首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
The packaging of DNA into nucleosomes and the organisation into higher order structures of chromatin limits the access of sequence specific DNA binding factors to DNA. In cells, DNA methylation is preferentially occuring in the linker region of nucleosomes, suggesting a structural impact of chromatin on DNA methylation. These observations raise the question whether DNA methyltransferases are capable to recognize the nucleosomal substrates and to modify the packaged DNA. Here, we performed a detailed analysis of nucleosome binding and nucleosomal DNA methylation by the maintenance DNA methyltransferase Dnmt1. Our binding studies show that Dnmt1 has a DNA length sensing activity, binding cooperatively to DNA, and requiring a minimal DNA length of 20 bp. Dnmt1 needs linker DNA to bind to nucleosomes and most efficiently recognizes nucleosomes with symmetric DNA linkers. Footprinting experiments reveal that Dnmt1 binds to both DNA linkers exiting the nucleosome core. The binding pattern correlates with the efficient methylation of DNA linkers. However, the enzyme lacks the ability to methylate nucleosomal CpG sites on mononucleosomes and nucleosomal arrays, unless chromatin remodeling enzymes create a dynamic chromatin state. In addition, our results show that Dnmt1 functionally interacts with specific chromatin remodeling enzymes to enable complete methylation of hemi-methylated DNA in chromatin.  相似文献   

9.
10.
11.
The ATPase ISWI can be considered the catalytic core of several multiprotein nucleosome remodeling machines. Alone or in the context of nucleosome remodeling factor, the chromatin accessibility complex (CHRAC), or ACF, ISWI catalyzes a number of ATP-dependent transitions of chromatin structure that are currently best explained by its ability to induce nucleosome sliding. In addition, ISWI can function as a nucleosome spacing factor during chromatin assembly, where it will trigger the ordering of newly assembled nucleosomes into regular arrays. Both nucleosome remodeling and nucleosome spacing reactions are mechanistically unexplained. As a step toward defining the interaction of ISWI with its substrate during nucleosome remodeling and chromatin assembly we generated a set of nucleosomes lacking individual histone N termini from recombinant histones. We found the conserved N termini (the N-terminal tails) of histone H4 essential to stimulate ISWI ATPase activity, in contrast to other histone tails. Remarkably, the H4 N terminus, but none of the other tails, was critical for CHRAC-induced nucleosome sliding and for the generation of regularity in nucleosomal arrays by ISWI. Direct nucleosome binding studies did not reflect a dependence on the H4 tail for ISWI-nucleosome interactions. We conclude that the H4 tail is critically required for nucleosome remodeling and spacing at a step subsequent to interaction with the substrate.  相似文献   

12.
13.
14.
15.
The mechanism by which gene regulatory proteins gain access to their DNA target sites is not known. In vitro, binding is inherently cooperative between arbitrary DNA binding proteins whose target sites are located within the same nucleosome. We refer to such competition-based cooperativity as collaborative competition. Here we show that arbitrarily chosen foreign DNA binding proteins, LexA and Tet repressor, cooperate with an adjacently binding endogenous activator protein, Gcn4, to coactivate expression of chromosomal reporter genes in Saccharomyces cerevisiae. Coactivation requires that the cooperating target sites be within a nucleosome-length distance; it leads to increased occupancy by Gcn4 at its binding site; and it requires both Gcn5 and Swi/Snf which, at an endogenous Gcn4-dependent promoter, act subsequent to Gcn4 binding. These results imply that collaborative competition contributes to gene regulation in vivo. They further imply that, even in the presence of the cell's full wild-type complement of chromatin remodeling factors, competition of regulatory proteins with histone octamer for access to regulatory target sites remains a quantitative determinant of gene expression levels. We speculate that initial target site recognition and binding may occur via spontaneous nucleosomal site exposure, with remodeling factor action required downstream to lock in higher levels of regulatory protein occupancy.  相似文献   

16.
17.
Regulation of gene expression requires dynamic changes in chromatin, but the nature of these changes is not well understood. Here, we show that progesterone treatment of cultured cells leads to recruitment of progesterone receptor (PR) and SWI/SNF-related complexes to Mouse Mammary Tumor Virus (MMTV) promoter, accompanied by displacement of histones H2A and H2B from the nucleosome containing the receptor binding sites, but not from adjacent nucleosomes. PR recruits SWI/SNF to MMTV nucleosomes in vitro and facilitates synergistic binding of receptors and nuclear factor 1 to the promoter. In nucleosomes assembled on MMTV or mouse rDNA promoter sequences, SWI/SNF catalyzes ATP-dependent sliding of the histone octamer followed only on the MMTV promoter by displacement of histones H2A and H2B. In MMTV nucleosome arrays, SWI/SNF displaces H2A and H2B from nucleosome B and not from the adjacent nucleosome. Thus, the outcome of nucleosome remodeling by SWI/SNF depends on DNA sequence.  相似文献   

18.
A major challenge in chromatin biology is to understand the mechanisms by which chromatin is remodeled into active or inactive states as required during development and cell differentiation. One complex implicated in these processes is the nucleosome remodeling and histone deacetylase (NuRD) complex, which contains both histone deacetylase and nucleosome remodeling activities and has been implicated in the silencing of subsets of genes involved in various stages of cellular development. Chromodomain-helicase-DNA-binding protein 4 (CHD4) is a core component of the NuRD complex and contains a nucleosome remodeling ATPase domain along with two chromodomains and two plant homeodomain (PHD) fingers. We have previously demonstrated that the second PHD finger of CHD4 binds peptides corresponding to the N terminus of histone H3 methylated at Lys(9). Here, we determine the solution structure of PHD2 in complex with H3K9me3, revealing the molecular basis of histone recognition, including a cation-π recognition mechanism for methylated Lys(9). Additionally, we demonstrate that the first PHD finger also exhibits binding to the N terminus of H3, and we establish the histone-binding surface of this domain. This is the first instance where histone binding ability has been demonstrated for two separate PHD modules within the one protein. These findings suggest that CHD4 could bind to two H3 N-terminal tails on the same nucleosome or on two separate nucleosomes simultaneously, presenting exciting implications for the mechanism by which CHD4 and the NuRD complex could direct chromatin remodeling.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号