首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pathways to motor neuron degeneration in transgenic mouse models   总被引:5,自引:0,他引:5  
Robertson J  Kriz J  Nguyen MD  Julien JP 《Biochimie》2002,84(11):1151-1160
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurological disorder characterized by the selective loss of motor neurons. A pathological hallmark of both sporadic and familial ALS is the presence of abnormal accumulations of neurofilament and peripherin proteins in motor neurons. In the past decade, transgenic mouse approaches have been used to address the role of such cytoskeletal abnormalities in motor neuron disease and also to unravel the pathogenesis caused by mutations in the gene coding for superoxide dismutase 1 (SOD1) that account for ~20% of familial ALS cases. In mouse models, disparate effects could result from different types of intermediate filament (IF) aggregates. Perikaryal IF accumulations induced by the overexpression of any of the three wild-type neurofilament proteins were quite well tolerated by motor neurons. Indeed, perikaryal swellings provoked by NF-H overexpression can even confer protection against toxicity of mutant SOD1. Other types of IF aggregates seem neurotoxic, such as those found in transgenic mice overexpressing either peripherin or an assembly-disrupting NF-L mutant. Moreover, understanding the toxicity of SOD1 mutations has been surprisingly difficult. The analysis of transgenic mice expressing mutant SOD1 has yielded complex results, suggesting that multiple pathways may contribute to disease that include the involvement of non-neuronal cells.  相似文献   

2.
Multiple clinical and experimental evidences suggest that amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are members of a disease continuum. Pathological inclusions of fused in sarcoma (FUS) protein have been observed in subsets of patients with these diseases but their anatomical distribution is different for two diseases. These structures are present in motor neurons in ALS cases but in cortical neurons in FTLD cases. Expression of a C‐terminally truncated form of human FUS causes an early onset and progressive motor neuron pathology in transgenic mice but only when these neurons express a certain level of this protein. Severe motor dysfunction and early lethality of mice with expression above this level prevent their use for studies of FTLD‐related pathology caused by expression of this form of FUS. In the present study, we used another line of mice expressing the same protein but not developing any signs of motor system dysfunction due to substantially lower level of transgene expression in motor neurons. In a set of tests 5‐month old mice displayed certain behavioural abnormalities, including increased impulsivity, decreased anxiety and compromised social interaction, which recapitulate behaviour characteristics typically seen in FTLD patients.  相似文献   

3.
Re-expression of the death-signalling p75 neurotrophin receptor (p75NTR) is associated with injury and neurodegeneration in the adult nervous system. The induction of p75NTR expression in mature degenerating spinal motor neurons of humans and transgenic mice with amyotrophic lateral sclerosis (ALS) suggests a role of p75NTR in the progression of motor neuron disease (MND). In this study, we designed, synthesized and evaluated novel antisense peptide nucleic acid (PNA) constructs targeting p75NTR as a potential gene knockdown therapeutic strategy for ALS. An 11-mer antisense PNA directed at the initiation codon, but not downstream gene sequences, dose-dependently inhibited p75NTR expression and death-signalling by nerve growth factor (NGF) in Schwann cell cultures. Antisense phosphorothioate oligonucleotide (PS-ODN) sequences used for comparison failed to confer such inhibitory activity. Systemic intraperitoneal administration of this antisense PNA to mutant superoxide dismutase 1 (SOD1G93A) transgenic mice significantly delayed locomotor impairment and mortality compared with mice injected with nonsense or scrambled PNA sequences. Reductions in p75NTR expression and subsequent caspase-3 activation in spinal cords were consistent with increased survival in antisense PNA-treated mice. The uptake of fluorescent-labelled antisense PNA in the nervous system of transgenic mice was also confirmed. This study suggests that p75NTR may be a promising antisense target in the treatment of ALS.  相似文献   

4.
Ciliary neurotrophic factor (CNTF) promotes the survival of motor neurons, in vitro and in vivo. Moreover, CNTF can block the degeneration of injured or diseased motor neurons in young rodents. Motor neuron degeneration (mnd) mutant mice display adult onset symptoms reflecting progressive motor debilitation and provide a model in which to test the hypothesis that CNTF can prevent the loss of these motor functions. We generated mnd mice that harbor a genomically integrated transgene, resulting in overexpression of the encoded CNTF protein in these mice. In contrast to the beneficial effects of CNTF in preventing motor neuron degeneration in other experimental paradigms, we report that overproduction of CNTF increased the rate of onset of motor disease symptoms in mnd mice and the presence of the transgene correlated with low adult body weight in mnd and wild-type genetic backgrounds. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
Mitochondrial dysfunction and its role in motor neuron degeneration in ALS   总被引:6,自引:0,他引:6  
Manfredi G  Xu Z 《Mitochondrion》2005,5(2):77-87
Mitochondria play a pivotal role in many metabolic and apoptotic pathways that regulate the life and death of cells. Accumulating evidence suggests that mitochondrial dysfunction is involved in the pathogenesis of amyotrophic lateral sclerosis (ALS). Mitochondrial dysfunction may cause motor neuron death by predisposing them to calcium-mediated excitotoxicity, by increasing generation of reactive oxygen species, and by initiating the intrinsic apoptotic pathway. Morphological and biochemical mitochondrial abnormalities have been described in sporadic human ALS cases, but the implications of these findings in terminally ill individuals or in post-mortem tissues are difficult to decipher. However, remarkable mitochondrial abnormalities have also been identified in transgenic mouse models of familial ALS expressing mutant Cu, Zn superoxide dismutase (SOD1). Detailed studies in these mouse models indicate that mitochondrial abnormalities begin prior to the clinical and pathological onset of the disease, suggesting that mitochondrial dysfunction may be causally involved in the pathogenesis of ALS. Although the mechanisms whereby mutant SOD1 damages mitochondria remain to be fully understood, the finding that a portion of mutant SOD1 is localized in mitochondria, where it forms aberrant aggregates and protein interactions, has opened a number of avenues of investigation. The future challenges are to devise models to better understand the effects of mutant SOD1 in mitochondria and the relative contribution of mitochondrial dysfunction to the pathogenesis of ALS, as well as to identify therapeutic approaches that target mitochondrial dysfunction and its consequences.  相似文献   

6.
7.
The induction of heat shock proteins (Hsps) serves not only as a marker for cellular stress but also as a promoter of cell survival, which is especially important in the nervous system. We examined the regulation of the constitutive and stress-induced 70-kD Hsps (Hsc70 and Hsp70, respectively) after sciatic nerve (SN) axotomy in the neonatal mouse. Additionally, the prevention of axotomy-induced SN cell death by administration of several preparations of exogenous Hsc70 and Hsp70 was tested. Immunohistochemistry and Western blot analyses showed that endogenous levels of Hsc70 and Hsp70 did not increase significantly in lumbar motor neurons or dorsal root ganglion sensory neurons up to 24 hours after axotomy. When a variety of Hsc70 and Hsp70 preparations at doses ranging from 5 to 75 microg were applied to the SN stump after axotomy, the survival of both motor and sensory neurons was significantly improved. Thus, it appears that motor and sensory neurons in the neonatal mouse do not initiate a typical Hsp70 response after traumatic injury and that administration of exogenous Hsc/Hsp70 can remedy that deficit and reduce the subsequent loss of neurons by apoptosis.  相似文献   

8.
9.
The mechanism(s) by which localized vascular permeability and angiogenesis occur at the sites of implantation is not clearly understood. Vascular endothelial growth factor (VEGF) is a key regulator of vasculogenesis during embryogenesis and angiogenesis in adult tissues. VEGF is also a vascular permeability factor. VEGF acts via two tyrosine kinase family receptors: VEGFR1 (Flt-1) and VEGFR2 (KDR/Flk-1). Recent evidence suggests that neuropilin-1 (NRP1), a receptor involved in neuronal cell guidance, is expressed in endothelial cells, binds to VEGF(165) and enhances the binding of VEGF(165) to VEGFR2. We examined the spatiotemporal expression of vegf isoforms, nrp1 and vegfr2 as well as their interactions in the periimplantation mouse uterus. We observed that vegf(164) is the predominant isoform in the mouse uterus. vegf(164) mRNA accumulation primarily occurred in epithelial cells on days 1 and 2 of pregnancy. On days 3 and 4, the subepithelial stroma in addition to epithelial cells exhibited accumulation of this mRNA. After the initial attachment reaction on day 5, luminal epithelial and stromal cells immediately surrounding the blastocyst exhibited distinct accumulation of vegf(164) mRNA. On days 6-8, the accumulation of this mRNA occurred in both mesometrial and antimesometrial decidual cells. These results suggest that VEGF(164) is available in mediating vascular changes and angiogenesis in the uterus during implantation and decidualization. This is consistent with coordinate expression of vegfr2, and nrp1, a VEGF(164)-specific receptor, in uterine endothelial cells. Their expression was low during the first 2 days of pregnancy followed by increases thereafter. With the initiation and progression of implantation (days 5-8), these genes were distinctly expressed in endothelial cells of the decidualizing stroma. Expression was more intense on days 6-8 at the mesometrial pole, the presumptive site of heightened angiogenesis and placentation. However, the expression was absent in the avascular primary decidual zone immediately surrounding the implanting embryo. Crosslinking experiments showed that (125)I-VEGF(165) binds to both NRP1 and VEGFR2 present in decidual endothelial cells. These results suggest that VEGF(164), NRP1 and VEGFR2 play a role in VEGF-induced vascular permeability and angiogenesis in the uterus required for implantation. genesis 26:213-224, 2000.  相似文献   

10.
In view of the inconclusive data concerning the role of androgen-binding protein (ABP) in male reproductive physiology, we thought it would be pertinent to make several transgenic mouse lines overexpressing the rat ABP gene to unravel its role in Sertoli cell and epididymal homeostasis. Heterozygote transgenic mouse lines carrying the 5.5 kb ABP rat genomic DNA were produced by pronuclear microinjection. Northern blot analysis showed overexpression of rat ABP (rABP) mRNA in the testis of transgenic mice compared to rat testis control. rABP was appropriately expressed in Sertoli cells as demonstrated by in situ hybridization analysis. Sertoli cell number is increased in the seminiferous tubules of mice overexpressing rABP compared to non-transgenic littermates and scattered Sertoli cells present vacuolated-like cytoplasms, PAS and osmium negative. Compared to the wild type, the transgenic mice exhibited reduced fertility and focal damage in seminiferous epithelium characterized by morphological features compatible with programmed cell death.  相似文献   

11.
Sustained inflammatory reactions are common pathological events associated with neuron loss in neurodegenerative diseases. Reported evidence suggests that Toll-like receptor 4 (TLR4) is a key player of neuroinflammation in several neurodegenerative diseases. However, the mechanisms by which TLR4 mediates neurotoxic signals remain poorly understood. We investigated the role of TLR4 in in vitro and in vivo settings of motor neuron degeneration. Using primary cultures from mouse spinal cords, we characterized both the proinflammatory and neurotoxic effects of TLR4 activation with lipopolysaccharide (activation of microglial cells, release of proinflammatory cytokines and motor neuron death) and the protective effects of a cyanobacteria-derived TLR4 antagonist (VB3323). With the use of TLR4-deficient cells, a critical role of the microglial component with functionally active TLR4 emerged in this setting. The in vivo experiments were carried out in a mouse model of spontaneous motor neuron degeneration, the wobbler mouse, where we preliminarily confirmed a protective effect of TLR4 antagonism. Compared with vehicle- and riluzole-treated mice, those chronically treated with VB3323 showed a decrease in microglial activation and morphological alterations of spinal cord neurons and a better performance in the paw abnormality and grip-strength tests. Taken together, our data add new understanding of the role of TLR4 in mediating neurotoxicity in the spinal cord and suggest that TLR4 antagonists could be considered in future studies as candidate protective agents for motor neurons in degenerative diseases.  相似文献   

12.
Androgen, acting via the androgen receptor (AR), is central to male development, differentiation and hormone-dependent diseases such as prostate cancer. AR is actively involved in the initiation of prostate cancer, the transition to androgen independence, and many mechanisms of resistance to therapy. To examine genetic variation of AR in cancer, we created mice by germ-line gene targeting in which human AR sequence replaces that of the mouse. Since shorter length of a polymorphic N-terminal glutamine (Q) tract has been linked to prostate cancer risk, we introduced alleles with 12, 21 or 48 Qs to test this association. The three “humanized” AR mouse strains (h/mAR) are normal physiologically, as well as by cellular and molecular criteria, although slight differences are detected in AR target gene expression, correlating inversely with Q tract length. However, distinct allele-dependent differences in tumorigenesis are evident when these mice are crossed to a transgenic prostate cancer model. Remarkably, Q tract variation also differentially impacts disease progression following androgen depletion. This finding emphasizes the importance of AR function in androgen-independent as well as androgen-dependent disease. These mice provide a novel genetic paradigm in which to dissect opposing functions of AR in tumor suppression versus oncogenesis.  相似文献   

13.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease resulting from motor neuron loss in the spinal cord and brain stem. In the present study, we found that systemic administration of recombinant vascular endothelial growth factor (VEGF) significantly diminished astrogliosis and increased the number of neuromuscular junctions in a Cu/Zn superoxide dismutase (SOD1) transgenic mouse model of ALS. Our results thus demonstrate a novel regulatory role of VEGF on astrocytes and are suggestive of protective effects of VEGF both in the peripheral and central nervous system in the SOD1 transgenic mouse model. These findings warrant further evaluation of the mechanism(s) of regulatory effects of VEGF on neuronal and non-neuronal cells, and the relation of these events to motor neuron degeneration and the onset and progression of ALS.  相似文献   

14.

Background

Accumulating evidence indicates that RNA oxidation is involved in a wide variety of neurological diseases and may be associated with neuronal deterioration during the process of neurodegeneration. However, previous studies were done in postmortem tissues or cultured neurons. Here, we used transgenic mice to demonstrate the role of RNA oxidation in the process of neurodegeneration.

Methodology/Principal Findings

We demonstrated that messenger RNA (mRNA) oxidation is a common feature in amyotrophic lateral sclerosis (ALS) patients as well as in many different transgenic mice expressing familial ALS-linked mutant copper-zinc superoxide dismutase (SOD1). In mutant SOD1 mice, increased mRNA oxidation primarily occurs in the motor neurons and oligodendrocytes of the spinal cord at an early, pre-symptomatic stage. Identification of oxidized mRNA species revealed that some species are more vulnerable to oxidative damage, and importantly, many oxidized mRNA species have been implicated in the pathogenesis of ALS. Oxidative modification of mRNA causes reduced protein expression. Reduced mRNA oxidation by vitamin E restores protein expression and partially protects motor neurons.

Conclusion/Significance

These findings suggest that mRNA oxidation is an early event associated with motor neuron deterioration in ALS, and may be also a common early event preceding neuron degeneration in other neurological diseases.  相似文献   

15.
16.
Objective: Duchenne muscular dystrophy (DMD) is a devastating muscle disease caused by a mutation in DMD encoding dystrophin. Oxidative stress accounts for dystrophic muscle pathologies in DMD. We examined the effects of molecular hydrogen in mdx mice, a model animal for DMD.

Methods: The pregnant mother started to take supersaturated hydrogen water (>5?ppm) ad libitum from E15.5 up to weaning of the offspring. The mdx mice took supersaturated hydrogen water from weaning until age 10 or 24 weeks when they were sacrificed.

Results: Hydrogen water prevented abnormal body mass gain that is commonly observed in mdx mice. Hydrogen improved the spontaneous running distance that was estimated by a counter-equipped running-wheel, and extended the duration on the rota-rod. Plasma creatine kinase activities were decreased by hydrogen at ages 10 and 24 weeks. Hydrogen also decreased the number of central nuclei of muscle fibers at ages 10 and 24 weeks, and immunostaining for nitrotyrosine in gastrocnemius muscle at age 24 weeks. Additionally, hydrogen tended to increase protein expressions of antioxidant glutathione peroxidase 1, as well as anti-apoptotic Bcl-2, in skeletal muscle at age 10 weeks.

Discussion: Although molecular mechanisms of the diverse effects of hydrogen remain to be elucidated, hydrogen potentially improves muscular dystrophy in DMD patients.  相似文献   

17.
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by a progressive loss of lower motor neurons in the spinal cord. The incretin hormone, glucagon-like peptide-1 (GLP-1), facilitates insulin signaling, and the long acting GLP-1 receptor agonist exendin-4 (Ex-4) is currently used as an anti-diabetic drug. GLP-1 receptors are widely expressed in the brain and spinal cord, and our prior studies have shown that Ex-4 is neuroprotective in several neurodegenerative disease rodent models, including stroke, Parkinson's disease and Alzheimer's disease. Here we hypothesized that Ex-4 may provide neuroprotective activity in ALS, and hence characterized Ex-4 actions in both cell culture (NSC-19 neuroblastoma cells) and in vivo (SOD1 G93A mutant mice) models of ALS. Ex-4 proved to be neurotrophic in NSC-19 cells, elevating choline acetyltransferase (ChAT) activity, as well as neuroprotective, protecting cells from hydrogen peroxide-induced oxidative stress and staurosporine-induced apoptosis. Additionally, in both wild-type SOD1 and mutant SOD1 (G37R) stably transfected NSC-19 cell lines, Ex-4 protected against trophic factor withdrawal-induced toxicity. To assess in vivo translation, SOD1 mutant mice were administered vehicle or Ex-4 at 6-weeks of age onwards to end-stage disease via subcutaneous osmotic pump to provide steady-state infusion. ALS mice treated with Ex-4 showed improved glucose tolerance and normalization of behavior, as assessed by running wheel, compared to control ALS mice. Furthermore, Ex-4 treatment attenuated neuronal cell death in the lumbar spinal cord; immunohistochemical analysis demonstrated the rescue of neuronal markers, such as ChAT, associated with motor neurons. Together, our results suggest that GLP-1 receptor agonists warrant further evaluation to assess whether their neuroprotective potential is of therapeutic relevance in ALS.  相似文献   

18.
G H Travis  K R Groshan  M Lloyd  D Bok 《Neuron》1992,9(1):113-119
retinal degeneration slow (rds) is a semidominant mutation of mice with the phenotype of abnormal development of rod and cone photoreceptors, followed by their slow degeneration. The rds gene has been putatively cloned and its novel protein product initially characterized biochemically. In the present study we undertook to correct in vivo the retinal phenotype of mice with the rds mutation. We assembled a transgene containing a regulatory segment of the opsin gene positioned upstream of the wild-type rds coding region. Mice from three transgenic lines, homozygous for the rds mutation, were analyzed for expression of the transgene and for their retinal phenotypes. In two high expressing lines, we observed complete reversion to wild-type retinal morphology. In a third, low expressing line, we observed a retinal phenotype intermediate between wild type and rds/rds, suggesting partial rescue of the mutation. These results constitute formal proof that we have cloned the rds gene.  相似文献   

19.
2C T cell receptor (TCR) transgenic mice have been long used to study the molecular basis of TCR binding to peptide/major compatibility complexes and the cytotoxicity mechanism of cytotoxic T lymphocytes (CTLs). To study the role of variable gene promoters in allelic exclusion, we previously constructed mutant mice in which the Vβ13 promoter was deleted (P13 mice). Introduction of 2C transgene into P13 mice accelerated the onset of systemic CD8 T cell lymphoma between 14 and 27 weeks of age, although parental P13 mice appeared to be normal. This observation suggests that the lymphoma development may be linked to features of 2C transgene. To identify the integration site of 2C transgene, Southern blotting identified a 2C-specific DNA fragment by 3′ region probe of 2C TCR α transgene, and digestion-circularization-polymerase chain reaction (DC-PCR) amplified the 2C-specific DNA fragment with inverse primers specific to the southern probe. Sequence analysis revealed that DC-PCR product contained the probe sequences and the junction sequences of integration site, indicating that 2C TCR α transgene is integrated into chromosome 1. Further genomic analysis revealed cytosolic phospholipase A2 group IVA (cPLA2) as the nearest gene to the integration site. cPLA2 expression was upregulated in the normal thymi and T cell lymphomas from 2C transgenic mice, although it was not altered in the lymph nodes of 2C transgenic mice. The result is the first report demonstrating the integration site of 2C TCR transgene, and will facilitate the proper use of 2C transgenic mice in studies of CTLs.  相似文献   

20.
IL-1beta is a pro-inflammatory agent associated with angiogenesis and increased vascular permeability. To determine whether IL-1beta elicits these responses through an upregulation of VEGF, transgenic mice that overexpress IL-1beta in the lens were evaluated at various time points for the localization of VEGF, the location and extent of blood-retinal barrier (BRB) breakdown, and the origin and extent of neovascularization (NV). In homozygous and heterozygous transgenic mice, but not controls, intense VEGF immunoreactivity was scattered throughout the retina at postnatal days 5-7 (P5-7), just after the onset of inflammatory cell infiltration. VEGF staining in the retina remained widespread, but weak from P9-15. Beginning at P15, the intensity of VEGF immunoreactivity achieved a second peak, which it maintained through adulthood. This peak coincided with significant retinal destruction due to massive inflammation. The onset of BRB breakdown coincided with the upregulation of VEGF (P5-7) and widespread BRB breakdown was demonstrated from about P9. From P9-12, aggregates of cells positive for Griffonia simplicifolia isolectin-B4, a marker for vascular endothelial cells, formed on the retinal surface. These cells migrated into the retina at P12-15 with the more superficial cells forming a network of vessels and the deeper cells remaining in small clusters, thus demonstrating that NV occurs much later than BRB breakdown. Non-transgenic FVB/N mice, which undergo retinal degeneration beginning at about P9, also demonstrate the latter peak of VEGF upregulation and the accompanying BRB breakdown, but not the early upregulation. VEGF immunostaining of transgenic and non-transgenic mouse retinas was eliminated by pre-incubation of the VEGF antibodies with VEGF peptide. The data suggest that the early peak of VEGF upregulation (P5-7) and its accompanying BRB breakdown is due to IL-1beta expression and is likely to be dependent on inflammatory cell infiltration. The latter peak appears to be related to retinal destruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号