首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
K G Bitar  M Cochran  J C Warren 《Steroids》1979,34(2):189-198
The activity of 17 beta-estradiol dehydrogenase (E.C. 1.1.1.62) was measured, and its distribution in the subcellular fractions of bovine placenta was compared. Assay of activity was based on the formation of radioactive estrone from 17 beta[4(-14)C]-estradiol. Either NAD+ or NADP+ can serve as cofactor for the enzyme. The nuclear and microsomal fractions of the placental homogenate exhibited the highest specific enzymatic activities before and after treatment with Triton X-100. Electron micrographs of these two fractions prior to treatment with Triton X-100 showed satisfactory purity. 17 beta-estradiol dehydrogenase from bovine placenta exhibits a pH optimum of about 9.5-10.5, and is activated by 5 x 10(-6)M ZnCl2; comparable concentrations of CaCl2 and MgCl2 inactivate the enzyme. The apparent Michaelis constants, Km, for 17 beta-estradiol and NAD+ are 1.4 x 10(-6)M and 5.5 x 10(-5)M respectively. No 17 alpha-estradiol dehydrogenase activity was demonstrable when using 17 alpha-estradiol as substrate.  相似文献   

3.
Two soluble enzyme activities, 17 beta-estradiol dehydrogenase and 20 alpha-hydroxysteroid dehydrogenase, copurified from the cytosol fraction of human term placenta, were identically inactivated by 6 beta-bromoacetoxyprogesterone. This affinity alkylating steroid binds at the enzyme-active site (Km = 866 microM; Vmax = 0.073 mumol/min/mg). Enzyme inactivation by four concentrations of 6 beta-bromoacetoxyprogesterone (molar ratio of steroid to enzyme, 71/1 to 287/1) causes irreversible and time-dependent loss of both the 17 beta- and 20 alpha-activities according to first order kinetics and affirms that the alkylating steroid is an active site-directed inhibitor (KI = 2.7 X 10(-3) M; k3 = 1.6 X 10(-3) s-1). Affinity radioalkylation studies using 6 beta-[2'-14C]bromoacetoxyprogesterone indicate that 2 mol of steroid are bound to each mole of inactivated enzyme dimer (Mr = 68,000). Amino acid analyses of the acid hydrolysate of radioalkylated enzyme show that 6 beta-bromoacetoxyprogesterone carboxymethylates cysteine (56%), histidine (22%), and lysine (8%) residues in the active site. These results are identical with those reported for 2-bromo[2'-14C]acetamidoestrone methyl ether radioalkylation of purified "17 beta-estradiol dehydrogenase." The parallel inactivation of 17 beta-estradiol dehydrogenase and 20 alpha-hydroxysteroid dehydrogenase by 6 beta-bromoacetoxyprogesterone further shows that both activities reside at a single enzyme-active site. The radioalkylation profile supports our proposed model of one enzyme-active site wherein the bound progestin and estrogen substrates are inverted, one relative to the other.  相似文献   

4.
5.
6.
7.
Cardiovascular protective effects of 17beta-estradiol metabolites.   总被引:1,自引:0,他引:1  
17beta-estradiol (estradiol), the most abundant endogenous estrogen, affords cardiovascular protection. However, in a given cohort of postmenopausal women, estradiol replacement therapy provides cardiovascular protection in only a subset. The reasons for this variable action can only be understood once the mechanisms by which estradiol induces its cardiovascular protective effects are known. Because most biological effects of estradiol are mediated via estrogen receptors (ERs) and the heart and blood vessels contain both ER-alpha and ER-beta, the prevailing view is that ERs mediate estradiol-induced cardiovascular protection. However, recent findings that estradiol protects against vascular injury in arteries of mice lacking either ER-alpha or ER-beta seriously challenges this concept. Thus other non-ER mechanisms may be operative. Endogenous estradiol is enzymatically converted to several nonestrogenic metabolites, and some of these metabolites induce potent biological effects via ER-independent mechanisms. Therefore, it is conceivable that the cardiovascular protective effects of estradiol are mediated via its endogenous metabolites. On the basis of the evidence cited in this review, the cardiovascular protective effects of estradiol are both ER dependent and independent. The purpose of this article is to review the evidence regarding the cardiovascular protective effects of estradiol metabolites and to discuss the cellular, biochemical, and molecular mechanisms involved.  相似文献   

8.
A specific electrophoretic method for human placental 17 beta-estradiol dehydrogenase (17-HSD; EC 1.1.1.62) has been performed and a sample of about 180 placentae from Italian women has been examined. A common phenotype and only one electrophoretic variant have been observed. Also 17-HSD activity has been tested. A statistically significant negative correlation has been found between 17-HSD activity and both gestational age and birth weight in the last weeks of gestation in a group of at term newborns with weight appropriate for date. This reduction in enzymatic activity is in good agreement with the data on estrone and estradiol which both show a declining rate of increase in the last weeks of pregnancy.  相似文献   

9.
10.
Female rats were immunized with 17 beta-estradiol-6-carboxymethyloxime-bovine serum albumin. They developed antibodies to estradiol and, to a very low extent, antibodies to BSA. Anti-estradiol antibodies possessed tight specificity to estradiol-17 beta, without cross-reactivities with other estrogens. It was demonstrated that the specific estradiol binding in uterine and pituitary cytosols gradually decreased when antiserum titres increased. In uterine cytosols, the presence of progesterone receptor was studied using promegestone (R50 20) as ligand. No significant variations in promegestone binding were observed. Competition experiments however, questioned the permanence in immunized rats of the actual progesterone receptor or of a promegestone binding protein.  相似文献   

11.
Enzyme activity of homogeneous glutathione S-transferases A, B, and C with reduced glutathione and 1-chloro-2,4-dinitrobenzene was inhibited in varying degrees by 50 μm concentrations of monosulfate and disulfate derivatives of several steroids. In contrast, transferase AA activity was not affected. Of the inhibitors tested, estradiol-3,17-disulfate and estradiol-3-sulfate were the most inhibitory, followed by pregnenolone sulfate, estradiol-17-sulfate, dehydroisoandrosterone sulfate, and cortisol sulfate. Transferases A and C were most affected, especially by estradiol disulfate and estradiol-3-sulfate, which exhibited essentially complete inhibition at a concentration of μm. Double reciprocal plots of estradiol disulfate inhibition with respect to 1-chloro-2,4-dinitrobenzene concentration showed uncompetitive inhibition with transferases A and C and noncompetitive inhibition with transferase B (ligandin). With reduced glutathione as the variable substrate, transferases A and C exhibited noncompetitive inhibition kinetics, while transferase B showed partial noncompetitive kinetics.  相似文献   

12.
13.
We performed this study to determine how pretreatment of the ovariectomized rats with 17beta-estradiol could affect blood-brain barrier disruption caused by the vascular endothelial growth factor (VEGF), an important mediator of vascular permeability. Ovariectomized female rats aged twelve to fourteen weeks were used in the study. A 500 micro g 17beta-estradiol 21-day release pellet was implanted in the 17beta-estradiol group, and a vehicle pellet was implanted in the control group 21 days before the experiments. We performed three craniotomies under isoflurane anesthesia to expose cerebral cortices. Normal saline, 10 (- 10)M and 10 (- 9)M VEGF patches were applied on each hole for 30 min. The transfer coefficient (Ki) of (14)C-alpha-amino isobutyric acid and volume of (3)H-dextran (70,000 dalton) distribution were determined to measure the degree of BBB disruption. Ki was increased by 108 % and 138 % with 10 (- 10)M and 10 (- 9)M VEGF respectively after VEGF application in the control group (p < 0.01). However, there was no significant increase in the Ki with the VEGF application in the 17beta-estradiol group, and their values were significantly lower than the corresponding data of the control group (10 (- 10)M: - 55 %, 10 (- 9)M: - 52 %, p <0.05). The volume of dextran distribution in the control group increased by 47 % with VEGF 10 (- 9)M (p < 0.05), whereas there was no significant change in the volume of dextran distribution with VEGF application in the 17beta-estradiol group and the volume was lower than the corresponding volume of the vehicle-treated control group (10 (- 10)M: - 34 %, 10 (- 9)M: -32 %, p < 0.05). In conclusion, our study demonstrated that chronic 17beta-estradiol treatment prevented BBB disruption induced by the VEGF in the ovariectomized rats.  相似文献   

14.
Bone-protective effects of combined treatment with long chain polyunsaturated fatty acids (LCPUFAs) and estrogenic compounds following ovariectomy have previously been reported. Recent evidence suggests the n-3 LCPUFA docosahexaenoic acid (DHA, 22:6n-3) is particularly bone-protective. The aim of this study was to determine whether combined treatment with DHA and estrogenic compounds has a beneficial effect on bone mass in ovariectomized (OVX) rats. Rats were randomized into 9 groups and either ovariectomized (8 groups) or sham-operated (1 group). Using a 2 x 4 factorial design approach, OVX animals received either no estrogenic compound, genistein (20 mg/kg body weight/day), daidzein, (20 mg/kg body weight/day) or 17 beta-estradiol (1 microg/day) with or without DHA (0.5 g/kg body weight/day) for 18 weeks. Bone mineral content (BMC), area (BA), and density (BMD), plasma osteocalcin and IL-6 concentrations, and red blood cell (RBC) fatty acid composition were measured. Femur BMC was significantly greater in animals treated with DHA or 17 beta-estradiol than in ovariectomized controls. Plasma carboxylated osteocalcin was significantly higher in DHA-treated animals and total osteocalcin significantly lower in 17 beta-estradiol-treated animals compared with ovariectomized controls. There were significant interactions between treatment with estrogenic compounds and DHA for femur BMC, plasma IL-6 concentration, and RBC fatty acid composition. Combined treatment with 17beta-estradiol+DHA was more effective than either treatment alone at preserving femur BMC and lowering circulating concentrations of pro-inflammatory IL-6. The percentage of n-3 LCPUFAs in RBCs was significantly greater in animals receiving 17 beta-estradiol+DHA compared with either treatment alone. There was no beneficial effect of combined DHA and phytoestrogen treatment on bone. Results from this study raise the possibility that co-treatment with 17 beta-estradiol and DHA may allow a lower dose of 17 beta-estradiol to be used to provide the same bone-protective effects as when 17 beta-estradiol is administered alone.  相似文献   

15.
17beta-[6,7- 3H]Estradiol was incubated with adult human liver slices in Krebs-Ringer phosphate buffer containing glucose. Of the identified 3H recovered, 51-76 percent consisted of estrone-3-sulfate (E13S) and 17 beta-estradiol-3-sulfate (E23S). E13S was the main metabolite and was found in both tissue and medium. E23S was present only in the medium. Minor amounts of estrogen glucuronides were formed. When a human liver homogenate was incubated with [3H]E2 in a medium fortified with excess uridine diphosphate glucuronic acid only some 4 percent of conjugation with glucuronic acid was observed. It is suggested that human liver favors sulfurylation as the conjugating mechanism for E2 and E1.  相似文献   

16.
A mixture of 2-3H and 4-14C-17beta-estradiol 3-methyl ether was administered orally to a man and to a woman. 34 and 35 percent of the 3H was liberated into the body water of the man and of the woman, respectively, reflecting reactions involving position 2. The metabolism of estradiol methyl ether was qualitatively similar to that observed previously for radioactive estradiol administered intravenously to the same subjects, as judged by the measurement of various urinary metabolites by reverse isotope dilution. Evidence was obtained for hydroxylation at position 2 without demethylation by the isolation of urinary 2-hydroxyestrone 3-methyl ether which retained 33% of the original 3H. This 3H was presumably at position 1, resulted from an NIH shift which does not occur during hydroxylation of estrone or estradiol. This was confirmed by subsequent administration of a mixture of 4-14C and 3H-(methoxyl)-estradiol 3-methyl ether to the man. There was no evidence (by reverse isotope dilution) for 1-hydroxyestrone, 1-hydroxyestrone 3-methyl ether, 4-hydroxyestrone 3-methyl ether or 4-hydroxyestradiol 3-methyl ether as urinary metabolites of estradiol 3-methyl ether.  相似文献   

17.
Norepinephrine increased the in vitro uptake of 3H-estradiol by the uterus of spayed rats. This effect was observed at 15 and 30 min but not at 90 min. Norepinephrine also increased the binding of 3H-estradiol by the nuclear (p less than 0.02) and the cytosol fractions (p less than 0.01) when incubated with uterine homogenates, suggesting that norepinephrine does not require the presence of the intact tissue to exert its effects. The in vivo uptake of 3H-estradiol and the determination of the number of binding sites were performed in the uterus of rats treated with estradiol and estradiol plus norepinephrine. Norepinephrine alone increased the uptake of 3H-estradiol and the number of binding sites. The highest increment in both parameters was observed in the uterus of rats treated with estradiol plus norepinephrine. The estradiol Ka of the rat uterus cytosol treated with estradiol alone or plus norepinephrine was higher than that observed in the group without estradiol, suggesting the presence of different proteins that bind estradiol. These results indicate that norepinephrine increases the entrance of estradiol into the rat uterus both in vitro and in vivo.  相似文献   

18.
19.
20.
Jiang XR  Sowell JW  Zhu BT 《Steroids》2006,71(5):334-342
Estrogen receptor (ER) pure antagonists such as ICI-182,780 (fulvestrant) are effective alternatives to tamoxifen (an ER antagonist/weak partial agonist) in the treatment of postmenopausal, receptor-positive human breast cancers. Structurally, these pure antagonists contain the basic core structure of 17beta-estradiol (E(2)) with a long side chain attached to its C-7alpha position. We explored and compared in this study various synthetic routes for preparing a number of C-7alpha-substituted derivatives of E(2), which are highly useful for the design and synthesis of high-affinity ER antagonists, ER-based imaging ligands, and other ER-based multi-functional agents. Using E(2) as the starting material and 1-iodo-6-benzyloxyhexane as a precursor for the C-7alpha side chain, a seven-step synthetic procedure afforded 3,17beta-bis(acetoxy)-7alpha-(6-hydroxyhexanyl)-estra-1,3,5(10)-triene (one of the derivatives prepared) in an overall yield of approximately 45% as compared to other known procedures that afforded substantially lower overall yield (8-27%). The synthetic steps for this representative compound include: (1) protection of the C-3 and C-17beta hydroxyls of E(2) using methoxymethyl groups; (2) hydroxylation of the C-6 position of the bismethoxymethyl ether of E(2); (3) Swern oxidation of the C-6 hydroxy to the ketone group; (4) C-7alpha alkylation of the C-6 ketone derivative of E(2); (5) deprotection of the two methoxymethyl groups; (6) reprotection of the C-3 and C-6 free hydroxyls with acetyl groups; (7) removal of the C-6 ketone and the benzyl group on the side chain by catalytic hydrogenation in acetic acid. As predicted, two of the representative C-7alpha-substituted derivatives of E(2) synthesized in the present study retained strong binding affinities (close to those of E(2) and ICI-182,780) for the human ERalpha and ERbeta subtypes as determined using the radioligand-receptor binding assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号