for thiostrepton-resistant transformants. Thiostrepton-resistant transformants were also ampicillin resistant and were shown to contain pMVS301, which was subsequently isolated and transformed back into E. coli. The cloned 3.8-kb fragment of Rhodococcus DNA in pMVS301 contains a Rhodococcus origin of replication, since the hybrid plasmid was capable of replication in both genera. The plasmid was identical in E. coli and Rhodococcus transformants as determined by restriction analysis and was maintained as a stable, independent replicon in both organisms. Optimization of the transformation procedure resulted in transformation frequencies in the range of 10(5) transformants per micrograms of pMVS301 DNA in Rhodococcus sp. strain H13-A and derivative strains. The plasmid host range extends to strains of Rhodococcus erythropolis, R. globulerus, and R. equi, whereas stable transformants were not obtained with R. rhodochrous or with several coryneform bacteria tested as recipients. A restriction map demonstrated 14 unique restriction sites in pMVS301, some of which are potentially useful for molecular cloning in Rhodococcus spp. and other actinomycetes. This is the first report of plasmid transformation and of heterologous gene expression in a Rhodococcus sp.  相似文献   

13.
14.
Using oligonucleotides derived from the N-terminal sequence of a triazine hydrolase from Nocardioides sp. strain C190, two DNA fragments containing trzN were cloned into Escherichia coli and their nucleotide sequences were determined. The 456-amino acid polypeptide predicted from the 1356-bp trzN ORF displayed significant similarity to triazine hydrolases from Pseudomonas and Rhodococcus isolates and belonged to the same amidohydrolase family. The trzN gene was flanked by two DNA sequences possessing 57 and 69% identity, respectively, at the protein level to Rhodococcus erythropolis sequences for a transposase and a transposase helper protein. Amplification primers specific to trzN were tested in soils inoculated with strain C190. The results demonstrated that the primers were specific to trzN, and could detect populations at 10(8) cfu g(-1) soil using 250-mg soil samples.  相似文献   

15.
A strain of Rhodococcus designated MB1, which was capable of utilizing cocaine as a sole source of carbon and nitrogen for growth, was isolated from rhizosphere soil of the tropane alkaloid-producing plant Erythroxylum coca. A cocaine esterase was found to initiate degradation of cocaine, which was hydrolyzed to ecgonine methyl ester and benzoate; both of these esterolytic products were further metabolized by Rhodococcus sp. strain MB1. The structural gene encoding a cocaine esterase, designated cocE, was cloned from Rhodococcus sp. strain MB1 genomic libraries by screening recombinant strains of Rhodococcus erythropolis CW25 for growth on cocaine. The nucleotide sequence of cocE corresponded to an open reading frame of 1,724 bp that codes for a protein of 574 amino acids. The amino acid sequence of cocaine esterase has a region of similarity with the active serine consensus of X-prolyl dipeptidyl aminopeptidases, suggesting that the cocaine esterase is a serine esterase. The cocE coding sequence was subcloned into the pCFX1 expression plasmid and expressed in Escherichia coli. The recombinant cocaine esterase was purified to apparent homogeneity and was found to be monomeric, with an M(r) of approximately 65,000. The apparent K(m) of the enzyme (mean +/- standard deviation) for cocaine was measured as 1.33 +/- 0.085 mM. These findings are of potential use in the development of a linked assay for the detection of illicit cocaine.  相似文献   

16.
During atrazine degradation by Rhodococcus sp. strain N186/21, N-dealkylated metabolites and an hydroxyisopropyl derivative are produced. The cytochrome P-450 system that is involved in degradation of thiocarbamate herbicides by strain N186/21 (I. Nagy, G. Schoofs, F. Compernolle, P. Proost, J. Vanderleyden, and R. De Mot, J. Bacteriol. 177:676-687, 1995) is also required for atrazine degradation. Atrazine-degrading activity was conferred on the atrazine-negative strains, mutant FAJ2027 of Rhodococcus sp. strain N186/21 and Rhodococcus erythropolis SQ1, upon transformation with the genes encoding the cytochrome P-450 system.  相似文献   

17.
Rhodococcus erythropolis strain Y2, isolated from soil by enrichment culture using 1-chlorobutane, was able to utilize a range of halogenated aliphatic compounds as sole sources of carbon and energy. The ability to utilize 1-chlorobutane was conferred by a single halidohydrolase-type haloalkane dehalogenase. The presence of the single enzyme in cell-free extracts was demonstrated by activity strain polyacrylamide gel electrophoresis. The purified enzyme was a monomeric protein with a relative molecular mass of 34 kDa and demonstrated activity against a broad range of haloalkanes, haloalcohols and haloethers. The highest activity was found towards alpha, omega disubstituted chloro- and bromo- C2-C6 alkanes and 4-chlorobutanol. The Km value of the enzyme for 1-chlorobutane was 0.26 mM. A comparison of the R. erythropolis Y2 haloalkane halidohydrolase with other haloalkane dehalogenases is discussed on the basis of biochemical properties and N-terminal amino acid sequence data.  相似文献   

18.
S Kosono  M Maeda  F Fuji  H Arai    T Kudo 《Applied microbiology》1997,63(8):3282-3285
Rhodococcus erythropolis TA421, a polychlorinated biphenyl and biphenyl degrader isolated from a termite ecosystem, has seven bphC genes expressing 2,3-dihydroxybiphenyl dioxygenase activity. R. erythropolis TA421 harbored a large and probably linear plasmid on which three (bphC2, bphC3, and bphC4) of the seven bphC genes were located. A non-biphenyl-degrading mutant, designated strain TA422, was obtained spontaneously from R. erythropolis TA421. TA422 lacked the plasmid, suggesting that the three bphC genes were involved in the degradation of biphenyl. Southern blot analyses showed that R. erythropolis TA421 and Rhodococcus globerulus P6 have a similar set of bphC genes and that the genes for biphenyl catabolism are located on plasmids of different sizes. These results indicated that the genes encoding the biphenyl catabolic pathway in Rhodococcus strains are borne on plasmids.  相似文献   

19.
Tao F  Zhao P  Li Q  Su F  Yu B  Ma C  Tang H  Tai C  Wu G  Xu P 《Journal of bacteriology》2011,193(22):6422-6423
Rhodococcus erythropolis strains have shown excellent characteristics in petroleum oil biodesulfurization. Here we present the first announcement of the draft genome sequence of an efficient biodesulfurizing bacterium named R. erythropolis XP (7,229,582 bp). The biodesulfurizing genes dszABC are located on a plasmid, while the flavin reductase gene dszD is located on the chromosome.  相似文献   

20.
The gene encoding an (S)-specific NAD-dependent alcohol dehydrogenase (RE-ADH) was isolated from the genomic DNA of Rhodococcus erythropolis DSM 43297. The nucleotide sequence of 1,047 bp, coding for 348 amino acids, was cloned in Escherichia coli cells and successfully expressed. The subunit molecular mass as deduced from the amino acid sequence was determined to be 36.026 kDa. The recombinant enzyme exhibited high thermostability, which facilitated its purification by heat treatment, followed by two column-chromatography steps. RE-ADH shows high similarity to several zinc-containing medium-chain alcohol dehydrogenases. All zinc ligands seem to be conserved except one of the catalytic zinc ligands, where Cys is probably substituted by Asp. A similarity of 84% with a phenylacetaldehyde reductase from Corynebacterium sp. ST-10 was determined. Biochemical properties such as thermostability and substrate specificity of the two enzymes were compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号