首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Field studies were conducted in 1992 and 1993 in Hermiston, Oregon, to evaluate the efficacy of transgenic Bt potato (Newleaf®, which expresses the insecticidal protein Cry3Aa) and conventional insecticide spray programs against the important potato pest, Leptinotarsa decemlineata (Say), Colorado potato beetle (CPB), and their relative impact on non-target arthropods in potato ecosystems. Results from the two years of field trials demonstrated that Newleaf potato plants were highly effective in suppressing populations of CPB, and provided better CPB control than weekly sprays of a microbial Bt-based formulation containing Cry3Aa, bi-weekly applications of permethrin, or early- and mid-season applications of systemic insecticides (phorate and disulfoton). When compared with conventional potato plants not treated with any insecticides, the effective control of CPB by Newleaf potato plants or weekly sprays of a Bt-based formulation did not significantly impact the abundance of beneficial predators or secondary potato pests. In contrast to Newleaf potato plants or microbial Bt formulations, however, bi-weekly applications of permethrin significantly reduced the abundance of several major generalist predators such as spiders (Araneae), big-eyed bugs (Geocorus sp.), damsel bugs (Nabid sp.), and minute pirate bugs (Orius sp.), and resulted in significant increases in the abundance of green peach aphid (GPA), Myzus persicae (Sulzer) – vector of viral diseases, on the treated potato plots. While systemic insecticides appeared to have reduced the abundance of some plant sap-feeding insects such as GPA, lygus bugs, and leafhoppers, early and mid-season applications of these insecticides had no significant impact on populations of the major beneficial predators. Thus, transgenic Bt potato, Bt-based microbial formulations and systemic insecticides appeared to be compatible with the development of integrated pest management (IPM) against other potato pests such as GPA because these CPB control measures have little impact on major natural enemies. In contrast, the broad-spectrum pyrethroid insecticide (permethrin) is less compatible with IPM programs against GPA and the potato leafroll viral disease.  相似文献   

2.
Potato leafroll virus (PLRV; genus Polerovirus, family Luteoviridae) is a persistently transmitted circulative virus that depends on aphids for spreading. The primary vector of PLRV is the aphid Myzus persicae (Sulzer) (Homoptera: Aphididae). Solanum tuberosum L. potato cv. Kardal (Solanaceae) has a certain degree of resistance to M. persicae: young leaves seem to be resistant, whereas senescent leaves are susceptible. In this study, we investigated whether PLRV‐infection of potato plants affected aphid behaviour. We found that M. persicae's ability to differentiate headspace volatiles emitted from PLRV‐infected and non‐infected potato plants depends on the age of the leaf. In young apical leaves, no difference in aphid attraction was found between PLRV‐infected and non‐infected leaves. In fact, hardly any aphids were attracted. On the contrary, in mature leaves, headspace volatiles from virus infected leaves attracted the aphids. We also studied the effect of PLRV‐infection on probing and feeding behaviour (plant penetration) of M. persicae using the electrical penetration graph technique (DC system). Several differences were observed between plant penetration in PLRV‐infected and non‐infected plants, but only after infected plants showed visual symptoms of PLRV infection. The effects of PLRV‐infection in plants on the behaviour of M. persicae, the vector of the virus, and the implications of these effects on the transmission of the virus are thoroughly discussed.  相似文献   

3.
The requirement for the 17-kDa protein (P17) of Potato leafroll virus (PLRV) in virus movement was investigated in four plant species: potato (Solanum tuberosum), Physalis floridana, Nicotiana benthamiana, and N. clevelandii. Two PLRV P17 mutants were characterized, one that does not translate the P17 and another that expresses a P17 missing the first four amino acids. The P17 mutants were able to replicate and accumulate in agroinoculated leaves of potato and P. floridana, but they were unable to move into vascular tissues and initiate a systemic infection in these plants. In contrast, the P17 mutants were able to spread systemically from inoculated leaves in both Nicotiana spp., although the efficiency of infection was reduced relative to wild-type PLRV. Examination of virus distribution in N. benthamiana plants using tissue immunoblotting techniques revealed that the wild-type PLRV and P17 mutants followed a similar movement pathway out of the inoculated leaves. Virus first moved upward to the apical tissues and then downward. The P17 mutants, however, infected fewer phloem-associated cells, were slower than wild-type PLRV in moving out of the inoculated tissue and into apical tissues, and were unable to infect any mature leaves present on the plant at the time of inoculation.  相似文献   

4.
5.
Six cultivars and breeding lines of potato (Solanum tuberosum) differing in susceptibility to verticillium wilt caused by Verticillium dahliae were studied with respect to quantitative and qualitative differences in the bacterial flora of their soil and rhizosphere-rhizoplane. Although, no association was observed between the types of bacteria that inhabited the soil or roots of wilt resistant and susceptible cultivars, quantitative differences were evident. These differences provide the first direct evidence that potato genotypes can influence bacterial populations. Bacterial populations were 9–25-fold higher on roots than in the adjacent soil. As the plants aged, the total number of rootcolonizing bacteria increased between 15 and 245%. Pseudomonas spp. were the most abundant microbes in the soil and rhizosphere-rhizoplane. The bacteria antagonistic to V. dahliae in vitro were identified as members of the genera Bacillus, Pseudomonas, Flavobacterium, and Gluconobacter. A statistically significant trend was evident toward the association of antagonistic bacteria with the more resistant potato cultivars.  相似文献   

6.
Tubers of eight potato clones infected with potato leafroll luteovirus (PLRV) were planted as ‘infectors’ in a field crop grown, at Invergowrie, of virus-free potato cv. Maris Piper in 1989. The mean PLRV contents of the infector clones, determined by enzyme-linked immunosorbent assay (ELISA) of leaf tissue, ranged from c. 65 to 2400 ng/g leaf. Myzus persicae colonised the crop shortly after shoot emergence in late May and established large populations on all plants, exceeding 2000/plant by 27 June. Aphid infestations were controlled on 30 June by insecticide sprays. Aphid-borne spread of PLRV from plants of the infector clones was assessed in August by ELISA of foliage samples from the neighbouring Maris Piper ‘receptors’. Up to 89% infection occurred in receptor plots containing infector clones with high concentrations of PLRV. Spread was least (as little as 6%) in plots containing infectors in which PLRV concentrations were low. Primary PLRV infection in guard areas of the crop away from infectors was 4%. Some receptor plants became infected where no leaf contact was established with the infectors, suggesting that some virus spread may have been initiated by aphids walking across the soil.  相似文献   

7.
The concentration of potato leafroll luteovirus (PLRV) did not differ in potato plants with secondary infections grown at 15°C or 27°C. Detached leaves of plants grown at 15°C or 27°C were used as sources of PLRV for peach-potato aphids (Myzus persicae Sulz.) both at 15°C and 27°C. At comparable temperature during virus acquisition, aphids which fed on leaves of plants kept previously at 15°C contained more viral antigen detected by ELISA than aphids which fed on leaves of plants grown at 27°C. The aphids which acquired PLRV at 27°C contained evidently more viral antigen than those which acquired PLRV at 15°C. The greatest amount of PLRV was found in the aphids which acquired the virus at 27°C from the leaves of plants kept at 15°C. The ability of M. persicae to transmit PLRV to Physalis ftoridana Rydb. generally decreased with decrease in the amount of PLRV in vectors.  相似文献   

8.
Using antiserum globulins that reacted only weakly with plant materials, potato leafroll virus (PLRV) at 10 ng/ml was detected consistently by enzyme-linked immunosorbent assay (ELISA). The reaction with PLRV particles was slightly impaired in potato leaf extracts that were diluted less than 10-1 but not at greater dilutions. Antiserum globulins that reacted more strongly with plant materials could be used satisfactorily for coating microtitre plates but were unsuitable for conjugating with enzyme. The detection end-point of PLRV, in leaf sap of potato cv. Cara plants grown from infected tubers in the glasshouse, was about 10-2 and the virus was reliably detected in extracts of composite samples of one infected and 15 virus-free leaves. PLRV concentration was much less in extracts of roots or stolons than in leaf extracts. The virus was detected in infected leaves of all 27 cultivars tested. PLRV was readily detectable 2 wk before symptoms of secondary infection developed in field-grown plants of cv. Cara and Maris Piper and remained so for at least 5 wk. Its concentration was slightly greater in old than in young leaves and was similar to that in glasshouse-grown plants. In field-grown plants of cv. Maris Piper with primary infection, PLRV was detected in tip leaves 21–42 days after lower leaves were inoculated by aphids; in some shoots it later reached a concentration, in tip leaves, similar to that in leaves with secondary infection. Symptoms of primary infection developed in the young leaves of some infected shoots but were inconspicuous and were not observed until at least a week after PLRV was detected by ELISA.  相似文献   

9.
10.
Enzyme-linked immunosorbent assay (ELISA) was adapted for the efficient detection and assay of potato leafroll virus (PLRV) in aphids. Best results were obtained when aphids were extracted in 0.05 M phosphate buffer, pH 7.0, and the extracts incubated at 37 °C for 1 h before starting the assay. Using batches of 20 green peach aphids (Myzus persicae), about 0.01 ng PLRV/aphid could be detected. The virus could also be detected in single aphids allowed a 1-day acquisition access period on infected potato leaves. The PLRV content of aphids depended on the age of potato source-plants and the position of source leaves on them. It increased with increase in acquisition access period up to 7 days but differed considerably between individual aphids. A maximum of 7 ng PLRV/aphid was recorded but aphids more usually accumulated about 0.2 ng PLRV per day. When aphids were allowed acquisition access periods of 1–3 days, and then caged singly on Physalis floridana seedlings for 3 days, the PLRV content of each aphid, measured subsequently, was not strongly correlated with the infection of P. floridana. The concentration of PLRV in leaf extracts differed only slightly when potato plants were kept at 15, 20, 25 or 30 °C for 1 or 2 wk, but the virus content of aphids kept on leaves at the different temperatures decreased with increase of temperature. PLRV was transmitted readily to P. floridana at all temperatures, but by a slightly smaller proportion of aphids, and after a longer latent period, at 15 °C than at 30 °C. The PLRV content of M. persicae fed on infected potato leaves decreased with increasing time after transfer to turnip (immune to PLRV). The decrease occurred in two phases, the first rapid and the second very slow. In the first phase the decrease was faster, briefer and greater at 25 and 30 °C than at 15 and 20 °C. No evidence was obtained that PLRV multiplies in M. persicae. These results are compatible with a model in which much of the PLRV in aphids during the second phase is in the haemocoele, and transmission is mainly limited by the rate of passage of virus particles from haemolymph to saliva. The potato aphid, Macrosiphum euphorbiae, transmitted PLRV much less efficiently than M. persicae. Its inefficiency as a vector could not be ascribed to failure to acquire or retain PLRV, or to the degradation of virus particles in the aphid. Probably only few PLRV particles pass from the haemolymph to saliva in this species. The virus content of M. euphorbiae collected from PLRV-infected potato plants in the field increased from early June to early July, and then decreased. PLRV was detected both in spring migrants collected from the plants and in summer migrants caught in yellow water-traps. PLRV was also detected in M. persicae collected from infected plants in July and August, and in trapped summer migrants, but their PLRV content was less than that of M. euphorbiae, and in some instances was too small for unequivocal detection.  相似文献   

11.
Potato virus Y (PVY) and potato leafroll virus (PLRV) are two of the most important viral pathogens of potato. Infection of potato by these viruses results in losses of yield and quality in commercial production and in the rejection of seed in certification programs. Host plant resistance to these two viruses was identified in the backcross progeny of a Solanum etuberosum Lindl. somatic hybrid. Multiple years of field evaluations with high-virus inoculum and aphid populations have shown the PVY and PLRV resistances of S. etuberosum to be stably expressed in two generations of progeny. However, while PLRV resistance was transmitted and expressed in the third generation of backcrossing to cultivated potato (Solanum tuberosum L. subsp. tuberosum), PVY resistance was lost. PLRV resistance appears to be monogenic based on the inheritance of resistance in a BC3 population. Data from a previous evaluation of the BC2 progeny used in this study provides evidence that PLRV resistance was partly conferred by reduced PLRV accumulation in foliage. The field and grafting data presented in this study suggests that resistance to the systemic spread of PLRV from infected foliage to tubers also contributes to the observed resistance from S. etuberosum. The PLRV resistance contributed by S. etuberosum is stably transmitted and expressed through sexual generations and therefore would be useful to potato breeders for the development of PLRV resistant potato cultivars.  相似文献   

12.
Field experiments were carried out in eastern Scotland in 1976-78 to test the ability of granular insecticides, applied to soil at planting, and of insecticide sprays applied to the foliage, to control aphids and spread of potato leafroll virus (PLRV) in potatoes. The three years provided contrasting opportunities for virus spread. In 1976, the main vector of PLRV, Myzus persicae, arrived in early June and multiplied rapidly in untreated plots, and PLRV spread extensively. In 1977, M. persicae arrived 4–6 wk later than in 1976 and most spread of PLRV, which was less than in 1976, occurred after the end of July. In 1978, few M. persicae were recorded but the potato aphid, Macrosiphum euphorbiae, arrived early and very large populations developed in untreated plots. However, little spread of PLRV occurred in 1978, supporting other evidence that M. euphorbiae is an inefficient vector of PLRV in field conditions. In each year, granular insecticides decreased PLRV spread to a quarter or less of that in control plots. Thiofanox gave somewhat better and longer-lasting control of aphid populations than disulfoton, especially of M. persicae, but did not give greater control of PLRV spread. Application of three (1976) or five (1977) sprays of demeton-S-methyl to plots treated with granular insecticides further improved the control of M. euphorbiae but had less or no effect on M. persicae, especially where organophosphorus resistant aphids (R1 strain) were found. These supplementary sprays of insecticide did not further improve the control of PLRV but, in 1978, four sprays of demephion or pirimicarb to plots not treated with granular insecticide decreased PLRV spread. These data, together with previous findings, indicate that the amount of virus spread depends on the date of arrival and rate of multiplication of M. persicae in relation to the timing and effectiveness of removal of PLRV sources in crops. It is concluded that in Scotland insecticide granules should be used routinely only in crops of the highest grade of seed potato. Their use for other grades need be considered only in years following mild winters, when aphids can be expected to enter crops earlier and in larger numbers.  相似文献   

13.
14.
Antimicrobial peptide magainin II, isolated from the skin of the African clawed toad, has shown activity in vitro against a range of micro-organisms. Transgenic potato lines expressing a synthetic magainin gene show improved resistance to the bacterial plant pathogen, Erwinia carotovora. Culturable bacterial and fungal communities associated with magainin-producing potato plants were compared with those communities from the non-transgenic parental control and with another potato cultivar. Total numbers of aerobic bacteria recovered from the leaves of the magainin-producing line, its non-transgenic parent line and an unrelated cultivar did not differ significantly. There were no detectable differences in the numbers of Gram-positive and Gram-negative bacteria, pseudomonad populations or fungi recovered from foliage from the three plant lines. Bacterial populations recovered from the roots of a magainin-expressing plant line did not differ significantly from populations recovered from the unmodified parental line. Tubers from the magainin-expressing transgenic potatoes, however, had significantly lower total numbers of bacteria than tubers produced by unmodified plants. In vitro testing of rhizosphere isolates against magainin analogues found that bacterial isolates varied in their susceptibility to the peptides. There were no significant differences in the total numbers of fungi and yeasts recovered from the various plant lines, with one exception: higher numbers of fungi were recovered from roots of magainin-expressing plants than the unmodified control plants.  相似文献   

15.
马铃薯卷叶病毒( Potato leafroll virus,PLRV)对马铃薯生产的危害极大,是一种极为重要的马铃薯病毒病。 RT-PCR是马铃薯卷叶病毒检测较为常用的方法,该方法检测准确率高、成本低、适用范围广。但在实际生产中其检测对象多为染病植株,对PLRV传播的主要介体桃蚜( Myzus persicae)的检测,则由于蚜虫体积小、RNA提取难度大、成本高、且不能复检,因而在生产中不能被广泛使用。该研究以马铃薯感病植株和带毒蚜虫为材料,利用改进的RNA提取方法从它们中提取到PLRV的RNA,并以CP 基因设计特异性引物,进行PCR检测。结果表明:该方法提取的RNA完整性好,可用于蚜虫中PLRV检测,且同样适用于对马铃薯感病植株的检测。另外,通过对田间有翅蚜和无翅蚜携带 PLRV 情况进行检测发现,无翅蚜 PLRV 检出率为100%,有翅蚜PLRV检出率也高达60%,证明该体系在生产中的实用性。该研究使用改进的RNA提取方法,提取蚜虫中RNA,并利用RT-PCR进行了PLRV检测,与以前的方法相比简单实用,可被应用于生产检测中。该研究结果为马铃薯生产中PLRV的防控提供了一种新的手段。  相似文献   

16.
Chye ML  Zhao KJ  He ZM  Ramalingam S  Fung KL 《Planta》2005,220(5):717-730
Brassica juncea BjCHI1 is a unique chitinase with two chitin-binding domains. Here, we show that, unlike other chitinases, potato-expressed BjCHI1 shows hemagglutination ability. BjCHI1 expression in B. juncea seedlings is induced by Rhizoctonia solani infection, suggesting its protective role against this fungus. To verify this, transgenic potato (Solanum tuberosum L. cv. Desiree) plants expressing BjCHI1 generated by Agrobacterium-mediated transformation were challenged with R. solani. We also transformed potato with a cDNA encoding Hevea brasiliensis -1,3-glucanase, designated HbGLU, and a pBI121-derivative that contains cDNAs encoding both BjCHI1 and HbGLU. In vitro fungal bioassays using Trichoderma viride showed that extracts from transgenic potato lines co-expressing BjCHI1 and HbGLU inhibited fungal growth better than extracts from transgenic potato expressing either BjCHI1 or HbGLU, suggesting a synergistic effect. Consistently, in vivo fungal bioassays with soil-borne R. solani on young transgenic potato plants indicated that the co-expressing plants showed healthier root development than untransformed plants or those that expressed either BjCHI1 or HbGLU. Light microscopy and transmission electron microscopy revealed abundant intact R. solani hyphae and monilioid cells in untransformed roots and disintegrated fungus in the BjCHI1-expressing and the BjCHI1 and HbGLU co-expressing plants. Observations of collapsed epidermal cells in the co-expressing potato roots suggest that these proteins effectively degrade the fungal cell wall, producing elicitors that initiate other defense responses causing epidermal cell collapse that ultimately restricts further fungal penetration.  相似文献   

17.
The distribution of virus-infected cells was examined, by fluorescence microscopy, within plants of a range of potato clones infected with potato leafroll luteovirus (PLRV). This range included nine PLRV-resistant clones, of which four were transgenic lines carrying the PLRV coat protein gene and five were conventionally bred. Plants of these clones were resistant to PLRV multiplication and accumulated less virus antigen in leaf tissue than did susceptible clones. Indirect fluorescent antibody staining of thin sections from carbodiimide-fixed petiole tissue revealed that in plants of PLRV-susceptible clones, virus-infected cells were abundant within both external (abaxial) and internal (adaxial) phloem bundles. In plants of the PLRV-resistant conventionally bred clones and in resistant transgenic lines of cv. Pentland Squire, virus-infected cells were much fewer in number and largely restricted to internal phloem bundles. In resistant transgenic lines of cv. Désirée, this restricted distribution of PLRV antigen was only detected in petioles of young leaves. The results suggest that the transgenic and a host-mediated type of resistance that restricts virtis multiplication have underlying similarities.  相似文献   

18.
19.
A membrane filtration test has been developed for the detection of viable zoospores of Pythium species. Zoospore suspensions were filtered through 5 (m nitrocellulose membranes and the membranes incubated overnight in 0.07 m glucose, rifamycin (30 mg litre-1) and pimaricin (100 mg litre-1). Zoospore germlings were detected using a polyclonal antiserum, raised to mycelial surface washings of five Pythium spp., and visualised with Sigma fast red. The assay gave positive results for all Pythium spp. tested and also to zoospores of Phytophthora cryptogea. Of 10 fungal species isolated from commercial irrigation water, two were detected by the polyclonal antiserum in ELISA tests but only one produced detectable zoospore germlings. The latter isolate was later identified as a Pythium sp. Irrigation water samples collected from commercial UK nurseries yielded zoospores of both Pythium and Phytophthora spp. which, using the assay, were positively identified. Results indicated greater sensitivity than was seen with conventional plating methods. This is a test which could be adapted for on-site use in commercial nurseries.  相似文献   

20.
Vascular streak dieback (VSD), caused by Ceratobasidium theobromae (P.H.B. Talbot &; Keane), has a considerable impact on cacao (Theobroma cacao L.) production in Southeast Asia. Two biocontrol experiments were set up to explore alternatives to ineffective chemical control of VSD. The effects on VSD development of (i) Trichoderma harzianum, superficially applied to leaves of mature cacao plants, and (ii) an inoculation with fungal (Trichoderma asperellum) and bacterial (Bacillus sp., Pseudomonas sp. and Enterobacter spp.) elicitors of systemic resistance in young cacao plants, were tested. After three months, cacao leaves treated with T. harzianum exhibited a significantly (p?p?Bacillus sp. and Enterobacter spp. After transplanting to the field (8 months after inoculation), both number of VSD-affected leaves per plant and number of VSD-affected leaves per branch per plant were significantly (p?T. asperellum did not show potential as an elicitor of systemic resistance in our experiment. More research is needed on the lasting effect of biocontrol treatments, as well as on their economic and ecological sustainability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号