首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methyl-coenzyme M reductase (MCR) catalyzes the formation of methane from methyl-coenzyme M and coenzyme B in methanogenic archaea. The enzyme contains tightly bound the nickel porphinoid F430. The nickel enzyme has been shown to be active only when its prosthetic group is in the Ni(I) reduced state. In this state MCR exhibits the nickel-based EPR signal red1. We report here for the MCR from Methanothermobacter marburgensis that the EPR spectrum of the active enzyme changed upon addition or removal of coenzyme M, methyl coenzyme M and/or coenzyme B. In the presence of methyl-coenzyme M the red1 signal showed a more resolved 14N-superhyperfine splitting than in the presence of coenzyme M indicating a possible axial ligation of the substrate to the Ni(I). In the presence of methyl-coenzyme M and coenzyme B the red1 signal was the same as in the presence of methyl-coenzyme M alone. However, in the presence of coenzyme M and coenzyme B a highly rhombic EPR signal, MCR-red2, was induced, which was found to be light sensitive and appeared to be formed at the expense of the MCR-red1 signal. Upon addition of methyl-coenzyme M, the red2 signal disappeared and the red1 signal increased again. The red2 signal of MCR with 61Ni-labeled cofactor was significantly broadened indicating that the signal is nickel or nickel-ligand based.  相似文献   

2.
Methyl-coenzyme M reductase (MCR) catalyzes the formation of methane from methyl-coenzyme M and coenzyme B in methanogenic archaea. The enzyme has two structurally interlinked active sites embedded in an α2β2γ2 subunit structure. Each active site has the nickel porphyrinoid F430 as a prosthetic group. In the active state, F430 contains the transition metal in the Ni(I) oxidation state. The active enzyme exhibits an axial Ni(I)-based continuous wave (CW) electron paramagnetic resonance (EPR) signal, called red1a in the absence of substrates or red1c in the presence of coenzyme M. Addition of coenzyme B to the MCR-red1 state can partially and reversibly convert it into the MCR-red2 form, which shows a rhombic Ni(I)-based EPR signal (at X-band microwave frequencies of approximately 9.4 GHz). In this report we present evidence from high-field/high-frequency CW EPR spectroscopy (W-band, microwave frequency of approximately 94 GHz) that the red2 state consists of two substates that could not be resolved by EPR spectroscopy at X-band frequencies. At W-band it becomes apparent that upon addition of coenzyme B to MCR in the red1c state, two red2 EPR signals are induced, not one as was previously believed. The first signal is the well-characterized (ortho)rhombic EPR signal, thus far called red2, while the second previously unidentified signal is axial. We have named the two substates MCR-red2r and MCR-red2a after their rhombic and axial signals, respectively. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Methyl-coenzyme M reductase (MCR) catalyzes the methane-forming step in methanogenic archaea. It contains the nickel porphinoid F430, a prosthetic group that has been proposed to be directly involved in the catalytic cycle by the direct binding and subsequent reduction of the substrate methyl-coenzyme M. The active enzyme (MCRred1) can be generated in vivo and in vitro by reduction from MCRox1, which is an inactive form of the enzyme. Both the MCRred1 and MCRox1 forms have been proposed to contain F430 in the Ni(I) oxidation state on the basis of EPR and ENDOR data. In order to further address the oxidation state of the Ni center in F430, variable-temperature, variable-field magnetic circular dichroism (VTVH MCD), coupled with parallel absorption and EPR studies, have been used to compare the electronic and magnetic properties of MCRred1, MCRox1, and various EPR silent forms of MCR, with those of the isolated penta-methylated cofactor (F430M) in the +1, +2 and +3 oxidation states. The results confirm Ni(I) assignments for MCRred1 and MCRred2 forms of MCR and reveal charge transfer transitions involving the Ni d orbitals and the macrocycle orbitals that are unique to Ni(I) forms of F430. Ligand field transitions associated with S=1 Ni(II) centers are assigned in the near-IR MCD spectra of MCRox1-silent and MCR-silent, and the splitting in the lowest energy d–d transition is shown to correlate qualitatively with assessments of the zero-field splitting parameters determined by analysis of VTVH MCD saturation magnetization data. The MCD studies also support rationalization of MCRox1 as a tetragonally compressed Ni(III) center with an axial thiolate ligand or a coupled Ni(II)-thiyl radical species, with the reality probably lying between these two extremes. The reinterpretation of MCRox1 as a formal Ni(III) species rather than an Ni(I) species obviates the need to invoke a two-electron reduction of the F430 macrocyclic ligand on reductive activation of MCRox1 to yield MCRred1.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00775-004-0549-9Abbreviations F430 cofactor 430 - F430M penta-methylated form of cofactor 430 - Ni(I)F430M F430M with the nickel atom in the +1 oxidation state - Ni(II)F430M F430M with the nickel atom in the +2 oxidation state - Ni(III)F430M F430M with the nickel atom in the +3 oxidation state - MCR methyl-coenzyme M reductase - MCRox1 MCR exhibiting the MCR-ox1 EPR signal - MCRox1-silent EPR silent form of MCR obtained from the MCRox1 form - MCRred1 MCR exhibiting the EPR signals red1c and/or red1m - MCRred1c MCRred1 in the presence of coenzyme M - MCRred1m MCRred1 in the presence of methyl-coenzyme M - MCRred2 MCR exhibiting both the red1 and red2 EPR signals - MCRred1-silent EPR silent form of MCR obtained from the MCRred1 form - MCRsilent EPR silent form of MCR  相似文献   

4.
Methyl-coenzyme-M reductase (MCR) catalyzes the formation of methane from methyl-coenzyme M [2-(methylthio)ethanesulfonate] and 7-mercaptoheptanoylthreonine phosphate in methanogenic archaea. The enzyme contains the nickel porphinoid coenzyme F430 as a prosthetic group. In the active, reduced (red) state, the enzyme displays two characteristic EPR signals, MCR-red1 and MCR-red2, probably derived from Ni(I). In the presence of the substrate methyl-coenzyme M, the rhombic MCR-red2 signal is quantitatively converted to the axial MCR-red1 signal. We report here on the effects of inhibitory substrate analogues on the EPR spectrum of the enzyme. 3-Bromopropanesulfonate (BrPrSO3), which is the most potent inhibitor of MCR known to date (apparent Ki = 0.05 microM), converted the EPR signals MCR-red1 and MCR-red2 to a novel axial Ni(I) signal designated MCR-BrPrSO3. 3-Fluoropropanesulfonate (apparent Ki < 50 microM) and 3-iodopropanesulfonate (apparent Ki < 1 microM) induced a signal identical to that induced by BrPrSO3 without affecting the line shape, despite the fact that the fluorine, bromine and iodine isotopes employed have nuclear spins of I = 1/2, I = 3/2 and I = 5/2, respectively. This finding suggests that MCR-BrPrSO3 is not the result of a close halogen-Ni(I) interaction. 7-Bromoheptanoylthreonine phosphate (BrHpoThrP) (apparent Ki = 5 microM), which is an inhibitory substrate analogue of 7-mercaptoheptanoylthreonine phosphate, converted the signals MCR-red1 and MCR-red2 to a novel axial Ni(I) signal, MCR-BrHpoThrP, similar but not identical to MCR-BrPrSO3. The results indicate that inhibition of MCR by the halogenated substrate analogues investigated above is not via oxidation of Ni(I)F430. The different MCR EPR signals are assigned to different enzyme/substrate and enzyme/inhibitor complexes.  相似文献   

5.
Methyl-coenzyme M reductase (MCR) catalyses the formation of methane from methyl-coenzyme M (CH3-S-CoM) and coenzyme B (HS-CoB) in methanogenic archaea. The enzyme has an 222 subunit structure forming two structurally interlinked active sites each with a molecule F430 as a prosthetic group. The nickel porphinoid must be in the Ni(I) oxidation state for the enzyme to be active. The active enzyme exhibits an axial Ni(I)-based electron paramagnetic resonance (EPR) signal and a UV–vis spectrum with an absorption maximum at 385 nm. This state is called the MCR-red1 state. In the presence of coenzyme M (HS-CoM) and coenzyme B the MCR-red1 state is in part converted reversibly into the MCR-red2 state, which shows a rhombic Ni(I)-based EPR signal and a UV–vis spectrum with an absorption maximum at 420 nm. We report here for MCR from Methanothermobacter marburgensis that the MCR-red2 state is also induced by several coenzyme B analogues and that the degree of induction by coenzyme B is temperature-dependent. When the temperature was lowered below 20°C the percentage of MCR in the red2 state decreased and that in the red1 state increased. These changes with temperature were fully reversible. It was found that at most 50% of the enzyme was converted to the MCR-red2 state under all experimental conditions. These findings indicate that in the presence of both coenzyme M and coenzyme B only one of the two active sites of MCR can be in the red2 state (half-of-the-sites reactivity). On the basis of this interpretation a two-stroke engine mechanism for MCR is proposed.  相似文献   

6.
Previous M?ssbauer and electron nuclear double resonance (ENDOR) studies of oxidized hydrogenase I (bidirectional) from Clostridium pasteurianum W5 demonstrated that this enzyme contains two diamagnetic [4Fe-4S]2+ clusters and an iron-sulfur center of unknown structure and composition that is characterized by its novel M?ssbauer and ENDOR properties. In the present study we combine ENDOR and EPR measurements to show that the novel cluster contains 3-4 iron atoms. In addition, we have used EPR and ENDOR spectroscopies to investigate the effect of binding the competitive inhibitor carbon monoxide to oxidized hydrogenase I, using 13C-labeled CO and enzyme isotopically enriched in 57Fe. Treatment of oxidized enzyme with CO causes the g-tensor of the paramagnetic center to change from rhombic to axial symmetry. The observation of a 13C signal by ENDOR spectroscopy and analysis of the EPR broadening show that a single CO covalently binds to the paramagnetic center. The 13C hyperfine coupling constant (Ac approximately equal to 21 MHz) is within the range observed for inorganic iron-carbonyl clusters. The observation of 57Fe ENDOR signals from two types of iron site ([A1c] approximately 30-34 MHz; [A2c] approximately 6 MHz) and resolved 57Fe hyperfine interactions in the EPR spectrum from two nuclei characterized by [A1c] confirm that the iron-sulfur cluster remains intact upon CO coordination, but show that CO binding greatly changes the 57Fe hyperfine coupling constants.  相似文献   

7.
Methyl-coenzyme M reductase (MCR) catalyses the reduction of methyl-coenzyme M (CH3-S-CoM) with coenzyme B (HS-CoB) to methane and CoM-S-S-CoB. It contains the nickel porphyrinoid F430 as prosthetic group which has to be in the Ni(I) oxidation state for the enzyme to be active. The active enzyme exhibits an axial Ni(I)-derived EPR signal MCR-red1. We report here on experiments with methyl-coenzyme M analogues showing how they affect the activity and the MCR-red1 signal of MCR from Methanothermobacter marburgensis. Ethyl-coenzyme M was the only methyl-coenzyme M analogue tested that was used by MCR as a substrate. Ethyl-coenzyme M was reduced to ethane (apparent K M=20 mM; apparent V max=0.1 U/mg) with a catalytic efficiency of less than 1% of that of methyl-coenzyme M reduction to methane (apparent K M=5 mM; apparent V max=30 U/mg). Propyl-coenzyme M (apparent K i=2 mM) and allyl-coenzyme M (apparent K i=0.1 mM) were reversible inhibitors. 2-Bromoethanesulfonate ([I]0.5 V=2 µM), cyano-coenzyme M ([I]0.5 V=0.2 mM), 3-bromopropionate ([I]0.5 V=3 mM), seleno-coenzyme M ([I]0.5 V=6 mM) and trifluoromethyl-coenzyme M ([I]0.5 V=6 mM) irreversibly inhibited the enzyme. In their presence the MRC-red1 signal was quenched, indicating the oxidation of Ni(I) to Ni(II). The rate of oxidation increased over 10-fold in the presence of coenzyme B, indicating that the Ni(I) reactivity was increased in the presence of coenzyme B. Enzyme inactivated in the presence of coenzyme B showed an isotropic signal characteristic of a radical that is spin coupled with one hydrogen nucleus. The coupling was also observed in D2O. The signal was abolished upon exposure of the enzyme to O2. 3-Bromopropanesulfonate ([I]0.5 V=0.1 µM), 3-iodopropanesulfonate ([I]0.5 V=1 µM), and 4-bromobutyrate also inactivated MCR. In their presence the EPR signal of MCR-red1 was converted into a Ni-based EPR signal MCR-BPS that resembles in line shape the MCR-ox1 signal. The signal was quenched by O2. 2-Bromoethanesulfonate and 3-bromopropanesulfonate, which both rapidly reacted with Ni(I) of MRC-red1, did not react with the Ni of MCR-ox1 and MCR-BPS. The Ni-based EPR spectra of both inactive forms were not affected in the presence of high concentrations of these two potent inhibitors.  相似文献   

8.
Methyl-coenzyme M reductase (MCR) catalyzes the final step of methanogenesis in which coenzyme B and methyl-coenzyme M are converted to methane and the heterodisulfide, CoMS-SCoB. MCR also appears to initiate anaerobic methane oxidation (reverse methanogenesis). At the active site of MCR is coenzyme F430, a nickel tetrapyrrole. This paper describes the reaction of the active MCR(red1) state with the potent inhibitor, 3-bromopropanesulfonate (BPS; I50 = 50 nM) by UV-visible and EPR spectroscopy and by steady-state and rapid kinetics. BPS was shown to be an alternative substrate of MCR in an ionic reaction that is coenzyme B-independent and leads to debromination of BPS and formation of a distinct state ("MCR(PS)") with an EPR signal that was assigned to a Ni(III)-propylsulfonate species (Hinderberger, D., Piskorski, R. P., Goenrich, M., Thauer, R. K., Schweiger, A., Harmer, J., and Jaun, B. (2006) Angew. Chem. Int. Ed. Engl. 45, 3602-3607). A similar EPR signal was generated by reacting MCR(red1) with several halogenated sulfonate and carboxylate substrates. In rapid chemical quench experiments, the propylsulfonate ligand was identified by NMR spectroscopy and high performance liquid chromatography as propanesulfonic acid after protonolysis of the MCR(PS) complex. Propanesulfonate formation was also observed in steady-state reactions in the presence of Ti(III) citrate. Reaction of the alkylnickel intermediate with thiols regenerates the active MCR(red1) state and eliminates the propylsulfonate group, presumably as the thioether. MCR(PS) is catalytically competent in both the generation of propanesulfonate and reformation of MCR(red1). These results provide evidence for the intermediacy of an alkylnickel species in the final step in anaerobic methane oxidation and in the initial step of methanogenesis.  相似文献   

9.
10.
In this study we report on thus-far unobserved proton hyperfine couplings in the well-known EPR signals of [NiFe] hydrogenases. The preparation of the enzyme in several highly homogeneous states allowed us to carefully re-examine the Ni(u)*, Ni(r)*, Ni(a)-C* and Ni(a)-L* EPR signals which are present in most [NiFe] hydrogenases. At high resolution (modulation amplitude 0.57 G), clear indications for hyperfine interactions were observed in the g(z) line of the Ni(r)* EPR signal. The hyperfine pattern became more pronounced in 2H2O. Simulations of the spectra suggested the interaction of the Ni-based unpaired electron with two equivalent, non-exchangeable protons (A1,2=13.2 MHz) and one exchangeable proton (A3=6.6 MHz) in the Ni(r)* state. Interaction with an exchangeable proton could not be observed in the Ni(u)* EPR signal. The identity of the three protons is discussed and correlated to available ENDOR data. It is concluded that the NiFe centre in the Ni(r)* state contains a hydroxide ligand bound to the nickel, which is pointing towards the gas channel rather than to iron.  相似文献   

11.
Methyl-coenzyme M reductase (MCR) catalyzes the reduction of methyl-coenzyme M (CH(3)-S-CoM) to methane. The enzyme contains as a prosthetic group the nickel porphinoid F(430) which in the active enzyme is in the EPR-detectable Ni(I) oxidation state. Crystal structures of several inactive Ni(II) forms of the enzyme but not of the active Ni(I) form have been reported. To obtain structural information on the active enzyme-substrate complex we have now acquired X-ray absorption spectra of active MCR in the presence of either CH(3)-S-CoM or the substrate analog coenzyme M (HS-CoM). For both MCR complexes the results are indicative of the presence of a five-coordinate Ni(I), the five ligands assigned as four nitrogen ligands from F(430) and one oxygen ligand. Analysis of the spectra did not require the presence of a sulfur ligand indicating that CH(3)-S-CoM and HS-CoM were not coordinated via their sulfur atom to nickel in detectable amounts. As a control, X-ray absorption spectra were evaluated of three enzymatically inactive MCR forms, MCR-silent, MCR-ox1-silent and MCR-ox1, in which the nickel is known to be six-coordinate. Comparison of the edge position of the X-ray absorption spectra revealed that the Ni(I) in the active enzyme is more reduced than the Ni in the two EPR-silent Ni(II) states. Surprisingly, the edge position of the EPR-active MCR-ox1 state was found to be the same as that of the two silent states indicating similar electron density on the nickel.  相似文献   

12.
Methyl-coenzyme M reductase (MCR) is a nickel enzyme catalyzing the formation of methane from methyl-coenzyme M and coenzyme B in all methanogenic archaea. The active purified enzyme exhibits the axial EPR signal MCR-red1 and in the presence of coenzyme M and coenzyme B the rhombic signal MCR-red2, both derived from Ni(I). Two other EPR-detectable states of the enzyme have been observed in vivo and in vitro designated MCR-ox1 and MCR-ox2 which have quite different nickel EPR signals and which are inactive. Until now the MCR-ox1 and MCR-ox2 states could only be induced in vivo. We report here that in vitro the MCR-red2 state is converted into the MCR-ox1 state by the addition of polysulfide and into a light-sensitive MCR-ox2 state by the addition of sulfite. In the presence of O(2) the MCR-red2 state was converted into a novel third state designated MCR-ox3 and exhibiting two EPR signals similar but not identical to MCR-ox1 and MCR-ox2. The formation of the MCR-ox states was dependent on the presence of coenzyme B. Investigations with the coenzyme B analogues S-methyl-coenzyme B and desulfa-methyl-coenzyme B indicate that for the induction of the MCR-ox states the thiol group of coenzyme B is probably not of importance. The results were obtained with purified active methyl-coenzyme M reductase isoenzyme I from Methanothermobacter marburgensis. They are discussed with respect to the nickel oxidation states in MCR-ox1, MCR-ox2 and MCR-ox3 and to a possible presence of a second redox active group in the active site. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00775-001-0325-z.  相似文献   

13.
Dey M  Kunz RC  Lyons DM  Ragsdale SW 《Biochemistry》2007,46(42):11969-11978
Methyl-coenzyme M reductase (MCR) from methanogenic archaea catalyzes the final step in the biological synthesis of methane. Using coenzyme B (CoBSH) as the two-electron donor, MCR reduces methyl-coenzyme M (methyl-SCoM) to methane and the mixed disulfide, CoB-S-S-CoM. MCR contains coenzyme F430, an essential redox-active nickel tetrahydrocorphin, at its active site. The active form of MCR (MCRred1) contains Ni(I)-F430. When 3-bromopropane sulfonate (BPS) is incubated with MCRred1, an alkyl-Ni(III) species is formed that elicits the MCRPS EPR signal. Here we used EPR and UV-visible spectroscopy and transient kinetics to study the reaction between MCR from Methanothermobacter marburgensis and a series of brominated carboxylic acids, with carbon chain lengths of 4-16. All of these compounds give rise to an alkyl-Ni intermediate with an EPR signal similar to that of the MCRPS species. Reaction of the alkyl-Ni(III) adduct, formed from brominated acids with eight or fewer total carbons, with HSCoM as nucleophile at pH 10.0 results in the formation of a thioether coupled to regeneration of the active MCRred1 state. When reacted with 4-bromobutyrate, MCRred1 forms the alkyl-Ni(III) MCRXA state and then, surprisingly, undergoes "self-reactivation" to regenerate the Ni(I) MCRred1 state and a bromocarboxy ester. The results demonstrate an unexpected reactivity and flexibility of the MCR active site in accommodating a broad range of substrates, which act as molecular rulers for the substrate channel in MCR.  相似文献   

14.
15.
Oxidized bovine cytochrome c oxidase reacts with hydrogen peroxide to generate two electron paramagnetic resonance (EPR) free radical signals (Fabian, M., and Palmer, G. (1995) Biochemistry 34, 13802-13810). These radicals are associated with the binuclear center and give rise to two overlapped EPR signals, one signal being narrower in line width (DeltaHptp = 12 G) than the other (DeltaHptp = 45 G). We have used electron nuclear double resonance (ENDOR) spectrometry to identify the two different chemical species giving rise to these two EPR signals. Comparison of the ENDOR spectrum associated with the narrow signal with that of compound I of horseradish peroxidase (formed by reaction of that enzyme with hydrogen peroxide) demonstrates that the two species are virtually identical. The chemical species giving rise to the narrow signal is therefore identified as an exchange-coupled porphyrin cation radical similar to that formed in horseradish peroxidase compound I. Comparison of the ENDOR spectrum of compound ES (formed by the reaction of hydrogen peroxide with cytochrome c peroxidase) with that of the broad signal indicates that the chemical species giving rise to the broad EPR signal in cytochrome c oxidase is probably an exchange coupled tryptophan cation radical. This is substantiated using H(2)O/D(2)O solvent exchange experiments where the ENDOR difference spectrum of the broad EPR signal of cytochrome c oxidase shows a feature consistent with hyperfine coupling to the exchangeable N(1) proton of a tryptophan cation radical.  相似文献   

16.
Q-Band ENDOR studies on carbon monoxide dehydrogenase (CODH) from the acetogenic bacterium Clostridium thermoaceticum provided unambiguous evidence that the reaction of CO with CODH produces a novel metal center that includes at least one nickel, at least three iron sites, and the carbon of one CO. The 57Fe hyperfine couplings determined by ENDOR are similar to the values used in simulation of the M?ssbauer spectra [Lindahl et al. (1989) J. Biol. Chem. 265, 3880-3888]. EPR simulation using these AFe values is equally good for a 4Fe or a 3Fe center. The 13C ENDOR data are consistent with the binding of a carbon atom to either the Ni or the Fe component of the spin-coupled cluster. The 13C hyperfine couplings are similar to those determined earlier for the C0-bound form of the H cluster of the Clostridium pasteurianum hydrogenase, proposed to be the active site of hydrogen activation [Telser et al. (1987) J. Biol. Chem. 262, 6589-5694]. The 61 Ni ENDOR data are the first nickel ENDOR recorded for an enzyme. The EPR simulation using the ENDOR-derived hyperfine values for 61Ni is consistent with a single nickel site in the Ni-Fe-C complex. On the basis of our results and the M?ssbauer data [Lindahl et al. (1989) J. Biol. Chem. 265, 3880-3888], we propose the stoichiometry of the components of the Ni-Fe-C complex to be Ni1Fe3-4S greater than or equal to 4C1, with four acid-labile sulfides.  相似文献   

17.
Dey M  Li X  Kunz RC  Ragsdale SW 《Biochemistry》2010,49(51):10902-10911
Methyl-coenzyme M reductase (MCR) from methanogenic archaea catalyzes the terminal step in methanogenesis using coenzyme B (CoBSH) as the two-electron donor to reduce methyl-coenzyme M (methyl-SCoM) to form methane and the heterodisulfide, CoBS-SCoM. The active site of MCR contains an essential redox-active nickel tetrapyrrole cofactor, coenzyme F(430), which is active in the Ni(I) state (MCR(red1)). Several catalytic mechanisms have been proposed for methane synthesis that mainly differ in whether an organometallic methyl-Ni(III) or a methyl radical is the first catalytic intermediate. A mechanism was recently proposed in which methyl-Ni(III) undergoes homolysis to generate a methyl radical (Li, X., Telser, J., Kunz, R. C., Hoffman, B. M., Gerfen, G., and Ragsdale, S. W. (2010) Biochemistry 49, 6866-6876). Discrimination among these mechanisms requires identification of the proposed intermediates, none of which have been observed with native substrates. Apparently, intermediates form and decay too rapidly to accumulate to detectible amounts during the reaction between methyl-SCoM and CoBSH. Here, we describe the reaction of methyl-SCoM with a substrate analogue (CoB(6)SH) in which the seven-carbon heptanoyl moiety of CoBSH has been replaced with a hexanoyl group. When MCR(red1) is reacted with methyl-SCoM and CoB(6)SH, methanogenesis occurs 1000-fold more slowly than with CoBSH. By transient kinetic methods, we observe decay of the active Ni(I) state coupled to formation and subsequent decay of alkyl-Ni(III) and organic radical intermediates at catalytically competent rates. The kinetic data also revealed substrate-triggered conformational changes in active Ni(I)-MCR(red1). Electron paramagnetic resonance (EPR) studies coupled with isotope labeling experiments demonstrate that the radical intermediate is not tyrosine-based. These observations provide support for a mechanism for MCR that involves methyl-Ni(III) and an organic radical as catalytic intermediates. Thus, the present study provides important mechanistic insights into the mechanism of this key enzyme that is central to biological methane formation.  相似文献   

18.
We have employed electron-nuclear double resonance (ENDOR) spectroscopy to study the 57Fe hyperfine interactions in the bridged-siroheme [4Fe-4S] cluster that forms the catalytically active center of the two-electron-reduced hemoprotein subunit of Escherichia coli NADPH-sulfite reductase (SiR2-). Previous electron paramagnetic resonance (EPR) and M?ssbauer studies have shown that this enzyme oxidation state can exist in three distinct spectroscopic forms: (1) a "g = 2.29" EPR species that predominates in unligated SiR2-, in which the siroheme Fe2+ is believed to be in an S = 1 state; (2) a "g = 4.88" type of EPR species that predominates in SiR2- in the presence of small amounts of guanidinium sulfate, in which the siroheme Fe2+ is in an S = 2 state; and (3) a classical "g = 1.94" type of EPR species that is seen in SiR2- ligated with CO, in which the siroheme Fe2+ is in an S = 0 state. In all three species, the cluster is in the [4Fe-4S]1+ state, and two distinct types of Fe site are seen in M?ssbauer spectroscopy. ENDOR studies confirm the M?ssbauer assignments for the cluster 57Fe in the g = 1.94 state, with A values of 37, 37, and 32 MHz for site I and ca. 19 MHz for site II. The hyperfine interactions are not too different on the g = 2.29 state, with site I Fe showing more anisotropic A values of 32, 24, and 20 MHz (site II was not detected).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The bidirectional hydrogenase from Clostridium pasteurianum W5 is an iron-sulfur protein containing approximately 12 Fe atoms and 12 labile sulfides. We have studied oxidized samples of the enzyme with M?ssbauer and electron nuclear double resonance (ENDOR) spectroscopy to elucidate the nature of the center that gives rise to the EPR signal with principal g-values at 2.10, 2.04, and 2.01. The g = 2.10 center exhibits two well-resolved 57Fe ENDOR resonances. One is isotropic with A1 = 9.5 MHz; the other is nearly isotropic with A2 = 17 MHz. These magnetic hyperfine coupling constants are substantially (approximately 50%) smaller than those observed for [2Fe-2S], [3Fe-4S], and [4Fe-4S] clusters. The M?ssbauer and ENDOR data, taken together, suggest that the g = 2.10 center contains at least two but not more than four iron atoms. Comparison of our data with recent results reported for Escherichia coli sulfite reductase and the ferricyanide-treated [4Fe-4S] cluster from Azotobacter vinelandii ferredoxin I suggests that the g = 2.10 center may possibly be formed, by oxidation, from a structure with a [4Fe-4S] core. The M?ssbauer spectra give evidence that at least 8 of the 12 Fe atoms of oxidized hydrogenase are organized in two ferredoxin-type [4Fe-4S] clusters, supporting conclusions derived previously from EPR studies of the reduced enzyme.  相似文献   

20.
Methyl-coenzyme M reductase (MCR) catalyzes the reversible reduction of methyl-coenzyme M (CH3-S-CoM) and coenzyme B (HS-CoB) to methane and heterodisulfide CoM-S-S-CoB (HDS). MCR contains the hydroporphinoid nickel complex coenzyme F430 in its active site, and the Ni center has to be in its Ni(I) valence state for the enzyme to be active. Until now, no in vitro method that fully converted the inactive MCRsilent-Ni(II) form to the active MCRred1-Ni(I) form has been described. With the potential use of recombinant MCR in the production of biofuels and the need to better understand this enzyme and its activation process, we studied its activation under nonturnover conditions and achieved full MCR activation in the presence of dithiothreitol and protein components A2, an ATP carrier, and A3a. It was found that the presence of HDS promotes the inactivation of MCRred1, which makes it essential that the activation process is isolated from the methane formation assay, which tends to result in minimal activation rates. Component A3a is a multienzyme complex that includes the mcrC gene product, an Fe-protein homolog, an iron-sulfur flavoprotein, and protein components involved in electron bifurcation. A hypothetical model for the cellular activation process of MCR is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号