首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The single-channel properties for monovalent and divalent cations of a voltage-independent cation channel from Tetrahymena cilia were studied in planar lipid bilayers. The single-channel conductance reached a maximum value as the K+ concentration was increased in symmetrical solutions of K+. The concentration dependence of the conductance was approximated to a simple saturation curve (a single-ion channel model) with an apparent Michaelis constant of 16.3 mM and a maximum conductance of 354 pS. Divalent cations (Ca2+, Ba2+, Sr2+, and Mg2+) also permeated this channel. The sequence of permeability determined by zero current potentials at high ionic concentrations was Ba2+ greater than or equal to K+ greater than or equal to Sr2+ greater than Mg2+ greater than Ca2+. Single-channel conductances for Ca2+ were nearly constant (13.9 pS-20.5 pS) in the concentrations between 0.5 mM and 50 mM Ca-gluconate. In the experiments with mixed solutions of K+ and Ca2+, a maximum conductance of Ca2+ (gamma Camax) and an apparent Michaelis constant of Ca2+ (K Cam) were obtained by assuming a simple competitive relation between the cations. Gamma Camax and K Cam were 14.0 pS and 0.160 mM, respectively. Single-channel conductances in mixed solutions were well-fitted to this competitive model supporting that this cation channel behaves as a single-ion channel. This channel had relatively high-affinity Ca2+-binding sites.  相似文献   

2.
Ba2+ currents through L-type Ca2+ channels were recorded from cell- attached patches on mouse pancreatic beta cells. In 10 mM Ba2+, single- channel currents were recorded at -70 mV, the beta cell resting membrane potential. This suggests that Ca2+ influx at negative membrane potentials may contribute to the resting intracellular Ca2+ concentration and thus to basal insulin release. Increasing external Ba2+ increased the single-channel current amplitude and shifted the current-voltage relation to more positive potentials. This voltage shift could be modeled by assuming that divalent cations both screen and bind to surface charges located at the channel mouth. The single- channel conductance was related to the bulk Ba2+ concentration by a Langmuir isotherm with a dissociation constant (Kd(gamma)) of 5.5 mM and a maximum single-channel conductance (gamma max) of 22 pS. A closer fit to the data was obtained when the barium concentration at the membrane surface was used (Kd(gamma) = 200 mM and gamma max = 47 pS), which suggests that saturation of the concentration-conductance curve may be due to saturation of the surface Ba2+ concentration. Increasing external Ba2+ also shifted the voltage dependence of ensemble currents to positive potentials, consistent with Ba2+ screening and binding to membrane surface charge associated with gating. Ensemble currents recorded with 10 mM Ca2+ activated at more positive potentials than in 10 mM Ba2+, suggesting that external Ca2+ binds more tightly to membrane surface charge associated with gating. The perforated-patch technique was used to record whole-cell currents flowing through L-type Ca2+ channels. Inward currents in 10 mM Ba2+ had a similar voltage dependence to those recorded at a physiological Ca2+ concentration (2.6 mM). BAY-K 8644 (1 microM) increased the amplitude of the ensemble and whole-cell currents but did not alter their voltage dependence. Our results suggest that the high divalent cation solutions usually used to record single L-type Ca2+ channel activity produce a positive shift in the voltage dependence of activation (approximately 32 mV in 100 mM Ba2+).  相似文献   

3.
The influx of Ca2+ and its subsequent intracellular increase are required for the acrosome reaction of sea urchin sperm to occur. Spermatozoa must undergo this reaction, which is triggered by the egg jelly, in order to fertilize the egg. Here, the egg jelly-induced Ca2+ influx mechanisms have been studied in sperm loaded with FURA-2 using Mn2+ under the assumption that this divalent ion is an indicator of Ca2+ influx through Ca2+ channels. Egg jelly induced the immediate entry of Ca2+ (mixing time 1 s), however; we found that the influx of Mn2+ increased after a lag time of 5 s. Nisol-dipine (a Ca2+ channel blocker) did not block the Mn2+ influx which was inhibited by 40 mM of external [K+], low Na+, and 5 mM of tetraethylammonium (a K+ channel blocker). These conditions also inhibited the alkalinization and the acrosome reaction. The inhibition of the Mn2+ influx could be overcome by increasing internal pH (pHi) with ammonium (10 mM). On the contrary the influx of Ca2+ during the first 5 s was not inhibited by any of the conditions indicated before, except by nisoldipine. These data could be explained by the activation of two different Ca2+ channels by egg jelly. The first one being a receptor-operator Ca2+ channel that opens when the receptor for egg jelly is occupied independently of the ionic conditions. The other one could be considered as a second messenger-operated Ca2+ channel that requires at least an increase in pHi to open.  相似文献   

4.
Sea urchin sperm must undergo the acrosome reaction to fertilize eggs. The natural inducer of this reaction is the most external coat of the egg, named 'jelly'. The ionic composition of the extracellular and intracellular media and the permeability properties of the sperm plasma membrane are fundamental in this reaction. As Ca2+ is required for the acrosome reaction to occur, its intracellular concentration ([Ca2+]i) was measured with fura-2. In 10 mM Ca2+, egg jelly induced the acrosome reaction and an increase in [Ca2+]i that lasted for several minutes. However, at 0.5 or 2 mM Ca2+, it became evident that the Ca2+-influx pathway activated by jelly opened only for a few seconds; this prevented both the full increase in [Ca2+]i and the acrosome reaction even after the concentration of Ca2+ was raised to 10 mM. In the presence of jelly, the time this permeability pathway remained open was inversely related to the extracellular concentration of Ca2+ ([ Ca2+]e). Using Bisoxonol (a permeant fluorescent membrane potential probe), it was found that the jelly-induced depolarization depended on [Ca2+]e and was proportional to the increase in [Ca2+]i. Since [Ca2+]i could affect the jelly-induced Ca2+ influx through calmodulin, two of its antagonists, trifluoperazine and W-7, were tested. Both compounds blocked the acrosome reaction by inhibiting the jelly-induced increase in [Ca2+]i. W-5 at the same concentration had no effect. The results suggest that one of the jelly-activated Ca2+-influx pathways, probably a channel, is the target of the calmodulin antagonists.  相似文献   

5.
The egg jelly-induced acrosome reaction of sea urchin sperm is accompanied by intracellular alkalinization and Ca2+ entry. We have previously shown that in the absence of egg jelly, NH4Cl, which increases intracellular pH (pHi), induces Ca2+ uptake and the acrosome reaction in sperm of the sea urchin, Strongylocentrotus purpuratus. Here we show that at a constant concentration of NH4Cl (20 mM) in seawater, sperm react less as external pH is lowered from the normal 8 to 7.25. The pH dependence of the NH4Cl response is not very sensitive to temperatures between 12 and 17 degrees C. NH4Cl (15-50 mM) stimulates Ca2+ uptake and acrosome reactions in sperm suspended in Na+-free seawater, a condition known to inhibit the inductive effect of jelly. Jelly does not further stimulate Ca2+ uptake of sperm preincubated in NH4Cl, indicating that once the permeability to Ca2+ is increased by raising the pHi, the jelly has no further effect. We have used the membrane potential-sensitive dye 3,3'-dipropylthiadicarbocyanine iodide to follow the membrane potential change that occurs when NH4Cl is added. Depolarization (25 mV) is associated with the acrosome reaction when either the natural inducer, egg jelly, or NH4Cl is added to sperm. Response to both inducers is inhibited under conditions known to abolish the acrosome reaction, i.e., low-pH seawater and nisoldipine. These results indicate that the NH4Cl-induced depolarization that accompanies the reaction is probably due to the opening of channels that allow Ca2+ to enter the cell and not to the depolarization by NH4+ ions. High-K+ seawater, which depolarizes sperm, and tetraethylammonium, a K+ channel blocker, inhibit the jelly-induced depolarization and the acrosome reaction, but do not inhibit NH4Cl-induced changes. It has already been shown that nigericin promotes Ca2+ entry and the acrosome reaction in sea urchin sperm. We found that the action of this ionophore depends on the pH of normal seawater. In the absence of external Na+ (replaced by choline), nigericin does not induce the reaction and does not stimulate Ca2+ uptake.  相似文献   

6.
The conduction properties of the alkaline earth divalent cations were determined in the purified sheep cardiac sarcoplasmic reticulum ryanodine receptor channel after reconstitution into planar phospholipid bilayers. Under bi-ionic conditions there was little difference in permeability among Ba2+, Ca2+, Sr2+, and Mg2+. However, there was a significant difference between the divalent cations and K+, with the divalent cations between 5.8- and 6.7-fold more permeant. Single-channel conductances were determined under symmetrical ionic conditions with 210 mM Ba2+ and Sr2+ and from the single-channel current-voltage relationship under bi-ionic conditions with 210 mM divalent cations and 210 mM K+. Single-channel conductance ranged from 202 pS for Ba2+ to 89 pS for Mg2+ and fell in the sequence Ba2+ greater than Sr2+ greater than Ca2+ greater than Mg2+. Near-maximal single-channel conductance is observed at concentrations as low as 2 mM Ba2+. Single-channel conductance and current measurements in mixtures of Ba(2+)-Mg2+ and Ba(2+)-Ca2+ reveal no anomalous behavior as the mole fraction of the ions is varied. The Ca(2+)-K+ reversal potential determined under bi-ionic conditions was independent of the absolute value of the ion concentrations. The data are compatible with the ryanodine receptor channel acting as a high conductance channel displaying moderate discrimination between divalent and monovalent cations. The channel behaves as though ion translocation occurs in single file with at most one ion able to occupy the conduction pathway at a time.  相似文献   

7.
A voltage-dependent and Ca2(+)-activated cation channel recently found in the vacuolar membrane of the yeast Saccharomyces cerevisiae was incorporated into planar lipid bilayers and further characterized in macroscopic and single channel levels. Single channel conductances for various cations were in the order: NH4+ greater than K+ greater than Rb+ greater than Cs+ greater than Na+ greater than Li+, and were nearly consistent with the order of permeability ratio estimated from reversal potentials determined by macroscopic measurement. Up to 6 mM of Ca2+ added to the cis (cytoplasmic) side opened the channel, but higher concentrations closed the channel without affecting the single channel conductance. Ba2+ closed the channel without affecting the single channel conductance. Ba2+ closed the channel from the cis side. In addition to the above channel, a small cation-selective channel of about 40 pS was found.  相似文献   

8.
A Corcia  I Pecht  S Hemmerich  S Ran  B Rivnay 《Biochemistry》1988,27(19):7499-7506
Ion channels, activated upon IgE-Fc epsilon receptor aggregation by specific antigen, were studied in micropipet-supported lipid bilayers. These bilayers were reconstituted with purified IgE-Fc epsilon receptor complex and the intact 110-kDa channel-forming protein, both isolated from plasma membranes of rat basophilic leukemia cells (line RBL-2H3). In order to identify the current carrier through these ion channels and to determine their ion selectivity, we investigated the currents flowing through the IgE-Fc epsilon receptor gated channels in the presence of a gradient of Ca2+ ions. Thus, the solution in which the micropipet-supported bilayer was immersed contained 1.8 mM CaCl2, while the interior of the micropipet contained 0.1 microM Ca2+ (buffered with EGTA). Both solutions also contained 150 mM of a monovalent cation chloride salt (either K+ or Na+). The currents induced upon specific aggregation of the IgE (by either antigen or anti-IgE antibodies) were examined over a range of potentials imposed on the bilayer. The type of conductance event most frequently observed under the employed experimental conditions was a channel that has a slope conductance of 3 pS and a reversal potential practically identical with the calculated value for the reversal potential of calcium (134 +/- 11 mV in the presence of sodium, 125 +/- 13 mV in the presence of potassium). These results indicate that this channel is highly selective for calcium against the monovalent cations sodium and potassium. This same channel has a conductance of 4-5 pS in the presence of symmetrical solutions containing only 100 mM CaCl2 and 8 pS in the presence of 0.5 M NaCl with no calcium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
FKBP12 was removed from ryanodine receptors (RyRs) by incubation of rabbit skeletal muscle terminal cisternae membranes with rapamycin. The extent of FKBP12 removal was estimated by immunostaining Western blots of terminal cisternae proteins. Single FKBP12-depleted RyR channels, incorporated into planar lipid bilayers, were modulated by Ca2+, ATP, ryanodine, and ruthenium red in the cis chamber and opened frequently to the normal maximum conductance of approximately 230 pS and to substate levels of approximately 0.25, approximately 0.5, and approximately 0.75 of the maximum conductance. Substate activity was rarely seen in native RyRs. Ryanodine did not after the number of conductance levels in FKBP12-depleted channels, but, at a membrane potential of +40 mV, reduced both the maximum and the substate conductances by approximately 50%. FKBP12-stripped channels were activated by a 10-fold-lower [Ca2+] and inhibited by a 10-fold-higher [Ca2+], than RyRs from control-incubated and native terminal cisternae vesicles. The open probability (Po) of these FKBP12-deficient channels was greater than that of control channels at 0.1 microM and 1 mM cis Ca2+ but no different at 10 microM cis Ca2+, where channels showed maximal Ca2+ activation. The approximately 0.25 substate was less sensitive than the maximum conductance to inhibition by Ca2+ and was the dominant level in channels inhibited by 1 mM cis Ca2+. The results show that FKBP12 coordinates the gating of channel activity in control and ryanodine-modified RyRs.  相似文献   

10.
The patch clamp technique has been used to study channels in a membrane inside a cell. A single muscle fiber is skinned in relaxing saline (high K+, low Ca2+ with EGTA and ATP), leaving the native sarcoplasmic reticulum (SR) membrane exposed for patching. Fibers are dissected from the second antenna remotor muscles of the American lobster, Homarus americanus. Transmission and scanning electron microscopy confirm the large volume fraction of SR (approximately 70%) and absence of sarcolemma in this unusual skinned preparation. The resting potential of the SR was measured after the resistance of the patch of membrane was broken down. It is near 0 mV (-0.4 +/- 0.6 mV). The average input resistance of the SR is 842 +/- 295 M omega. Some 25% of patches contain a K+-selective channel with a mean open time of seconds and the channel displays at least two conducting states. The open probability is weakly voltage dependent, large at zero and positive potentials (cytoplasm minus SR lumen), and decreasing at negative potentials. The maximal conductance of this channel is 200 +/- 1 pS and the substate conductance is 170 +/- 3 pS in symmetrical 480 mM K+ solution. The current-voltage relation of the open channel is linear over a range of +/- 100 mV. The selectivity is similar to the SR K+ channel of vertebrates: PK/PNa is 3.77 +/- 0.03, determined from reversal potential measurements, whereas gamma K/gamma Na is 3.28 +/- 0.06, determined from open-channel conductance measurements in symmetrical 480 mM solutions. Voltage-dependent block in the lobster SR K+ channel is similar to, but distinct from, that reported for the vertebrate channels. It occurs asymmetrically when hexamethonium is added to both sides of the membrane. The block is more effective from the cytoplasmic side of the channel.  相似文献   

11.
A high-conductance (100 pS in 53 mM trans Ca2+) Ca2+ channel was incorporated from heavy-density skeletal muscle sarcoplasmic reticulum (SR) fractions into planar lipid bilayers of the Mueller-Rudin type. cis Ca2+ in the range of 2-950 microM increased open probability (Po) in single channel records without affecting open event lifetimes. Millimolar ATP was found to be as good as or better than Ca2+ in activation; however, both Ca2+ and ATP were required to fully activate the channel, i.e., to bring Po = 1. Exponential fits to open and closed single channel lifetimes suggested that the channel may exist in many distinct states. Two open and two closed states were identified when the channel was activated by either Ca2+ or ATP alone or by Ca2+ plus nucleotide. Mg2+ was found to permeate the SR Ca channel in a trans-to-cis direction such that iMg2+/iCa2+ = 0.40. cis Mg2+ was inhibitory and in single channel recordings produced an unresolvable flickering of Ca- and nucleotide-activated channels. At nanomolar cis Ca2+, 4 microM Mg2+ completely inhibited nucleotide-activated channels. In the presence of 2 microM cis Ca2+, the nucleotide-activated macroscopic Ba conductance was inhibited by cis Mg2+ with an IC50 equal to 1.5 mM.  相似文献   

12.
The patch-clamp technique was used to investigate the properties of a cation-selective channel in the basolateral membrane of microdissected collagenase-treated fragments of cortical thick ascending limbs of Henle's loop from mouse kidney. The channel activity was seldom observed in cell-attached patches (2 out 15 studied cases). In inside-out excised patches immersed in symmetrical NaCl Ringer's solutions, the unit channel conductance was ohmic and ranged from 22 to 33 pS (mean, 26.8 +/- 0.6 pS, n = 24). When NaCl was replaced by KCl (n = 8) or sodium gluconate (n = 2) on the cytoplasmic side of the membrane, single-channel currents still reversed at 0 mV and the conductance was unchanged. The reversal potential was +28.8 +/- 0.4 mV (n = 8) when a NaCl concentration (140 vs. 42 mmol/l) gradient was applied, close to the expected value (approx. 30 mV) for a cation selective channel. The channel was found to discriminate poorly between Na+, K+, Cs+, and Li+ ions. The activity of the channel was not clearly voltage-dependent but was dependent upon the free Ca2+ concentration on the cytoplasmic side of the membrane. We conclude that the channel resembles the non-selective cation channel which has been previously described in several tissues.  相似文献   

13.
In TTX-sensitive nerve and skeletal muscle Na+ channels, selective modification of external carboxyl groups with trimethyloxonium (TMO) or water-soluble carbodiimide (WSC) prevents voltage-dependent Ca2+ block, reduces unitary conductance, and decreases guanidinium toxin affinity. In the case of TMO, it has been suggested that all three effects result from modification of a single carboxyl group, which causes a positive shift in the channel's surface potential. We studied the effect of these reagents on Ca2+ block of adult rabbit ventricular Na+ channels in cell-attached patches. In unmodified channels, unitary conductance (gamma Na) was 18.6 +/- 0.9 pS with 280 mM Na+ and 2 mM Ca2+ in the pipette and was reduced to 5.2 +/- 0.8 pS by 10 mM Ca2+. In contrast to TTX-sensitive Na+ channels, Ca2+ block of cardiac Na+ channels was not prevented by TMO; after TMO pretreatment, gamma Na was 6.1 +/- 1.0 pS in 10 mM Ca2+. Nevertheless, TMO altered cardiac Na+ channel properties. In 2 mM Ca2+, TMO-treated patches exhibited up to three discrete gamma Na levels: 15.3 +/- 1.7, 11.3 +/- 1.5, and 9.8 +/- 1.8 pS. Patch-to-patch variation in which levels were present and the absence of transitions between levels suggests that at least two sites were modified by TMO. An abbreviation of mean open time (MOT) accompanied each decrease in gamma Na. The effects on channel gating of elevating external Ca2+ differed from those of TMO pretreatment. Increasing pipette Ca2+ from 2 to 10 mM prolonged the MOT at potentials positive to approximately -35 mV by decreasing the open to inactivated (O-->I) transition rate constant. On the other hand, even in 10 mM Ca2+ TMO accelerated the O-->I transition rate constant without a change in its voltage dependence. Ensemble averages after TMO showed a shortening of the time to peak current and an acceleration of the rate of current decay. Channel modification with WSC resulted in analogous effects to those of TMO in failing to show relief from block by 10 mM Ca2+. Further, WSC caused a decrease in gamma Na and an abbreviation of MOT at all potentials tested. We conclude that a change in surface potential caused by a single carboxyl modification is inadequate to explain the effects of TMO and WSC in heart. Failure of TMO and WSC to prevent Ca2+ block of the cardiac Na+ channel is a new distinction among isoforms in the Na+ channel multigene family.  相似文献   

14.
The ryanodine receptor of rabbit skeletal muscle sarcoplasmic reticulum was purified as a single 450,000-dalton polypeptide from CHAPS-solubilized triads using immunoaffinity chromatography. The purified receptor had a [3H]ryanodine-binding capacity (Bmax) of 490 pmol/mg and a binding affinity (Kd) of 7.0 nM. Using planar bilayer recording techniques, we show that the purified receptor forms cationic channels selective for divalent ions. Ryanodine receptor channels were identical to the Ca-release channels described in native sarcoplasmic reticulum using the same techniques. In the present work, four criteria were used to establish this identity: (a) activation of channels by micromolar Ca and millimolar ATP and inhibition by micromolar ruthenium red, (b) a main channel conductance of 110 +/- 10 pS in 54 mM trans Ca, (c) a long-term open state of lower unitary conductance induced by ryanodine concentrations as low as 20 nM, and (d) a permeability ratio PCa/PTris approximately equal to 14. In addition, we show that the purified ryanodine receptor channel displays a saturable conductance in both monovalent and divalent cation solutions (gamma max for K and Ca = 1 nS and 172 pS, respectively). In the absence of Ca, channels had a broad selectivity for monovalent cations, but in the presence of Ca, they were selectively permeable to Ca against K by a permeability ratio PCa/PK approximately equal to 6. Receptor channels displayed several equivalent conductance levels, which suggest an oligomeric pore structure. We conclude that the 450,000-dalton polypeptide ryanodine receptor is the Ca-release channel of the sarcoplasmic reticulum and is the target site of ruthenium red and ryanodine.  相似文献   

15.
The septal membranes of the median and lateral giant axons of earthworm, which contain gap junctions, were exposed by cutting one segment of the cord. Patch recordings were obtained from the exposed cytoplasmic side of the septum. Seal resistances ranged from 2 to 15 G omega. The patch could be excised (detached) or left attached to the whole cell. Two types of channels were observed. One type was blocked by tetraethylammonium (TEA) or Cs+ and had a unitary conductance of 30-40 pS. It appears to be a K+ channel. The other channel type had a unitary conductance of 90-110 pS and was unaffected by TEA+ or Cs+. In the detached configuration the channel was shown to conduct Cs+, K+, Na+, TMA+, Cl- and TEA+ even in the presence of 2 mM Zn2+, 1 mM Ni2+, 1 mM Co2+, and 4 mM 4-aminopyridine. The conductance ratios relative to K+ were 1.0 for Cs+, 0.84 for Na+, 0.64 for TMA+, 0.52 for Cl- and 0.2 for TEA+. The channel appears to be voltage insensitive whether monitored in detached or attached recording mode. Both H+ and Ca2+ reduce the probability of opening. Thus, the 100 pS channel has many of the properties expected of a gap junction channel.  相似文献   

16.
Klusener B  Weiler EW 《Plant physiology》1999,119(4):1399-1406
A Ca2+ channel from root-tip endomembranes of garden cress (Lepidium sativum L.) (LCC1) was characterized using the planar lipid-bilayer technique. Investigation of single-channel recordings revealed that LCC1 is voltage gated and strongly rectifying. In symmetrical 50 mM CaCl2 solutions, the single-channel conductance was 24 picosiemens. LCC1 showed a moderate selectivity for Ca2+ over K+ (9.4:1) and was permeable for a range of divalent cations (Ca2+, Ba2+, and Sr2+). In contrast to Bryonia dioica Ca2+ channel 1, a Ca2+-selective channel from the endoplasmic reticulum of touch-sensitive tendrils, LCC1 showed no bursting channel activity and had a low open probability and mean open time (2.83 ms at 50 mV). Inhibitor studies demonstrated that LCC1 is blocked by micromolar concentrations of erythrosin B (inhibitor concentration for 50% inhibition [IC50] = 1. 8 μM) and the trivalent cations La3+ (IC50 = 5 μM) and Gd3+ (IC50 = 10 μM), whereas verapamil showed no blocking effect. LCC1 may play an important role in the regulation of the cytoplasmic free Ca2+ concentration in root-tip and/or root-cap cells. The question of whether this ion channel is part of the gravitropic signal transduction pathway deserves further investigation.  相似文献   

17.
The egg jelly-induced acrosome reaction of sea urchin sperm requires the presence of Ca2+ and Na+ in seawater at its normal pH 8. Sperm suspended in seawater at pH 9 undergo the acrosome reaction in the absence of jelly. We have attempted to understand the role of external Na+ in this reaction. Sperm were suspended in Na+-free seawater and the percentage of acrosome reaction and the amount of Ca2+ uptake were determined as a function of external pH. High pH (9.0) in Na+-free medium without jelly triggered a high percentage (above 65%) of sperm acrosome reactions and a two to fourfold increase in Ca2+ uptake. Both the percentage of acrosome reactions and the amount of Ca2+ uptake were similar to those induced by either jelly or pH 9 in Na+-containing seawater. On the other hand, the absence of Na+ in seawater inhibits jelly from inducing Ca2+ uptake and acrosome reactions at pH 8.0 and even at pH 8.5. These results indicate that the Na+ requirement for the acrosome reaction induced by jelly is lost when triggering is by high pH. In contrast, Ca2+ was strictly required since sperm did not react in Ca2+-free seawater at pH 9. We also found that like the jelly-induced acrosome reaction the high-pH-induced acrosome reaction and Ca2+ uptake in complete and Na+-free seawater were inhibited by D600. This finding suggests that the same transport system for Ca2+ uptake associated with the acrosome reaction operates at both triggering conditions, i.e., jelly or pH 9. Although D600 is not now considered a specific blocker, its effect has suggested the involvement of Ca2+ channels in the acrosome reaction. This proposal is supported by our results with nisoldipine, a highly specific inhibitor of calcium channels. The drug inhibited both the sperm acrosome reaction and Ca2+ uptake induced by jelly or pH 9 in complete seawater.  相似文献   

18.
Sarcoplasmic reticulum (SR) vesicles, prepared from rabbit skeletal muscle, were characterized by functional and binding assays and incorporated into planar lipid bilayers. Single-channel activity was recorded in an asymmetric calcium buffer system and studied under voltage clamp conditions. Under these experimental conditions, a large conductance (100 pS in 50 mM Ca2+ trans) divalent cation selective channel displaying high ruthenium red and low Ca2+ sensitivity was identified. This pathway has been previously described as the Ca(2+)-release channel of the SR of skeletal muscle. We now report that in the presence of a Mg-ATP complex, the Ca2+ sensitivity of the open probability of this channel is increased. Furthermore, we show that micromolar cis Sr2+ concentrations also activated the Ca(2+)-release channel. The open probability of the Sr(2+)-activated channel was increased in the presence of a 2 mM Mg-ATP complex and adenine nucleotides on the cytoplasmic face of the Ca(2+)-release channel. These results were confirmed by isotopic flux measurements using passively 45Ca(2+)-loaded vesicles. In the latter case, the presence of extravesicular AMP-PCP (the nonhydrolysable ATP analog) enhanced the percentage of 45Ca2+ release induced either by Ca2+ or Sr2+ activation. In conclusion our findings emphasize the fact that the divalent cation activation of the Ca(2+)-release channel may be induced by Ca2+ and Sr2+, but not by Ba2+, in the presence of adenine nucleotides. Furthermore, they support the view that in situ Ca2+ and Mg-ATP complexes are involved in modulating the gating mechanism of this specific pathway.  相似文献   

19.
Neuronal nicotinic acetylcholine (ACh)-activated currents in rat parasympathetic ganglion cells were examined using whole-cell and single-channel patch clamp recording techniques. The whole-cell current-voltage (I-V) relationship exhibited strong inward rectification and a reversal (zero current) potential of -3.9 mV in nearly symmetrical Na+ solutions (external 140 mM Na+/internal 160 mM Na+). Isosmotic replacement of extracellular Na+ with either Ca2+ or Mg2+ yielded the permeability (Px/PNa) sequence Mg2+ (1.1) > Na+ (1.0) > Ca2+ (0.65). Whole-cell ACh-induced current amplitude decreased as [Ca2+]0 was raised from 2.5 mM to 20 mM, and remained constant at higher [Ca2+]0. Unitary ACh-activated currents recorded in excised outside-out patches had conductances ranging from 15-35 pS with at least three distinct conductance levels (33 pS, 26 pS, 19 pS) observed in most patches. The neuronal nicotinic ACh receptor-channel had a slope conductance of 30 pS in Na+ external solution, which decreased to 20 pS in isotonic Ca2+ and was unchanged by isosmotic replacement of Na+ with Mg2+. ACh-activated single channel currents had an apparent mean open time (tau 0) of 1.15 +/- 0.16 ms and a mean burst length (tau b) of 6.83 +/- 1.76 ms at -60 mV in Na+ external solution. Ca(2+)-free external solutions, or raising [Ca2+]0 to 50-100 mM decreased both the tau 0 and tau b of the nAChR channel. Varying [Ca2+]0 produced a marked decrease in NP0, while substitution of Mg2+ for Na+ increased NP0. These data suggest that activation of the neuronal nAChR channel permits a substantial Ca2+ influx which may modulate Ca(2+)-dependent ion channels and second messenger pathways to affect neuronal excitability in parasympathetic ganglia.  相似文献   

20.
Purified bovine renal epithelial Na+ channels when reconstituted into planar lipid bilayers displayed a specific orientation when the membrane was clamped to -40 mV (cis-side) during incorporation. The trans-facing portion of the channel was extracellular (i.e., amiloride- sensitive), whereas the cis-facing side was intracellular (i.e., protein kinase A-sensitive). Single channels had a main state unitary conductance of 40 pS and displayed two subconductive states each of 12- 13 pS, or one of 12-13 pS and the second of 24-26 pS. Elevation of the [Na+] gradient from the trans-side increased single-channel open probability (Po) only when the cis-side was bathed with a solution containing low [Na+] (< 30 mM) and 10-100 microM [Ca2+]. Under these conditions, Po saturated with increasing [Na+]trans. Buffering of the cis compartment [Ca2+] to nearly zero (< 1 nM) with 10 mM EGTA increased the initial level of channel activity (Po = 0.12 +/- 0.02 vs 0.02 +/- 0.01 in control), but markedly reduced the influence of both cis- and trans-[Na+] on Po. Elevating [Ca2+]cis at constant [Na+] resulted in inhibition of channel activity with an apparent [KiCa2+] of 10-100 microM. Protein kinase C-induced phosphorylation shifted the dependence of channel Po on [Ca2+]cis to 1-3 microM at stationary [Na+]. The direct modulation of single-channel Po by Na+ and Ca2+ demonstrates that the gating of amiloride-sensitive Na2+ channels is indeed dependent upon the specific ionic environment surrounding the channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号