首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RAS genes are known to be dysregulated in cancer for several decades, and substantial effort has been dedicated to develop agents that reduce RAS expression or block RAS activation. The recent introduction of RAS inhibitors for cancer patients highlights the importance of comprehending RAS alterations in head and neck cancer (HNC). In this regard, we examine the published findings on RAS alterations and pathway activations in HNC, and summarize their role in HNC initiation, progression, and metastasis. Specifically, we focus on the intrinsic role of mutated-RAS on tumor cell signaling and its extrinsic role in determining tumor-microenvironment (TME) heterogeneity, including promoting angiogenesis and enhancing immune escape. Lastly, we summarize the intrinsic and extrinsic role of RAS alterations on therapy resistance to outline the potential of targeting RAS using a single agent or in combination with other therapeutic agents for HNC patients with RAS-activated tumors.  相似文献   

2.
Many faces of Ras activation   总被引:1,自引:0,他引:1  
Ras proteins were originally identified as the products of oncogenes capable of inducing cell transformation. Over the last twenty-five years they have been studied in great detail because mutant Ras proteins are associated with many types of human cancer. Wild type Ras proteins play a central role in the regulation of proliferation and differentiation of various cell types. They alternate between an active GTP-bound state and an inactive GDP-bound state. Their activation is catalysed by a specialized group of enzymes known as guanine nucleotide exchange factors (GEFs). To date, four subfamilies of GEF molecules have been identified. Although all of them are able to activate Ras, their structure, tissue expression and regulation are significantly diverse. In this review we will summarize the various mechanisms by which these exchange factors activate Ras.  相似文献   

3.
Ras proteins were originally identified as the products of oncogenes capable of inducing cell transformation. Over the last twenty-five years they have been studied in great detail because mutant Ras proteins are associated with many types of human cancer. Wild type Ras proteins play a central role in the regulation of proliferation and differentiation of various cell types. They alternate between an active GTP-bound state and an inactive GDP-bound state. Their activation is catalysed by a specialized group of enzymes known as guanine nucleotide exchange factors (GEFs). To date, four subfamilies of GEF molecules have been identified. Although all of them are able to activate Ras, their structure, tissue expression and regulation are significantly diverse. In this review we will summarize the various mechanisms by which these exchange factors activate Ras.  相似文献   

4.
Precision oncology is premised on identifying and drugging proteins and pathways that drive tumorigenesis or are required for survival of tumor cells. Across diverse cancer types, the signaling pathway emanating from receptor tyrosine kinases on the cell surface to RAS and the MAP kinase pathway is the most frequent target of oncogenic mutations, and key proteins in this signaling axis including EGFR, SHP2, RAS, BRAF, and MEK have long been a focus in cancer drug discovery. In this review, we provide an overview of historical and recent efforts to develop inhibitors targeting these nodes with an emphasis on the role that an understanding of protein structure and regulation has played in inhibitor discovery and characterization. Beyond its well‐established role in structure‐based drug design, structural biology has revealed mechanisms of allosteric regulation, distinct effects of activating oncogenic mutations, and other vulnerabilities that have opened new avenues in precision cancer drug discovery.  相似文献   

5.
Abstract

The RAS and RHO family comprise two major branches of the RAS superfamily of small GTPases. These proteins function as regulated molecular switches and control cytoplasmic signaling networks that regulate a diversity of cellular processes, including cell proliferation and cell migration. In the early 1980s, mutationally activated RAS genes encoding KRAS, HRAS and NRAS were discovered in human cancer and now comprise the most frequently mutated oncogene family in cancer. Only recently, exome sequencing studies identified cancer-associated alterations in two RHO family GTPases, RAC1 and RHOA. RAS and RHO proteins share significant identity in their amino acid sequences, protein structure and biochemistry. Cancer-associated RAS mutant proteins harbor missense mutations that are found primarily at one of three mutational hotspots (G12, G13 and Q61) and have been identified as gain-of-function oncogenic alterations. Although these residues are conserved in RHO family proteins, the gain-of-function mutations found in RAC1 are found primarily at a distinct hotspot. Unexpectedly, the cancer-associated mutations found with RHOA are located at different hotspots than those found with RAS. Furthermore, since the RHOA mutations suggested a loss-of-function phenotype, it has been unclear whether RHOA functions as an oncogene or tumor suppressor in cancer development. Finally, whereas RAS mutations are found in a broad spectrum of cancer types, RHOA and RAC1 mutations occur in a highly restricted range of cancer types. In this review, we focus on RHOA missense mutations found in cancer and their role in driving tumorigenesis, with comparisons to cancer-associated mutations in RAC1 and RAS GTPases.  相似文献   

6.
The expression of activated RAS oncogenes has been shown to increase radioresistance in a number of cell lines. The pathways by which RAS leads to radioresistance, however, are unknown. RAS activates several signal transduction pathways, with the RAF-MAP2K-MAP kinase pathway perhaps the best studied. MAP kinase has also been shown to be activated by radiation through this pathway. Given the important role of MAP kinase in multiple signaling events, we asked if radioresistance induced by RAS was mediated through the activation of MAPK. Cells of two human bladder carcinoma cell lines were used, one with a mutated oncogenic HRAS (T24) and other with a wild-type HRAS (RT4). The surviving fraction after exposure to 2 Gy of radiation (SF2) for the T24 cell lines was found to be 0.62, whereas that for RT4 cells was 0.40. Treatment with the farnesyl transferase inhibitor (FTI) L744,832, which inhibits RAS processing and activity, decreased the SF2 of T24 cells to 0.29, whereas the SF2 of RT4 cells remained unchanged after FTI treatment, thus demonstrating the importance of RAS activation to the radiosensitivity of cells with mutated RAS. MAP kinase activation was found to be constitutive and dependent on RAS in T24 cells, while it was inducible by radiation and was independent of RAS in RT4 cells. Treatment of both cell lines with the MAP2K inhibitor PD98059 inhibited MAPK activation; however, inhibiting MAPK activation had no effect on radiation survival of T24 or RT4 cells. These data indicate that MAPK activation does not contribute to RAS-induced radioresistance in this system.  相似文献   

7.
Subcellular compartmentalization has become an important theme in cell signaling. In particular, the Golgi apparatus (GA) plays a prominent role in compartmentalizing signaling cascades that originate at the plasma membrane or other organelles. To precisely regulate this process, cells have evolved a unique class of organizer proteins, termed “scaffold proteins”. Sef, PAQR3, PAQR10 and PAQR11 are scaffold proteins that have recently been identified on the GA and are referred to as Golgi scaffolds. The major cell growth signaling pathways, such as Ras/MAPK, PI3K/AKT, insulin and VEGF (vascular endothelial growth factor), are tightly regulated spatially and temporally by these Golgi scaffolds to ensure a physiologically appropriate outcome. Here, we discuss the subcellular localization and characterization of the topology and functional domains of these Golgi scaffolds and summarize their roles in the compartmentalization of cell signaling. We also highlight the physiological and pathological roles of these Golgi scaffolds in tumorigenesis and developmental disorders.  相似文献   

8.
Ras-induced transformation and signaling pathway.   总被引:4,自引:0,他引:4  
Ras is a signal-transducing, guanine nucleotide-binding protein for various membrane receptors including tyrosine kinase receptors. Ras participates in the regulation of cell proliferation, differentiation, and morphology. Activated ras oncogenes have been identified in various forms of human cancer including epithelial carcinomas of the lung, colon, and pancreas. The cells of these cancers, as well as those that have been experimentally transformed by the activated ras gene, exhibit abnormal growth, morphological changes and alterations of cell adhesions. Although the main effector protein has been thought to be Raf serine/threonine kinase, research has revealed that the Ras-induced signaling pathway is mediated by multiple effector proteins and has the crosstalk with various factors containing other small GTPases. In this review, we summarize the involvement of each effector protein for Ras and the crosstalk with other small GTPases in Ras-induced transformation.  相似文献   

9.
10.
RAS oncogenes play a major role in cancer development by activating an array of signaling pathways, most notably mitogen-activated protein kinases, resulting in aberrant proliferation and inhibition of apoptotic signaling cascades, rendering transformed cells resistant to extrinsic death stimuli. However, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is able to kill specific tumor cells through the engagement of its receptors, death receptor 4 (DR4) and death receptor 5 (DR5), and the activation of apoptotic pathways, providing promising targets for anticancer therapies. In this study, we show that TRAIL induces cell death in human colon adenocarcinoma cells in a MEK-dependent manner. We also report a prolonged MEK-dependent activation of ERK1/2 and increased c-FOS expression induced by TRAIL in this system. Our study reveals that transformation of the colon cell line Caco-2 by Ki- and mainly by Ha-ras oncogenes sensitizes these cells to TRAIL-induced apoptosis by causing specific MEK-dependent up-regulation of DR4 and DR5. These observations taken together reveal that RAS-MEK-ERK1/2 signaling pathway can sensitize cells to TRAIL-induced apoptosis by up-regulating DR4 and DR5 and overall imply that TRAIL-based therapeutic strategies using TRAIL agonists could be used in cases of human colon cancers bearing RAS mutations.  相似文献   

11.
12.
Activation of the extracellular signal-regulated kinases (ERK1/2; p42/p44 mitogen-activated protein kinase (MAPK)) is one of the most extensively studied signaling pathways not least because it occurs downstream of oncogenic RAS. Here, we take advantage of the wealth of experimental data available on the canonical RAS/RAF/MEK/ERK pathway of Bhalla et al. to test the utility of a newly developed nonlinear analysis algorithm designed to predict likelihood of cellular transformation. By using ERK phosphorylation as an "output signal", the method analyzes experimentally determined kinetic data and predicts putative oncogenes and tumor suppressor gene products impacting the RAS/MAPK module using a purely theoretical approach. This analysis identified several modifiers of ERK/MAPK activation described previously. In addition, several novel enzymes are identified which are not previously described to affect ERK/MAPK phosphorylation. Importantly, the nonlinear analysis enables a ranking of modifiers of MAPK activation predicting their relative importance in RAS-dependent oncogenesis. The results are compared with a linearized analysis based on sensitivity analysis about the steady state or metabolic control analysis (MCA). The results are favorable, pointing to the utility of first-order sensitivity analysis and MCA in the analysis of complex signaling networks for oncogenes.  相似文献   

13.
14.
In the past two years, studies of Stbm genes (also known as Vangl2) and the proteins that they encode in mice, flies, frogs and fish have shown that they have a crucial role in regulating planar cell polarity and convergent extension movements. Combined genetic and biochemical analyses have pointed to signaling pathways where Stbm (Vangl2) proteins might act, and have identified several interacting proteins that form a crucial multi-protein signaling complex at the membrane. These studies show that these proteins have a pivotal role in a signaling cascade(s) that has been highly conserved in evolution. This review will summarize recent findings documenting the involvement of Stbm (Vangl2) and associated proteins in planar cell polarity, non-canonical Wnt signaling and convergent extension movements.  相似文献   

15.
Point mutations in the cellular homologues HRAS, KRAS2, and NRAS of the viral Harvey and Kirsten rat sarcoma virus oncogenes are commonly involved in the onset of malignancies in humans and other species such as dog, mouse, and rat. Most often, three particular hot-spot codons are affected, with one amino acid exchange being sufficient for the induction of tumor growth. While RAS genes have been shown to play an important role in canine tumors such as non-small lung cell carcinomas, data about RAS mutations in canine fibrosarcomas as well as KRAS2 mutations in canine melanomas is sparse. To increase the number of tumors examined, we recently screened 13 canine fibrosarcomas and 11 canine melanomas for point mutations, particularly within the mutational hot spots. The results were compared to the already existing data from other studies about these tumors in dogs.  相似文献   

16.
The BCL2 (B cell lymphoma/leukemia-2) and C-HA-RAS oncogenes encode membrane-associated proteins of 26 and 21 kilodaltons, respectively. Although RAS proteins have long been known for their ability to bind and hydrolyze GTP, recent investigations suggest that BCL2 encodes a novel GTP-binding protein (S. Haldar, C. Beatty, Y. Tsujimoto, and C. M. Croce, Nature [London] 342:195-198, 1989). Cotransfection of BCL2 and HA-RAS oncogenes resulted in morphological transformation of early-passage rodent fibroblasts, rendering these cells tumorigenic in animals and enabling them to grow in semisolid medium. In contrast, cotransfection of BCL2 with oncogenes that encode nuclear proteins (E1A and C-MYC) did not produce malignant transformation, whereas HA-RAS did complement with these genes. These findings suggest that proteins encoded by oncogenes such as BCL2 and HA-RAS, although having similar subcellular locations and perhaps similar biochemical properties, can regulate distinct complementary pathways involved in cellular transformation.  相似文献   

17.
《Journal of molecular biology》2019,431(19):3706-3717
Mutations of the Ras proteins HRAS, KRAS4A, KRAS4B, and NRAS are associated with a high percentage of all human cancers. The proteins are composed of highly homologous N-terminal catalytic or globular domains, plus C-terminal hypervariable regions (HVRs). Post-translational modifications of all RAS HVRs helps target RAS proteins to cellular membrane locations where they perform their signaling functions. For the predominant KRAS4 isoform, KRAS4B, post-translational farnesylation and carboxymethylation, along with a patch of HVR basic residues help foster membrane binding. Recent investigations implicate membrane-bound RAS dimers, oligomers, and nanoclusters as landing pads for effector proteins that relay RAS signals. The details of these RAS signaling platforms have not been elucidated completely, in part due to the difficulties in preparing modified proteins. We have employed properly farnesylated and carboxymethylated KRAS4B in lipid monolayer incubations to examine how the proteins assemble on membranes. Our results reveal novel insights into to how KRAS4B may organize on membranes.  相似文献   

18.
Kelly P  Casey PJ  Meigs TE 《Biochemistry》2007,46(23):6677-6687
The G12 subfamily of heterotrimeric G proteins has been the subject of intense scientific interest for more than 15 years. During this period, studies have revealed more than 20 potential G12-interacting proteins and numerous signaling axes emanating from the G12 proteins, Galpha12 and Galpha13. In addition, more recent studies have begun to illuminate the various and sundry functions that the G12 subfamily plays in biology. In this review, we summarize the diverse range of proteins that have been identified as Galpha12 and/or Galpha13 interactors and describe ongoing studies designed to dissect the biological roles of specific Galpha-effector protein interactions. Further, we describe and discuss the expanding role of G12 proteins in the biology of cells, focusing on the distinct properties of this subfamily in regulating cell proliferation, cell migration, and metastatic invasion.  相似文献   

19.
The role of Jak/STAT signaling in heart tissue renin-angiotensin system   总被引:4,自引:0,他引:4  
The involvement of the Renin Angiotensin System (RAS) and the role of its primary effector, angiotensin II (Ang II), in etiology of myocardial hypertrophy and ischemia is well documented. In several animal models, the RAS is activated in cardiac cell types that express the receptor AT1, and/or AT2, through which the Ang II mediated effects are promoted. In this article, we briefly review recent experimental evidence on the critical role of a prominent signaling pathway, the Jak/Stat pathway in activation and maintenance of the local RAS in cardiac hypertrophy and ischemia. Recent studies in our laboratory document that the promoter of the prohormone angiotensinogen (Ang) gene serves as the target site for STAT proteins, thereby linking the Jak/Stat pathway to activation of heart tissue autocrine Ang II loop. Stat5A and Stat6, are selectively activated when the heart is subjected to ischemic injury, whereas activation of Stat3 and Stat5A is involved in myocardial hypertrophy. Blockage of RAS activation by treatment with specific inhibitor promotes a remarkable recovery in functional hemodynamics of the myocardium. Thus, activation of selective sets of Stat proteins constitutes the primary signaling event in the pathogenesis of myocardial hypertrophy and ischemia.  相似文献   

20.
The last decades have witnessed an exponential increase in our knowledge of Rho GTPase signaling network which further highlighted the cross talk between these proteins and the complexity of their signaling pathways. In this review, we summarize the upstream and downstream players from Rho GTPases that are mainly involved in actin polymerization leading to cell motility and potentially playing a role in cancer cell metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号