首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flowers of tomato (Lycopersicon esculentum Mill.) plants cv. Castle Rock were sprayed with 100 ppm of ethrel, 0.5 mm aminooxyacetic acid (AOA), or water (control) 2 days after anthesis. The fruit period of cell division was extended up to 16–18 days after anthesis with the application of ethrel but reduced from 10–12 days (control) down to only 6–8 days with the application of AOA. In a trend opposite to AOA application, fruits that received ethrel treatment were of higher ethylene and 1-aminocyclopropane-1-carboxylic acid (ACC) levels than control. This was noticed not only during the first 2 weeks after anthesis but also during the fruit climacteric phase. Mesocarp cells of ethrel-treated fruits were greater in number/mm2 but smaller in size than control; an opposite trend was obtained with the application of AOA. This was observed for a period of 18 days after anthesis, but by that time or at earlier ages, fruits of AOA treatment were larger in size and heavier in weight than control, and both were larger and heavier than ethrel-treated ones. At 5 weeks after anthesis and thereafter, the fruit response to all treatments was totally reversed because early ethrel-treated fruits became significantly larger in size and heavier in weight with a ripening delay of about 10 and 15 days compared with those of control and AOA-treated ones, respectively. When the same treatments were applied to the whole plant, similar results were obtained because the early application of ethrel increased the fruit yield by about 15% over control with a pronounced ripening delay; an opposite trend was obtained with the application of AOA. No significant differences were found among all treatments in terms of flower or fruit abscission or fruit number/plant. The data suggest that ethylene regulates tomato fruit transmission from cell division to cell enlargement. In addition, fruit cell division is terminated only when endogenous ethylene decreases to its basal level, allowing cell enlargement to dominate and proceed as in the case of the early application of AOA. The ripening delay of ethrel-treated fruits may be caused by the longer time required for the increased cell number to reach maturation. A low level of ethrel application at the tomato early fruiting stage may be used for increasing fruit yield by increasing fruit size and consequently its quality. Received June 1, 1998; accepted December 7, 1998  相似文献   

2.
The banana (Musa spp. AAA) micropropagation shows a high incidence of off-types, among whose variegated plants are very common. Endogenous levels of growth regulators and pigment content were measured in normal and variegated leaves of the micropropagated banana plants growing in a greenhouse. Growth regulators were separated by high pressure liquid chromatography and submitted to enzyme-linked immunosorbent assay for quantification. Pigment content was measured using the colorimetric method. Green leaves contained 1.9 and 10 times more cytokinins compared with green and yellow sectors of variegated leaves, respectively. The levels of indoleacetic acid in normal leaves were significantly higher than those found in green and yellow sectors of variegated leaves; however, the levels of abscisic acid were lower in normal leaves. The lower content of chlorophylls in variegated leaves coincided with decreased endogenous levels of cytokinins, which indicated that variegation in banana leaves may be associated with alterations in the metabolism of this growth regulator. Received December 3, 1997; accepted February 2, 1998  相似文献   

3.
Soaking summer squash (Cucurbita pepo cv. Eskandarany) seeds in continuously aerated solutions of 0.25, 0.50, and 1.00 ppm Co2+ for 48 h before sowing strongly increased plant growth, femaleness, and fruit yield compared with those of water- (control) or 0.5 mm AOA (aminooxyacetic acid)-soaked seeds. Following the same pattern, plants of Co2+-soaked seeds produced significantly higher ethylene levels as early as the seedling stage (14 days after seed sowing) up to the onset of flower initiation (OFI) stage (30 days after seed sowing), with more pronounced levels of all measured parameters for plants of 1.00 ppm Co2+-soaked seeds. Plants of AOA-soaked seeds, however, behaved in a pattern similar to those of control in all measured parameters. The only exception was the significant ethylene inhibition noticed only at the plant seedling stage with AOA-seed soaking, which indicated the short term of AOA inhibition to ethylene when applied as early as the seed germination stage. When AOA was applied foliarly before and at the OFI stage, the increased plant femaleness obtained with Co2+ seed soaking was arrested. It is indicated, therefore, that summer squash plant femaleness is more responsive to plant ethylene-modulated levels before or at the OFI stage than earlier stages. Furthermore, all seed soaking treatments had no effect on plant leaf number or plant and fruit Co2+ content, which strongly indicated that the positive impact of Co2+ on summer squash plant growth and femaleness was mainly the result of the so-called ``low Co2+ level-induced ethylene.' The percentage of fruit yield increase reached about 26, 40, and 56% over the control by 0.25, 0.50, and 1.00 ppm Co2+ seed soaking, respectively, whereas AOA seed soaking resulted in only a 4.5% yield reduction. To ensure the permanent positive impact of Co2+ on ethylene production as well as the short period of AOA inhibition, seeds were resoaked in water or AOA for 8 h after being soaked in 1.00 ppm Co2+ solution for 40 h. The results obtained emphasized the previous findings because AOA inhibition was restricted on ethylene production only at the seedling stage. Meanwhile, all Co2+ positive effects were obtained 2 weeks later, even with AOA seed resoaking. These data strongly suggested that the positive impact of Co2+ on ethylene production is more permanent than the negative impact of AOA. Hence its application, in low concentrations, as early as the seed germination stage, strongly increased summer squash plant growth, femaleness, and fruit yield by increasing the plant ethylene level. Received July 21, 1997; accepted November 10, 1997  相似文献   

4.
External and internal tomato irregular ripening (TIR) symptoms were associated with the feeding of silverleaf whitefly (SLW), Bemisia argentifolii Bellows and Perring. Four experiments consisting of various soil drench applications of GA3 (100 ppm) and cycocel (CCC, an inhibitor of GA biosynthesis; 1,000 and 2,000 ppm) were applied to dwarf cherry tomato cv. Florida Petite in the presence and absence of SLW in an attempt to mimic the disorders induced by the SLW. The application of GA3 induced external and internal TIR symptoms similar to the SLW-induced disorder. Minimal TIR-like symptoms also occurred in the control and CCC treatments. Internal TIR symptoms in GA3, GA3 plus SLW, and GA3 plus CCC treatments ranged from 66% to 97% throughout the experiments. The incidence of external TIR symptoms was highest in the GA3 plus SLW treatment compared with the other treatments. CCC reduced the incidence of external TIR symptoms induced by GA3 or GA3 plus SLW treatments. However, CCC-treated plants also attracted more oviposition and higher populations of SLW and consequently induced a greater incidence of TIR symptoms than SLW treatment alone. Furthermore, although low SLW populations may be associated with low external TIR symptoms, internal TIR symptoms almost always remained high in infested plants. The results suggest that the TIR disorder in dwarf cherry tomato which is induced by the SLW may be a gibberellin-regulated disorder. Received May 27, 1997; accepted September 26, 1997  相似文献   

5.
The effects of thermo- and photoperiodicity on elongation growth and on endogenous level of gibberellins (GAs) in Begonia x hiemalis during various phases of the day-night cycle have been studied. Plant tissue was harvested during the day and night cycle after temperature and photoperiodic treatments and analyzed for endogenous GAs using combined gas chromatography and mass spectrometry. Elongation growth increased when the difference between day and night temperature (DIF = DT − NT) increased from a negative value (−9.0 and −4.5°C) to zero and with increasing photoperiod from 8 to 16 h. When applied to the youngest apical leaf, gibberellins A1, A4, and A9 increased the elongation of internodes and petioles. GA4 had a stronger effect on elongation growth than GA1 and GA9. In relative values, the effect of these GAs decreased when DIF increased from −9 to 0°C. The time of applying the GAs during a day and night cycle had no effect on the growth responses. In general, endogenous levels of GA19 and GA20 were higher under negative DIF compared with zero DIF. The level of endogenous GA1 in short day (SD)-grown plants was higher under zero DIF than under negative DIF, but this relationship did not appear in long day (LD)-grown plants. The main effects of photoperiod seem to be a higher level of GA19 and GA1 at SD compared with LD, whereas GA20 and GA9 show the opposite response to photoperiod. No significant differences in endogenous level of GA1, GA9, GA19, and GA20 were found for various time points during the diurnal day and night cycle. Endogenous GA20 was higher in petiole and leaf compared with stem, whereas there were no differences of GA1, GA9, and GA19 between plant parts. No clear relationship was found between elongation of internodes and petioles and levels of endogenous GAs. Received December 26 1996; accepted July 1, 1997  相似文献   

6.
The response to fusicoccin (FC) of the elongated tomato mutant procera was tested. Hypocotyl sections from etiolated procera seedlings responded to a range of FC concentrations similar to that of normal sections, but at a given FC concentration the mutant sections exhibited about 40% greater elongation than normal. The initial rates of elongation in FC were similar for normal and procera sections, but elongation continued at a high rate for a longer period in the mutant. Measurements of outer cortical cells demonstrated that the enhanced elongation of the procera hypocotyl sections was due to enhanced cell expansion. Received July 16, 1996; accepted January 17, 1997  相似文献   

7.
To determine whether natural plant growth regulators (PGRs) can enhance drought tolerance and the competitive ability of transplanted seedlings, 1.5-year-old jack pine (Pinus banksana Lamb.) seedlings were treated with homobrassinolide, salicylic acid, and two polyamines, spermine and spermidine, triacontanol, abscisic acid (ABA), and the synthetic antioxidant, Ambiol. PGRs were fed into the xylem for 7 days and plants were droughted by withholding water for 12 days. ABA, Ambiol, spermidine, and spermine at a concentration of 10 μg L−1 stimulated elongation growth under drought, whereas ABA, Ambiol, and spermidine maintained higher photosynthetic rates, higher water use efficiency, and lower Ci/Ca ratio under drought compared with control plants. The damaging effects of drought on membrane leakage was reversed by Ambiol, ABA, triacontanol, spermidine, and spermine. Because ABA, Ambiol, and both polyamines enhanced elongation growth and also reduced membrane damage in jack pine under drought, they show promise as treatments to harden seedlings against environmental stress. The protective action of these compounds on membrane integrity was associated with an inhibition of ethylene evolution, with a reduction in transpiration rate and an enhancement of photosynthesis, which together increased water use efficiency under drought. Although most of the tested compounds acted as antitranspirants, the inhibition in membrane leakage in ABA-, Ambiol-, and polyamine-treated plants appeared more closely related to the antiethylene action. Received December 30, 1998; accepted October 14, 1999  相似文献   

8.
The effects of pot size, timing of the application of paclobutrazol (PTZ) and gibberellic acid (GA3), and the counteractive effect of these two compounds on growth and tuber yield of greenhouse-grown Norland and Russet Burbank potatoes were investigated. Plants were grown either in 1.5-liter pots (15 cm deep) or 3.0-liter pots (18 cm deep) and received a foliar application of either 1.5 mm PTZ or 9 × 10−3 mm GA3 at early or late stolon initiation. Some plants that had been foliar treated with 1.5 mm PTZ at early stolon initiation were foliar treated with 9 × 10−3 mm GA3 at late stolon initiation. PTZ reduced haulm length in both cultivars significantly, particularly when the treatment was applied at early stolon initiation, but the late treatment reduced haulm length only when growing in 3.0-liter pots. Irrespective of the timing of treatment, GA3 increased haulm length in Norland growing in both pot sizes, but the treatment increased haulm length in Russet Burbank only when applied at late stolon initiation. GA3 applied after PTZ did not overcome the growth-inhibiting effect of the PTZ treatment. The PTZ treatment effectively increased usable tuber number/plant (UTN) in Norland, but PTZ had no effect on UTN in Russet Burbank. PTZ reduced usable tuber weight/plant (UTW) only in Norland growing in 1.5-liter pots. By contrast, GA3 increased UTN only when treated at late stolon initiation of 1.5-liter pot-grown Norland, whereas the same treatment was effective when applied only at early stolon initiation for Russet Burbank. For Norland, the increase in UTN by early applied PTZ was reduced by the subsequent application of GA3. The use of 3.0-liter pots for minituber production in both Norland and Russet Burbank appears to have no advantage over growing in 1.5-liter pots, particularly when PTZ or GA3 is used to enhance tuberization. Received May 30, 1997; accepted February 3, 1998  相似文献   

9.
Plants of early flowering mutant and wild type genotypes of Sorghum bicolor were treated with ring D-modified gibberellins (GAs), and the effects on endogenous GA levels were determined. The growth and timing of floral initiation in 58M plants grown under 18-h days (which significantly delays floral initiation in this short day plant) following treatment with these compounds, relative to GA3 and GA5 treatments, were also investigated. Application of the endo-isomer of C16,17-dihydro-GA5 (endo-DiHGA5), the exo-isomer of C16,17-dihydro-GA5 (exo-DiHGA5), and C16α,17-dichloromethanodihydro-GA5 (DMDGA5) altered GA levels in both genotypes. Each ring D-modified GA significantly inhibited shoot growth while significantly decreasing levels of GA1 and increasing levels of its immediate precursor, GA20. Gibberellin A8 levels also decreased. Tillering was not affected by any treatment. For the early flowering genotype 58M, grown under noninductive long days, both dihydro-GA5 isomers promoted floral initiation while shoot growth was strongly inhibited, and floral development was strongly advanced beyond floral stage 4. Gibberellin A3 and GA5, applied under the same conditions, promoted shoot growth slightly and gave ``floral-like' apical meristems that did not develop past floral stage 1. These results suggest that the reduced shoot growth of sorghum, which follows application of those ring D-modified GAs, is due to their inhibiting the 3β hydroxylation of GA20 to GA1, thereby reducing the GA1 content. That floral initiation was hastened and floral development promoted in genotype 58M by application of both isomers of DiHGA5 are in contrast to the effects of other GA biosynthesis inhibitors, which act earlier in the GA biosynthesis pathway, but are consistent with results seen for long day grasses. This suggests that endo-DiHGA5 and exo-DiHGA5 may be acting directly in promoting floral initiation and subsequent floral apex development of this short day plant under long day conditions. Received October 3, 1996; accepted January 22, 1997  相似文献   

10.
Major changes in indole-3-acetic acid (IAA) and cytokinin (CK) levels occur at different phenological phases of Tillandsia recurvata shoots. This epiphytic rootless bromeliad was chosen as suitable material for hormonal analysis because CK synthesis is restricted to the shoots, thus avoiding problems in the interpretation of results caused by translocation and interconversion of CK forms between roots and leaves encountered in plants with both organs. Young plants of T. recurvata have weak apical dominance because side shoots appeared early in development, and branch growth was correlated with a strong increase in the level of zeatin. The flowering phase was characterized by a significant increase in free base CKs, zeatin, and isopentenyladenine compared with the levels found in adult vegetative shoots. In contrast, both free-base CKs declined in the fruiting phenological phase, and the IAA level increased dramatically. It was concluded that in phases characterized by intense organ formation, such as in the juvenile and flowering stages, there was an enhancement of CK content, mainly caused by zeatin, leading to a lower IAA/CK ratio. Higher ratios were correlated with phases that showed no organogenesis, such as adult and fruiting phenologies. Received April, 15, 1999; accepted September 7, 1999  相似文献   

11.
Hormonal extracts of cherry tomato fruits (Lycopersicon esculentum Mill.) cv. Small Fry at different stages of fruit development and maturation were bioassayed for their auxin, gibberellin, cytokinin and growth inhibitor activities. In general, the levels of endogenous growth promoters were much higher in the young developing fruits than in the more mature fruits. Free cytokinin levels were highest in the first two weeks of development then declined rapidly. However, cytokinin activity in the ribotide fraction, after treatment with alkaline phosphatase, decreased during thefirst three weeks of development then increased rapidly over the following four weeks. Auxin levels increased during early development to reach a maximum in three-week-old fruits after anthesis. Gibberellin levels during the first two weeks of development were much lower than those of auxins and cytokinins, but then increased to reach a peak in the fourth week after anthesis. A growth inhibiting substance with Rf similar to that of abscisic acid was found in the acidic fraction of the fruit extracts. This inhibitor increased gradually during fruit growth and development and reached a peak at the age of five weeks which coincides with the green mature stage.  相似文献   

12.
Endogenous levels of cytokinin and abscisic acid (ABA) were determined in ovules of normal cotton (TM-1) and four fiber differentiation mutants (n2, Ligon lintless, H10, and Xu142) before and after flowering by enzyme-linked immunosorbent assays. The fluctuation patterns of ABA levels in ovules of normal cotton and mutants were similar. At the fiber elongation stage, ABA content was low, and from 1 day after flowering, the ABA content decreased steadily. On the other hand, the peaks of isopentenyladenine and isopentenyladenosine in ovules of TM-1 were observed 1 day before flowering. The level of cytokinins decreased after flowering in TM-1, whereas in the mutants it increased steadily. These results indicate that endogenous ABA is probably not the main inhibitor for fiber elongation and that endogenous cytokinins likely play a dual role in fiber development. Before flowering, cytokinins function as one of the stimuli for the initiation of fibers, but after flowering, cytokinins inhibit fiber growth. Received February 18, 1997; accepted June 11, 1997  相似文献   

13.
The element phosphorus made up 0.5% of the dry weight of dehulled Avena fatua caryopses 7 days after anthesis (DAA), half of it inorganic (Pi). Caryopses detached and pierced 7 DAA germinated in vitro with a rapid drop in Pi levels. By 15–20 DAA caryopsis dry weight had increased three- to fourfold, but phosphorus made up less than 0.04% of the dry weight of this enlarged caryopsis. Caryopses at this stage germinated readily without piercing if incubated in vitro. A further decrease in Pi accompanied by a marked increase in phytate phosphorus began about 15 DAA and continued during later seed maturation. By 20 DAA, when embryos were relatively mature and endosperm cell division had ceased, a decrease in caryopsis water content (as a percentage of dry weight) began, and seed dormancy became apparent. As starch and phytate reserves accumulated, Pi and water levels of the caryopsis diminished. Higher levels of endogenous Pi coincided with the anabolic events of initial seed formation and, to a lesser extent, with anabolic events of seed germination. Decreasing Pi levels coincided with accumulation of nutrient reserves, lowering of water content, and the initiation of dormancy. The data suggest that (1) enzymes associated with the formation and development of the embryo may be activated by the high Pi levels present during initial seed differentiation; (2) embryo quiescence and dormancy are facilitated by the drop of Pi levels which accompanies the accumulation of starch and phytate reserves; and (3) the increase in Pi which accompanies seed afterripening aids in the termination of dormancy and the resumption of germination. Received August 15, 1996; accepted December 2, 1996  相似文献   

14.
Plant growth retardants were evaluated for their ability to reduce the growth rate of sweetpotato (Ipomoea batatas (L.) Lam.) in vitro. Nodal sections of cv. Jewel were cultured for 30 days on medium containing NDA, ancymidol, phosfon, TIBA, difenzoquat, chlormequat, ACC, mepiquat chloride, or daminozide at 0, 10−4, 10−5, 10−6, 10−7, or 10−8 m. Difenzoquat, NDA, phosfon, and TIBA, at 10−4 m, were lethal to axillary bud explants. A low concentration (10−8 m) of chlorflurenol or NDA stimulated shoot elongation. The effective concentration range for most growth retardants was 10−5 to 10−6 m. Small (2- to 4-mm diameter) storage root-like swellings were observed on roots in cultures containing TIBA or ancymidol. The growth-inhibiting effects of ancymidol and NDA were transitory and did not persist through a 180-day culture period. Shoots cultured on medium containing 10−5 m phosfon, TIBA, or difenzoquat were significantly shorter than control plants after a 180-day culture period. Culture on medium containing TIBA, NDA, ancymidol, or ACC resulted in abnormal leaf and stem development. Plants derived from nodal explants cultured on medium containing either phosfon or chlormequat were near normal in appearance but with some plants exhibiting interveinal chlorosis and reduced root system development. Received May 9, 1997; accepted August 14, 1997  相似文献   

15.
16.
Simultaneous measurements of respiration, ethylene production, and abscisic acid (ABA) concentrations, as well as the growth parameters length, fresh weight (FW), and dry weight (DW) of olive (Olea europaea L. cv. Konservolia) inflorescence were carried out at short intervals (3–7 days) during the period from bud burst until the 3rd week after full bloom (AFB), when young fruit reached 8 mm in length. The axis of inflorescence elongated remarkably during the 3rd week after bud burst (ABB), massive bract shedding occurred during the 4th week ABB, full bloom (FB) was observed 7 weeks ABB, and massive floral organ abscission 1 week AFB. The results showed a continuous increase in inflorescence FW and DW from bud burst until 4 days before FB. Respiration rate, ethylene production, and levels of ABA were relatively high during the first 3 weeks ABB. After this period, respiration and ethylene followed a similar pattern of changes, inversely to that of ABA concentration. An accumulation of inflorescence ABA 6 and 4 days before FB was associated with the minimum values of respiration and ethylene production on the same dates. The sharp decrease in the ABA concentration during FB and 3 days later was followed by a high rise in ethylene and an increase in respiration rate, which both rose further 1 week AFB. The results suggest a possible correlation of ABA with the early stage of floral abscission, whereas ethylene production seems to be correlated with the terminal separatory activity in olive inflorescence abscission processes. Received May 28, 1998; accepted November 17, 1998  相似文献   

17.
The effects of jasmonic acid (JA) on elongation growth of coleoptile segments from etiolated maize (Zea mays L.) were investigated in the presence and absence of auxin. When supplied alone, at physiological concentrations (10−9, 10−8, and 10−5 m), JA (or methyl-JA) inhibited growth. JA at a similar range of concentrations also inhibited auxin-induced elongation growth. To determine whether this effect on growth depended on endogenous abscisic acid (ABA), we grew maize coleoptiles in the presence of norflurazon (an inhibitor of carotenoid biosynthesis) that results in reduced endogenous ABA levels. Growth of etiolated coleoptile segments from these plants was inhibited by JA (or methyl-JA) in both the absence and presence of auxin. Previously, we have observed a correlation between elongation growth and cytosolic pH (pHi), in which auxin lowers pHi, and growth inhibitors such as ABA raise pHi. We examined the effect of low concentrations of methyl-JA on pHi with dual emission dye, carboxy seminaphthorhodafluor-1, and confocal microscopy. To confirm these studies, we also used in vivo 31P NMR spectrometry to ascertain the changes in pHi after addition of jasmonate to maize coleoptiles. Coleoptiles grown in either the absence or presence of norflurazon responded to methyl-JA or JA by increases in pHi of approximately 0.2 pH unit. This response occurs over a period of 15–20 min and appears to be independent of endogenous ABA. This alkalization induced by JA is likely to form a permissive environment for JA signal transduction pathway(s). Received February 5, 1999; accepted August 25, 1999  相似文献   

18.
The effect of brassinolide (BR) on cell growth and shikonin and its derivative formation in Onosma paniculatum cell culture was studied. BR addition with IAA and BAP (+BR/+IAA/+BAP) in B5 medium slightly increased the cell growth at 0.01–0.1 ppb concentration compared with a growth control (−BR/+IAA/+BAP). Only BR addition (+BR/−IAA/−BAP) at 0.001–100 ppb in B5 medium significantly increased the cell fresh weight compared with a growth control (−BR/−IAA/−BAP). The same concentration of BR tested at 0–1000 ppb increased the cell fresh weight of +IAA/+BAP significantly more than that of −IAA/−BAP. BR at 0.001–0.1 ppb with IAA and BAP added (+BR/+IAA/+BAP) in M9 medium increased shikonin and its derivative content markedly by 31–87%, compared with its control (−BR/+IAA/+BAP). BR at 0.001–1000 ppb without IAA and BAP added to M9 medium (+BR/−IAA/−BAP) also increased shikonin and its derivative content compared with its control (−BR/−IAA/−BAP). However, the amount of shikonin and derivative formed of +IAA/+BAP was greater than that of −IAA/−BAP only at the same concentration of BR at 0–1 ppb. These combined results show that BR at 0.01 ppb with IAA and BAP added was the best for cell growth and shikonin formation. Formation of shikonin and its derivative by adding BR at 0.01 ppb with IAA and BAP (+BR/+IAA/+BAP) in M9 medium was significantly enhanced 4 days after BR addition compared with a production control (−BR/+IAA/+BAP). In contrast, +BR/−IAA/−BAP vs. −BR/−IAA/−BAP was not as effective as +BR/+IAA/+BAP vs. −BR/+IAA/+BAP for the shikonin formation. The time course study for shikonin formation also showed that +BR/+IAA/+BAP and −BP/+IAA/+BAP only slightly increased cell growth in M9 medium. Similarly, soluble protein content in the cells treated by BR at 0.01 ppb with IAA and BAP (+BR/+IAA/+BAP) exceeded that of the control (−BR/+IAA/+BAP) 4 days after BR addition. And +BR/−IAA/−BAP only slightly increased the soluble protein content over that of −BR/−IAA/−BAP. Received November 2, 1998; accepted August 25, 1999  相似文献   

19.
In developing plants, free N-glycans occur ubiquitously at micromolar concentrations. Such oligosaccharides have been proposed to be signaling molecules in plant development. As a part of a study to elucidate the physiological roles of de-N-glycosylation machinery involved in fruit ripening, we analyzed changes in the amounts and structural features of free N-glycans in tomato fruits at four ripening stages. The amount of high-mannose type free N-glycans increased significantly in accordance with fruit ripening, and the relative amounts of high-molecular size N-glycans, such as Man8-9GlcNAc1, became predominant. These observations suggest that the de-N-glycosylation machinery, including endo-β-N-acetylglucosaminidase (ENGase) activity, is stimulated in the later stages of fruit ripening. But contrary to expectation, we found that total ENGase activities in the tomato fruits did not vary significantly with the ripening process, suggesting that ENGase activity must be maintained at a certain level, and that the expression of α-mannosidase involved in the clearance of free N-glycans decreases during tomato fruit ripening.  相似文献   

20.
The physiologic effect of gibberellins (GA) in seed development is poorly understood. We examined the effect of gibberellic acid (GA3) on growth, protein secretion, and starch accumulation in cultured maize (Zea mays L.) endosperm suspension cells. GA3 (5 and 30 μm) increased the fresh weight, dry weight, and protein content of the cultured cells, but the effect of GA3 at 50 μm was not significantly different. However, the protein content in the culture medium was increased by these three concentrations of GA3. The effect of GA3 on the amount of cellular structural polysaccharides was not significant, but GA3 had a dramatic effect on the starch content. At 5 μm, GA3 caused an increase in the starch content, but at 50 μm the starch accumulation was reduced. Chlorocholine chloride (CCC), an inhibitor of GA biosynthesis, significantly increased the starch content and decreased the structural polysaccharide content of the cultured cells. The effects of CCC at 500 μm on the starch and polysaccharide content were partially reversed by 5 μm GA3 applied exogenously. Based on these results we suggest that GA does not favor starch accumulation in the cell cultures and that the addition of lower concentrations of GA3 in the medium may provide an improved balance among the endogenous GA in the cultured cells. Received October 31, 1995; accepted March 25, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号