首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recognition of the 5'-cap structure of mRNA by eIF4E is a critical step in the recruitment of most mRNAs to the ribosome. In Caenorhabditis elegans, approximately 70% of mRNAs contain an unusual 2,2,7-trimethylguanosine cap structure as a result of trans-splicing onto the 5' end of the pre-mRNA. The characterization of three eIF4E isoforms in C. elegans (IFE-1, IFE-2, and IFE-3) was reported previously. The present study describes two more eIF4E isoforms expressed in C. elegans, IFE-4 and IFE-5. We analyzed the requirement of each isoform for viability by RNA interference. IFE-3, the most closely related to mammalian eIF4E-1, binds only 7-methylguanosine caps and is essential for viability. In contrast, three closely related isoforms (IFE-1, IFE-2, and IFE-5) bind 2,2, 7-trimethylguanosine caps and are partially redundant, but at least one functional isoform is required for viability. IFE-4, which binds only 7-methylguanosine caps, is most closely related to an unusual eIF4E isoform found in plants (nCBP) and mammals (4E-HP) and is not essential for viability in any combination of IFE knockout. ife-2, ife-3, ife-4, and ife-5 mRNAs are themselves trans-spliced to SL1 spliced leaders. ife-1 mRNA is trans-spliced to an SL2 leader, indicating that its gene resides in a downstream position of an operon.  相似文献   

2.
Control of gene expression at the translational level is crucial for many developmental processes. The mRNA cap-binding protein, eIF4E, is a key player in regulation of translation initiation; appropriate levels of eIF4E are essential for normal cell-cycle regulation and tissue differentiation. The observation that eIF4E levels are elevated during gametogenesis in several organisms suggests that eIF4E might have a specific role in gamete formation as well. We show that one of the five isoforms of C. elegans eIF4E, IFE-1, is enriched in the germline and is a component of germ granules (P granules). The association of IFE-1 with P granules requires the P-granule protein PGL-1. In vitro PGL-1 interacts directly with IFE-1, but not with the other four isoforms of eIF4E. Analysis of animals depleted of IFE-1 by RNAi shows that IFE-1 is required for spermatogenesis, specifically for efficient progression through the meiotic divisions and for the production of functional sperm, in both hermaphrodites and males. The requirement for IFE-1 is highly sensitive to temperature. IFE-1 is not required for oogenesis, as ife-1(RNAi) hermaphrodites produce viable progeny when normal sperm are supplied. Consistent with a primary role in spermatogenesis, ife-1 mRNA levels are highest in regions of the gonad undergoing spermatogenesis. Our results suggest that C. elegans spermatogenesis requires either this specific isoform of eIF4E or an elevated level of eIF4E.  相似文献   

3.
The mRNA cap-binding protein eukaryotic translation initiation factor 4E (eIF4E) participates in protein synthesis initiation, translational repression of specific mRNAs, and nucleocytoplasmic shuttling. Multiple isoforms of eIF4E are expressed in a variety of organisms, but their specific roles are poorly understood. We investigated one Caenorhabditis elegans isoform, IFE-4, which has homologues in plants and mammals. IFE-4::green fluorescent protein (GFP) was expressed in pharyngeal and tail neurons, body wall muscle, spermatheca, and vulva. Knockout of ife-4 by RNA interference (RNAi) or a null mutation produced a pleiotropic phenotype that included egg-laying defects. Sedimentation analysis demonstrated that IFE-4, but not IFE-1, was present in 48S initiation complexes, indicating that it participates in protein synthesis initiation. mRNAs affected by ife-4 knockout were determined by DNA microarray analysis of polysomal distribution. Polysome shifts, in the absence of total mRNA changes, were observed for only 33 of the 18,967 C. elegans mRNAs tested, of which a disproportionate number were related to egg laying and were expressed in neurons and/or muscle. Translational regulation was confirmed by reduced levels of DAF-12, EGL-15, and KIN-29. The functions of these proteins can explain some phenotypes observed in ife-4 knockout mutants. These results indicate that translation of a limited subset of mRNAs is dependent on a specific isoform of eIF4E.  相似文献   

4.
The Caenorhobditis elegans XX animal possesses a hermaphrodite germ line, producing first sperm, then oocytes. In this paper, we report the genetic identification of five genes, mog-2, mog-3, mog-4, mog-5, and mog-6, that influence the hermaphrodite switch from sper-matogenesis to oogenesis. In mcg-2-mog-6 mutants, spermatogenesis continues past the time at which hermaphrodites normally switch into oogenesis and no oocytes are observed. Therefore, in these mutants, germ cells are transformed from a female fate (oocyte) to a male fate (sperm). The fem-3 gene is one of five genes that acts at the end of the germline sex determination pathway to direct spermatogenesis. Analyses of mog;fem-3 double mutants suggest that the mog-2-mog-6 genes act before fem-3; thus these genes may be in a position to negatively regulate fem-3 or one of the other terminal regulators of germline sex determination. Double mutants of fem-3 and any one of the mog mutations make oocytes. Using these double mutants, we show that oocytes from any mog;fem-3 double mutant are defective in their ability to support embryogenesis. This maternal effect lethality indicates that each of the mog genes is required for embryogenesis. The two defects in mog-2-mog-6 mutants are similar to those of mog-1: all six mog genes eliminate the sperm/oocyte switch in hermaphrodites and cause maternal effect lethality. We propose that the mog-2-mog-6 mutations identify genes that act with mog-1 to effect the sperm/oocyte switch. We further speculate that the mog-1-mog-6 mutations all interfere with translational controls of fem-3 and other maternal mRNAs. © 1993 Wiley-Liss, Inc.  相似文献   

5.
Translation initiation factor eIF4E binds the m(7)G cap of eukaryotic mRNAs and mediates recruitment of mRNA to the ribosome during cap-dependent translation initiation. This event is the rate-limiting step of translation and a major target for translational control. In the nematode Caenorhabditis elegans, about 70% of genes express mRNAs with an unusual cap structure containing m(3)(2,2,7)G, which is poorly recognized by mammalian eIF4E. C. elegans expresses five isoforms of eIF4E (IFE-1, IFE-2, etc.). Three of these (IFE-3, IFE-4 and IFE-5) were investigated by means of spectroscopy and structural modelling based on mouse eIF4E bound to m(7)GDP. Intrinsic fluorescence quenching of Trp residues in the IFEs by iodide ions indicated structural differences between the apo and m(7)G cap bound proteins. Fluorescence quenching by selected cap analogues showed that only IFE-5 forms specific complexes with both m(7)G- and m(3)(2,2,7)G-containing caps (K(as) 2 x 10(6) M(-1) to 7 x 10(6) M(-1)) whereas IFE-3 and IFE-4 discriminated strongly in favor of m(7)G-containing caps. These spectroscopic results quantitatively confirm earlier qualitative data derived from affinity chromatography. The dependence of K(as) on pH indicated optimal cap binding of IFE-3, IFE-4 and IFE-5 at pH 7.2, lower by 0.4 pH units than that of eIF4E from human erythrocytes. These results provide insight into the molecular mechanism of recognition of structurally different caps by the highly homologous IFEs.  相似文献   

6.
7.
eIF4A is a highly conserved RNA‐stimulated ATPase and helicase involved in the initiation of mRNA translation. The Arabidopsis genome encodes two isoforms, one of which (eIF4A‐1) is required for the coordination between cell cycle progression and cell size. A T‐DNA mutant eif4a1 line, with reduced eIF4A protein levels, displays slow growth, reduced lateral root formation, delayed flowering and abnormal ovule development. Loss of eIF4A‐1 reduces the proportion of mitotic cells in the root meristem and perturbs the relationship between cell size and cell cycle progression. Several cell cycle reporter proteins, particularly those expressed at G2/M, have reduced expression in eif4a1 mutant meristems. Single eif4a1 mutants are semisterile and show aberrant ovule growth, whereas double eif4a1 eif4a2 homozygous mutants could not be recovered, indicating that eIF4A function is essential for plant growth and development.  相似文献   

8.
Polycomb group (PcG) proteins maintain the spatial expression patterns of genes that are involved in cell-fate specification along the anterior-posterior (A/P) axis. This repression requires cis-acting silencers, which are called PcG response elements (PREs). One of the PcG proteins, Pleiohomeotic (Pho), which has a zinc finger DNA binding protein, plays a critical role in recruiting other PcG proteins to bind to PREs. In this study, we characterized the effects of a pho mutation on embryonic segmentation. pho maternal mutant embryos showed various segmental defects including pair-rule gene mutant patterns. Our results indicated that engrailed and even-skipped genes were misexpressed in pho mutant embryos, which caused embryonic segment defects.  相似文献   

9.
Specific recognition and binding of the ribonucleic acid 5′ termini (mRNA 5′ cap) by the eukaryotic translation initiation factor 4E (eIF4E) is a key, rate limiting step in translation initiation. Contrary to mammalian and yeast eIF4Es that discriminate in favor of 7-methylguanosine cap, three out of five eIF4E isoforms from the nematode Caenorhabditis elegans as well as eIF4Es from the parasites Schistosome mansoni and Ascaris suum, exhibit dual binding specificity for both 7-methylguanosine-and N2,N2,7-trimethylguanosine cap. To address the problem of the differences in the mechanism of the cap recognition by those highly homologic proteins, we carried out molecular dynamics simulations in water of three factors, IFE-3 and IFE-5 isoforms from C. elegans and murine eIF4E, in the apo form as well as in the complexes with 7-methyl-GDP and N2,N2,7-trimethyl-GDP. The results clearly pointed to a dynamical mechanism of discrimination between each type of the cap, viz. differences in mobility of the loops located at the entrance into the protein binding pockets during the cap association and dissociation. Additionally, our data showed that the hydrogen bond involving the N2-amino group of 7-methylguanosine and the carboxylate of glutamic acid was not stable. The dynamic mechanism proposed here differs from a typical, static one in that the differences in the protein-ligand binding specificity cannot be ascribed to formation and/or disruption of well defined stabilizing contacts.  相似文献   

10.
To study the effect of the ret1-1 mutation on the secretome, the glycosylation patterns and locations of the secretory proteins and glycosyltransferases responsible for glycosylation were investigated. Analyses of secretory proteins and cell wall-associated glycoproteins showed severe impairment of glycosylation in this mutant. Results from 2D-polyacrylamide gel electrophoresis (PAGE) indicated defects in the glycosylation and cellular localization of SDS-soluble cell wall proteins. Localization of RFP-tagged glycosyltransferase proteins in ret1-1 indicated an impairment of Golgi-to retrograde transport at a non-permissive temperature. Thus, impaired glycosylation caused by the mislocalization of ER resident proteins appears to be responsible for the alterations in the secretome and the increased sensitivity to ER stress in ret1-1 mutant cells.  相似文献   

11.
Shank protein is one of the postsynaptic density (PSD) proteins which play a major role in proper localization of proteins at membranes. The shn-1, a homolog of Shank in Caenorhabditis elegans, is expressed in neurons, pharynx, intestine, vulva and sperm. We have previously reported a possible genetic interaction between Shank and IP3 receptor by examining shn-1 RNAi in IP3 receptor (itr-1) mutant background. In order to show the direct interaction of Shank and IP3 receptor as well as to show the direct in vivo function of Shank, we have characterized two different mutant alleles of shn-1, which have different deletions in the different domains. shn-1 mutants were observed for Ca2+-related behavioral defects with itr-1 mutants. We found that only shn-1 mutant defective in ANK repeat-domain showed significant defects in defecation, pharyngeal pumping and fertility. In addition, we found that shn-1 regulates defecation, pharyngeal pumping and probably male fertility with itr-1. Thus, we suggest that Shank ANK repeat-domain along with PDZ may play a crucial role in regulating Ca2+-signaling with IP3 receptor.  相似文献   

12.
13.
Wu JC  Go AC  Samson M  Cintra T  Mirsoian S  Wu TF  Jow MM  Routman EJ  Chu DS 《Genetics》2012,190(1):143-157
Sperm from different species have evolved distinctive motility structures, including tubulin-based flagella in mammals and major sperm protein (MSP)-based pseudopods in nematodes. Despite such divergence, we show that sperm-specific PP1 phosphatases, which are required for male fertility in mouse, function in multiple processes in the development and motility of Caenorhabditis elegans amoeboid sperm. We used live-imaging analysis to show the PP1 phosphatases GSP-3 and GSP-4 (GSP-3/4) are required to partition chromosomes during sperm meiosis. Postmeiosis, tracking fluorescently labeled sperm revealed that both male and hermaphrodite sperm lacking GSP-3/4 are immotile. Genetic and in vitro activation assays show lack of GSP-3/4 causes defects in pseudopod development and the rate of pseudopodial treadmilling. Further, GSP-3/4 are required for the localization dynamics of MSP. GSP-3/4 shift localization in concert with MSP from fibrous bodies that sequester MSP at the base of the pseudopod, where directed MSP disassembly facilitates pseudopod contraction. Consistent with a role for GSP-3/4 as a spatial regulator of MSP disassembly, MSP is mislocalized in sperm lacking GSP-3/4. Although a requirement for PP1 phosphatases in nematode and mammalian sperm suggests evolutionary conservation, we show PP1s have independently evolved sperm-specific paralogs in separate lineages. Thus PP1 phosphatases are highly adaptable and employed across a broad range of sexually reproducing species to regulate male fertility.  相似文献   

14.
We have isolated nine gain-of-function (gf) alleles of the sex-determination gene fem-3 as suppressors of feminizing mutations in fem-1 and fem-2. The wild-type fem-3 gene is needed for spermatogenesis in XX self-fertilizing hermaphrodites and for male development in both soma and germ line of XO animals. Loss-of-function alleles of fem-3 transform XX and XO animals into females (spermless hermaphrodites). In contrast, fem-3(gf) alleles masculinize only one tissue, the hermaphrodite germ line. Thus, XX fem-3(gf) mutant animals have a normal hermaphrodite soma, but the germ line produces a vast excess of sperm and no oocytes. All nine fem-3(gf) alleles are temperature sensitive. The temperature-sensitive period is from late L4 to early adult, a period just preceding the first signs of oogenesis. The finding of gain-of-function alleles which confer a phenotype opposite to that of loss-of-function alleles supports the idea that fem-3 plays a critical role in germ-line sex determination. Furthermore, the germ-line specificity of the fem-3(gf) mutant phenotype and the late temperature-sensitive period suggest that, in the wild-type XX hermaphrodite, fem-3 is negatively regulated so that the hermaphrodite stops making sperm and starts making oocytes. Temperature shift experiments also show that, in the germ line, sexual commitment appears to be a continuing process. Spermatogenesis can resume even after oogenesis has begun, and oogenesis can be initiated much later than normal.  相似文献   

15.
In the germ line of the Caenorhabditis elegans hermaphrodite, nuclei either proliferate through mitosis or initiate meiosis, finally differentiating as spermatids or oocytes. The production of oocytes requires repression of the fem-3 mRNA by cytoplasmic FBF and nuclear MOG proteins. Here we report the identification of the sex determining gene mog-3 and show that in addition to its role in gamete sex determination, it is necessary for meiosis by acting downstream of GLP-1/Notch. Furthermore, we found that MOG-3 binds both to the nuclear proteins MEP-1 and CIR-1. MEP-1 is necessary for oocyte production and somatic differentiation, while the mammalian CIR-1 homolog counters Notch signaling. We propose that MOG-3, MEP-1 and CIR-1 associate in a nuclear complex which regulates different aspects of germ cell development. While FBF triggers the sperm/oocyte switch by directly repressing the fem-3 mRNA in the cytoplasm, the MOG proteins play a more indirect role in the nucleus, perhaps by acting as epigenetic regulators or by controlling precise splicing events.  相似文献   

16.
Specification of male development in Caenorhabditis elegans: the fem genes   总被引:7,自引:0,他引:7  
Mutation of the gene fem-2 causes feminization of both sexes: hermaphrodites make no sperm, and males produce oocytes in an intersexual somatic gonad. A double mutant harboring ts alleles of both fem-1 (formerly named isx-1; G. A. Nelson, K. K. Lew, and S. Ward, 1978, Dev. Biol. 66, 386-409) and fem-2 causes transformation of XO animals (normally male) into spermless hermaphrodites at restrictive temperature. The phenotypes, temperature-sensitive periods, and maternal effects observed in mutants of each fem gene are found to be similar. It is suggested that the fem genes are centrally involved in specification of male development in Caenorhabditis elegans--both in the germ line of hermaphrodites and in somatic and germ line tissues of males.  相似文献   

17.
The evolutionarily conserved PUF proteins stimulate CCR4 mRNA deadenylation through binding to 3′ untranslated region sequences of specific mRNA. We have investigated the mechanisms by which PUF3 in Saccharomyces cerevisiae accelerates deadenylation of the COX17 mRNA. PUF3 was shown to affect PAN2 deadenylation of the COX17 mRNA independent of the presence of CCR4, suggesting that PUF3 acts through a general mechanism to affect deadenylation. Similarly, eIF4E, the cap-binding translation initiation factor known to control CCR4 deadenylation, was shown to affect PAN2 activity in vivo. PUF3 was found to be required for eIF4E effects on COX17 deadenylation. Both eIF4E and PUF3 effects on deadenylation were shown, in turn, to necessitate a functional poly(A)-binding protein (PAB1) in which removal of the RRM1 (RNA recognition motif 1) domain of PAB1 blocked both their effects on deadenylation. While removal of the proline-rich region (P domain) of PAB1 substantially reduces CCR4 deadenylation at non-PUF3-controlled mRNA and correspondingly blocked eIF4E effects on deadenylation, PUF3 essentially bypassed this P domain requirement. These results indicate that the PAB1-mRNP structure is critical for PUF3 action. We also found that multiple components of the CCR4-NOT deadenylase complex, but not PAN2, interacted with PUF3. PUF3 appears, therefore, both to act independently of CCR4 activity, possibly through effects on PAB1-mRNP structure, and to be capable of retaining the CCR4-NOT complex.  相似文献   

18.
19.
Primitive eukaryotes like Caenorhabditis elegans produce mRNAs capped with either m(7)GTP or m(3)(2,2,7)GTP. Caenorhabditis elegans also expresses five isoforms of the cap-binding protein eIF4E. Some isoforms (e.g. IFE-3) bind to m(7)GTP-Sepharose exclusively, whereas others (e.g. IFE-5) bind to both m(7)GTP- and m(3)(2,2,7)GTP-Sepharose. To examine specificity differences, we devised molecular models of the tertiary structures of IFE-3 and IFE-5, based on the known structure of mouse eIF4E-1. We then substituted amino acid sequences of IFE-5 with homologous sequences from IFE-3. As few as two changes (N64Y/V65L) converted the cap specificity of IFE-5 to essentially that of IFE-3. Molecular dynamics simulations suggested that the width and depth of the cap-binding cavity were larger in IFE-5 than in IFE-3 or the N64Y/V65L variant, supporting a model in which IFE-3 discriminates against m(3)(2,2,7)GTP by steric hindrance. Furthermore, the affinity of IFE-5 (but not IFE-3) for m(3)(2,2,7)GTP was reversibly increased when thiol reagents were removed. This was correlated with the formation of a disulfide bond between Cys-122 and Cys-126. Thus, translation of m(3)(2,2,7)GTP-capped mRNAs may be regulated by intracellular redox state.  相似文献   

20.
Eukaryotic translation initiation factor (eIF) 1 is a central mediator of start codon recognition. Dissociation of eIF1 from the preinitiation complex (PIC) allows release of phosphate from the G-protein factor eIF2, triggering downstream events in initiation. Mutations that weaken binding of eIF1 to the PIC decrease the fidelity of start codon recognition (Sui phenotype) by allowing increased eIF1 release at non-AUG codons. Consistent with this, overexpression of these mutant proteins suppresses their Sui phenotypes. Here, we have examined mutations at the penultimate residue of eIF1, G107, that produce Sui phenotypes without increasing the rate of eIF1 release. We provide evidence that, in addition to its role in gating phosphate release, dissociation of eIF1 triggers conversion from an open, scanning-competent state of the PIC to a stable, closed one. We also show that eIF5 antagonizes binding of eIF1 to the complex and that key interactions of eIF1 with its partners are modulated by the charge at and around G107. Our data indicate that eIF1 plays multiple roles in start codon recognition and suggest that prior to AUG recognition it prevents eIF5 from binding to a key site in the PIC required for triggering downstream events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号