首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human immunodeficiency virus (HIV) virion RNA and proviral DNA sequences have been examined over a 1-year period in an HIV-seropositive patient, commencing with the start of zidovudine treatment. By characterizing the variable V3 and V4 env domains, four related but structurally discrete genotypes could be identified prior to the start of therapy and during the subsequent 60-week period of therapy. Each of the four subtypes showed a unique pattern in the preservation of glycosylation sites. A comparison of the V3 amino acid sequences in peripheral blood mononuclear cell proviral DNA and plasma virion RNA at 0, 24, 36, and 60 weeks demonstrated that proviral DNA did not serve as a predictor of the structure of virion RNA. HIV virion RNA subtype 3 was the most prevalent virion RNA subtype at three of the four periods studied, yet no corresponding proviral DNA was detected. Other virion subtypes have been observed, but only on a transient basis. The present data are consistent with a model of HIV infection in which related but different HIV substrains coexist and evolve independently within an individual. Characterization of virion RNA may be required to identify the unique properties of the virus involved in disease progression; characterization of proviral DNA will not yield this information.  相似文献   

2.
Influenza virus A (FluA) reassortants with low-functional neuraminidase (NA) of subtype N1 and hemagglutinin (HA) of subtypes H2, H3, H4, and H13 display virion aggregation and accumulate to a lower titer because sialyl residues are not completely removed from virion components. Nonaggregating variants of FluA (H13N1) were shown to result from a mutation that reduces the HA affinity for sialyl substrates. Amino acid substitution K156E, which increases a negative charge at the edge of the receptor-binding pocket of HA large subunit (HA1), was revealed in two independent variants. This substitution was the only difference between HA1 of the original reassortant and one of its variants and, therefore, accounted for restoration of the functional match between HA and NA.  相似文献   

3.
Influenza virus A (FluA) reassortants with low-functional neuraminidase (NA) of subtype N1 and hemagglutinin (HA) of subtypes H2, H3, H4, and H13 display virion aggregation and accumulate to a lower titer because sialyl residues are not completely removed from virion components. Nonaggregating variants of FluA (H13N1) were shown to result from a mutation that reduces the HA affinity for sialyl substrates. Amino acid substitution K156E, which increases a negative charge at the edge of the receptor-binding pocket of HA large subunit (HA1), was revealed in two independent variants. This substitution was the only difference between HA1 of the original reassortant and one of its variants and, therefore, accounted for restoration of the functional match between HA and NA.  相似文献   

4.
The pattern of induced protein species of the prototype strain of the parvovirus minute virus of mice was determined in permissive A9 mouse fibroblast cells by high-resolution two-dimensional gel electrophoresis. Identities of the viral proteins in the gels were assigned by probing two-dimensional blots with antisera raised against either purified capsids (recognizing VP-1 and VP-2) or specific coding regions of the nonstructural proteins (NS-1 and NS-2) expressed as beta-galactosidase fusion products in bacteria. All viral proteins showed posttranslational modifications, phosphate being a common substituent. The NS-1 protein migrated as a basic polypeptide in the pI range of 7.4 to 7.8 with multiple stages of modification and as a likely minor but hyperphosphorylated component in the neutral region of the gel. The NS-2 isoforms were resolved at a pI value close to 5.5 as three groups of unevenly phosphorylated polypeptides, each composed of at least two protein species. Both VP-1 and VP-2 structural polypeptides were induced as heterogeneous phosphoproteins. The major VP-2 protein could be resolved in the form of a consistent pattern of three abundant (a to c), two intermediate (d and e), and one meager (f) neutral isoelectric focusing species or subtypes. This posttranslational modification precedes and is uncoupled from viral assembly, and all of the VP-2 subtypes are packaged into empty capsids at the induced stoichiometry. However, intracellular full virions harbored additional phosphorylated subtypes (g to l) and a subtle rearrangement in the whole VP-2 composition, while mature virions purified from lysed cultures lacked these subtypes, coordinately with the emergence of six neutral VP-3 subtypes. Thus, the virion coat undergoes a chemical transition entailed by genome encapsidation, in which phosphates seem to play a major role, triggering the preferential proteolytic cleavage of the more acidic VP-2 subtypes to VP-3. Parvoviruses, with small coding capacity, may regulate some morphogenetic steps, such as assembly, genome encapsidation, and maturation, by posttranslational modifications of their structural proteins.  相似文献   

5.
6.
Naturally occurring polymorphisms in the protease of human immunodeficiency virus type 1 (HIV-1) subtype C would be expected to lead to adaptive (compensatory) changes in protease cleavage sites. To test this hypothesis, we examined the prevalences and patterns of cleavage site polymorphisms in the Gag, Gag-Pol, and Nef cleavage sites of C compared to those in non-C subtypes. Codon-based maximum-likelihood methods were used to assess the natural selection and evolutionary history of individual cleavage sites. Seven cleavage sites (p17/p24, p24/p2, NC/p1, NC/TFP, PR/RT, RT/p66, and p66/IN) were well conserved over time and in all HIV-1 subtypes. One site (p1/p6(gag)) exhibited moderate variation, and four sites (p2/NC, TFP/p6(pol), p6(pol)/PR, and Nef) were highly variable, both within and between subtypes. Three of the variable sites are known to be major determinants of polyprotein processing and virion production. P2/NC controls the rate and order of cleavage, p6(gag) is an important phosphoprotein required for virion release, and TFP/p6(pol), a novel cleavage site in the transframe domain, influences the specificity of Gag-Pol processing and the activation of protease. Overall, 58.3% of the 12 HIV-1 cleavage sites were significantly more diverse in C than in B viruses. When analyzed as a single concatenated fragment of 360 bp, 96.0% of group M cleavage site sequences fell into subtype-specific phylogenetic clusters, suggesting that they coevolved with the virus. Natural variation at C cleavage sites may play an important role, not only in regulation of the viral cycle but also in disease progression and response to therapy.  相似文献   

7.
8.
The filamentous phage Ff (f1, fd, or M13) of Escherichia coli is assembled at the cell membranes by a process that is morphologically similar to that of pilus assembly. The release of the filament virion is mediated by excision from the membrane; conversely, entry into a host cell is mediated by insertion of the virion coat proteins into the membrane. The N-terminal domains of the minor virion protein pIII have the sole role of binding to host receptors during infection. In contrast, the C domain of pIII is required for two opposite functions: insertion of the virion into the membrane during infection and excision at the termination step of assembly/secretion. We identified a 28-residue-long segment in the pIII C domain, which is required for phage entry but dispensable for release from the membrane at the end of assembly. This segment, which we named the infection-competence segment (ICS), works only in cis with the N-terminal receptor-binding domains and does not require the equivalent ICS sequences in other subunits within the virion cap. The ICS contains a predicted amphipathic α-helix and is rich in small amino acids, Gly, Ala, and Ser, which are arranged as a [small]XXX[small]XX[small]XXX[small]XXX[small] motif. Scanning Ala/Gly mutagenesis of ICS showed that small residues are compatible with infection. Overall, organization of the C domain is reminiscent of α-helical pore-forming toxins' membrane insertion domains. The unique ability of pIII to mediate both membrane insertion and excision allowed us to compare these two fundamental membrane transactions and to show that receptor-triggered insertion is a more complex process than excision from membranes.  相似文献   

9.
The magnitude of the genetic relatedness of the two antigenic subtypes of equine herpesvirus 1 (EHV-1) was determined by DNA-DNA reassociation kinetics. Denatured, labeled viral DNA from one EHV-1 subtype was allowed to reassociate in the presence or absence of the unlabeled heterologous viral DNA. The initial rate of reassociation of either labeled viral DNA was increased by the presence of the heterologous viral DNA to an extent indicating 10 to 20% homology between the two EHV-1 genomes. Similar estimates of the amount of homology between the genomes of the two EHV-1 subtypes were obtained by determining the maximum fraction of labeled viral DNA that could be made resistant to S1 nuclease by hybridization with a large molar excess of the unlabeled, heterologous viral DNA. Analysis of the thermal stability of the subtype 1-subtype 2 heteroduplex DNA indicated approximately 30% base pair mismatching within the hybrid DNA molecules. Cross-hybridization of 32P-labeled virion DNA to nitrocellulose blots of restriction endonuclease cleavage fragments of each EHV-1 subtype DNA indicated that the observed homology between the two viruses was nonuniformly distributed with the viral genome. No homology could be detected between the DNA of either EHV-1 subtype and that of a strain of equine cytomegalovirus (EHV-2). The data suggest that the two biotypes of EHV-1 have arisen by divergent evolution from a common progenitor herpesvirus.  相似文献   

10.
Phenol-extracted echovirus 22 virion RNA is infectious, but unlike poliovirus virion RNA, it resists digestion with pancreatic RNase and nuclease P-1, a 3' exonuclease selective for single-stranded RNA. These data indicate the presence of an enzyme-resistant portion somewhere in the RNA molecule and suggest that it is a double-stranded or base-paired region distant from the unblocked 3' terminus. Equilibrium density gradient centrifugation of native echovirus 22 virion RNA results in a single peak with a density of 1.63 g/cm3. When sheared before centrifugation, the molecule is resolved into two RNA species: one with an approximate density of 1.70 to 1.71 g/cm3, as is observed also for single-stranded poliovirus virion RNA, and the other with a density of 1.58 to 1.59 g/cm3. Data obtained from rate zonal centrifugation may be used to calculate an approximate sedimentation coefficient corrected to water at 20 degrees C of 34 and a molecular weight of 2.4 X 10(6) for the virion RNA. We propose a model for echovirus 22 RNA composed of a linear RNA molecule with a 5' hairpin.  相似文献   

11.
The structural proteins of vaccinia virus can be divided into two classes on the basis of their times of synthesis in the infected cell. The production of one of these classes of proteins begins prior to the onset of viral deoxyribonucleic acid (DNA) replication. These are referred to as "early" proteins. Synthesis of the second class of structural proteins follows the onset of viral DNA replication; hence, the term "late" proteins for this class. We are able, by immunological procedures, to identify three "early" virus-structural proteins. These materials, when incorporated into virions, appear to be associated with the "core" of the virion and do not elicit production of virus-neutralizing antibody. It would seem, therefore, that those virus-structural proteins synthesized early in the course of infection act as internal components of the virion. The "late" proteins may be subdivided into two groups on the basis of certain physical properties and molecular weight differences. The first of these groups, comprised of at least two proteins, corresponds to the classical LS antigens and elicits production of neutralizing antibodies. These proteins, when incorporated into virions, are found only in the outer ("coat") fraction of the virion. The second group of "late" antigens, also comprised of two proteins, termed the G antigens, do not elicit synthesis of neutralizing antibody. One of these proteins is associated with the virus "core"; the other is found in the "coat" fraction of the virion and appears to occupy an intermediary, subsurface position. Procedures suitable for the isolation of the G antigens are described, in addition to the partial characterization of these antigens.  相似文献   

12.
Cell-free translation of influenza virus mRNA.   总被引:6,自引:4,他引:2       下载免费PDF全文
Cytoplasmic poly (A)-rich RNA extracted from fowl plague virus-infected cells was found to program efficiently the translation of two major peptides in the wheat germ cell-free system. These peptides have the same electrophoretic mobility, on polyacrylamide gels, as the two major virion proteins M and NP. [35S] methionine tryptic peptide analysis by one-dimensionalthin-layer ionophoresis and finger printing by two-dimensional thin-layer ionophoresis and chromatography show a high degree of similarity between the two in vitro products and the authentic viral proteins M and NP. Although virion RNA is devoid of any poly (A) sequence, it is confirmed here that the viral complementary cytoplasmic RNA contains poly (A) stretches of varying lengths. Intact purified virion was found to promote the synthesis of very low amounts of the same NP and M proteins in this cell-free system. Quantitative aspects of data would indicate that this is due to minute amounts of complementary viral RNA associated with the virion or with the virion RNA itself. In conclusion, it is shown diectly by cell-free translation of authentic viral products that the influenza virion is "negative stranded" (Baltimore, 1971), at least for its two major structural proteins.  相似文献   

13.
Foot-and-mouth disease virus (FMDV) manifests an extreme sensitivity to acid, which is thought to be important for entry of the RNA genome into the cell. We have compared the low-pH-induced disassembly in vitro of virions and natural empty capsids of three subtypes of serotype A FMDV by enzyme-linked immunosorbent assay and sucrose gradient sedimentation analysis. For all three subtypes (A22 Iraq 24/64, A10(61), and A24 Cruzeiro), the empty capsid was more stable by 0.5 pH unit on average than the corresponding virion. Unexpectedly, in the natural empty capsids used in this study, the precursor capsid protein VP0 was found largely to be cleaved into VP2 and VP4. For picornaviruses the processing of VP0 is closely associated with encapsidation of viral RNA, which is considered likely to play a catalytic role in the cleavage. Investigation of the cleavage of VP0 in natural empty capsids failed to implicate the viral RNA. However, it remains possible that these particles arise from abortive attempts to encapsidate RNA. Empty capsids expressed from a vaccinia virus recombinant showed essentially the same acid lability as natural empty capsids, despite differing considerably in the extent of VP0 processing, with the synthetic particles containing almost exclusively uncleaved VP0. These results indicate that it is the viral RNA that modulates acid lability in FMDV. In all cases the capsids dissociate at low pH directly into pentameric subunits. Comparison of the three viruses indicates that FMDV A22 Iraq is about 0.5 pH unit more sensitive to low pH than types A10(61) and A24 Cruzeiro. Sequence analysis of the three subtypes identified several differences at the interface between pentamers and highlighted a His-alpha-helix dipole interaction which spans the pentamer interface and appears likely to influence the acid lability of the virus.  相似文献   

14.
Bacteriophage PRD1 encodes two proteins (P7 and P15) that are associated with a muralytic activity. Protein P15 is a soluble beta-1,4-N-acetylmuramidase that causes phage-induced host cell lysis. We demonstrate here that P15 is also a structural component of the PRD1 virion and that it is connected to the phage membrane. Small viral membrane proteins P20 and P22 modulate incorporation of P15 into the virion and may connect it to the phage membrane. The principal muralytic protein involved in PRD1 DNA entry seems to be the putative lytic transglycosylase protein P7, as the absence of protein P15 did not delay initiation of phage DNA replication in the virus-host system used. The incorporation of two different lytic enzymes into virions may reflect the broad host range of bacteriophage PRD1.  相似文献   

15.
16.
Rabbit hemorrhagic disease was described in China in 1984 and can cause hemorrhagic necrosis of the liver within two or three days after infection. The etiological agent, rabbit hemorrhagic disease virus (RHDV), belongs to the Lagovirus genus in the Caliciviridae family. Compared to other calicivirus, such as rNV and SMSV, the structure of Lagovirus members is not well characterized. In this report, structures of two types of wild RHDV particles, the intact virion and the core-like particle (CLP), were reconstructed by cryo-electron microscopy at 11Å and 17Å, respectively. This is the first time the 3D structure of wild caliciviruses CLP has been provided, and the 3D structure of intact RHDV virion is the highest resolution structure in Lagovirus. Comparison of the intact virion and CLP structures clearly indicated that CLP was produced from the intact virion with the protrusion dissociated. In contrast with the crystal structures of recombinant Norovirus and San Miguel sea lion virus, the capsomers of RHDV virion exhibited unique structural features and assembly modes. Both P1 and P2 subdomains have interactions inside the AB capsomer, while only P2 subdomains have interaction inside CC capsomer. The pseudo atomic models of RHDV capsomers were constructed by homology modeling and density map fitting, and the rotation of RHDV VP60 P domain with respect to its S domain, compared with SMSV, was observed. Collectively, our cryo-electron microscopic studies of RHDV provide close insight into the structure of Lagovirus, which is important for functional analysis and better vaccine development in the future.  相似文献   

17.
The influenza A virus-associated M2 ion channel is generally believed to function during uncoating of virions in infected cells. On endocytosis of a virion into the lumen of endosomes, the M2 ion channel is thought to cause acidification of the virion interior. In addition, the influenza virus M2 ion channel is thought to function in the exocytic pathway by equilibrating the pH gradient between the acidic lumen of the trans-Golgi network and the neutral cytoplasm. A necessary test of the proposed roles of the influenza virus M2 ion channel in the virus life cycle is to show directly that the M2 ion channel conducts protons. We have measured the ionic selectivity and activation of three subtypes (Udorn, Weybridge, and Rostock) of the M2 ion channel in oocytes of Xenopus laevis by measurement of 1) the intracellular pH (pHin) of voltage-clamped oocytes, 2) the current-voltage relationship in solutions of various pH and ionic composition, and 3) the flux of 86Rb. We took advantage of the low pHin achieved during incubation in low pH medium to study the effects of low pHin on M2 activation. Oocytes expressing each of the three subtypes of the M2 protein a) underwent a slow acidification when incubated in medium of low pH (acidification was blocked by the M2 ion channel inhibitor, amantadine); b) had current-voltage relationships that shifted to more positive values and had greater conductance when the pHout was lowered (this relationship was modified when Na- was replaced by NH4+ or Li+); c) had an amantadine-sensitive influx of Rb+. The effects on the current-voltage relationship of reduced pHin were opposed to the increased conductance found with reduced pHout. We interpret these results to indicate that the M2 ion channel is capable of conducting H+ and that other ions may also be conducted. Moreover, the channel conductance is reduced by decreased pHin. These findings are consistent with the proposed roles of the M2 protein in the life cycle of influenza A virus.  相似文献   

18.
To investigate cellular components incorporated into the rabies virion, monoclonal antibodies (MAbs) were screened based on their reactivity with additional virion components. Two of the MAbs we prepared recognized a virion-associated 21 kDa polypeptide (referred to as VAP21) from a BHK-21 cell. Since the MAbs precipitated the rabies virion and trypsin digestion eliminated the VAP21 antigen from the virion but alkaline treatment (pH 11) did not, VAP21 seems to be anchored into the viral envelope and exposed on the virion surface. Although quantitative immunoblot analyses indicated an apparently increased concentration of VAP21 in the virion, the ratio of the content of VAP21 to that of viral glycoprotein (G) was several times decreased as compared to the ratio of those in the cell. These data suggest that sorting of VAP21 occurs during the viral budding process on the cell but that it might be inefficient, probably due to a more intimate association of VAP21 with the viral envelope proteins. This assumption seems to be consistent with the results of immunofluorescence studies; that is, VAP21 displayed colocalized distribution with viral envelope antigens in the cell. From these results, it is suggested that VAP21 closely associates with the viral envelope proteins in the cell, and this association might cause passive but relatively efficient incorporation of VAP21 into the virion.  相似文献   

19.
The vpx gene products of human immunodeficiency virus type 2 (HIV-2) and of the closely related simian immunodeficiency viruses from sooty mangabeys (SIVsm) and macaques (SIVmac) comprise a 112-amino-acid virion-associated protein that is critical for efficient virus replication in nondividing cells such as macrophages. When expressed in the absence of other viral proteins, Vpx localizes to the nuclear membrane as well as to the nucleus; however, in the context of virus replication Vpx is packaged into virions via interaction with the p6 domain of the Gag precursor polyprotein (p55(gag)). To identify the domains essential for virion incorporation and nuclear localization, site-directed mutations were introduced into the vpx gene of SIVsmPBj1.9 and functionally analyzed. Our results show that (i) mutation of two highly conserved L74 and I75 residues impaired both virion incorporation and nuclear localization of Vpx; (ii) substitution of conserved H82, G86, C87, P103, and P106 residues impaired Vpx nuclear localization but not virion incorporation; (iii) mutations of conserved Y66, Y69, and Y71 residues impaired virion incorporation but not the translocation of Vpx to the nucleus; and (iv) a mutation at E30 (predicted to disrupt an N-terminal alpha-helix) had no effect on either virion incorporation or nuclear localization of Vpx. Importantly, mutations in Vpx which impaired nuclear localization also reduced virus replication in macaque macrophages, suggesting an important role of the carboxyl terminus of Vpx in nuclear translocation of the viral preintegration complex. Analyzing this domain in greater detail, we identified a 26-amino-acid (aa 60 to 85) fragment that was sufficient to mediate the transport of a heterologous protein (green fluorescent protein [GFP]) to the nucleus. Taken together, these results indicate that virion incorporation and nuclear localization are encoded by two partially overlapping domains in the C-terminus of Vpx (aa 60 to 112). The identification of a novel 26-amino-acid nuclear targeting domain provides a new tool to investigate the nuclear import of the HIV-2/SIV preintegration complex.  相似文献   

20.
Processing of Adenovirus 2-Induced Proteins   总被引:200,自引:78,他引:122       下载免费PDF全文
Analysis of (35)S-methionine-labeled extracts of adenovirus 2-infected KB cells revealed 22 virus-induced polypeptide components. Most proteins of the virion were easily detected in extracts of whole cells labeled for short periods between 15 and 30 h after infection; however, several virion components were conspicuously absent. Radioactivity appeared in two of these virion components during a chase in nonradioactive medium, and this appearance was paralleled by a decrease in the radioactivity associated with two nonvirion adenovirus-induced proteins, results which imply precursor-product relationships for these components. Comparison of one of the chasable adenovirus-induced components (designated P-VII; mass of 20,000 daltons) and the major core protein (VII; mass of 18,500 daltons) of the virion showed that they have four common methionine-containing tryptic peptides; P-VII has an additional methionine residue which is not found in the major core protein. We propose that at least two of the adenovirus 2 virion components are derived by the cleavage of higher molecular weight precursor polypeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号