首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NMDA ionotropic glutamate receptors gate the cytoplasmic influx of calcium, which may, depending on the intensity of the stimulus, subserve either normal synaptic communication or cell death. We demonstrate that when isolated mitochondria are exposed to calcium and NMDA agonists, there is a significant increase in mitochondrial calcium levels. The agonist/antagonist response studies on purified mitochondria suggest the presence of a receptor on mitochondria with features similar to plasma membrane NMDA receptors. Immunogold electron microscopy of hippocampal tissue sections revealed extensive localization of NR2a subunit immunoreactivity on mitochondria. Transient transfection of neuronal GT1-7 cells with an NR1-NR2a NMDA receptor subunit cassette specifically targeting mitochondria resulted in a significant increase in mitochondrial calcium and neuroprotection against glutamate-induced cell death. Mitochondria prepared from GT1-7 cells in which the NR1 subunit of NMDA receptors was silenced demonstrated a decrease in calcium uptake. Our findings are the first to demonstrate that mitochondria express a calcium transport protein that shares characteristics with the NMDA receptor and may play a neuroprotective role.  相似文献   

2.
When the dose-response curve of adrenocorticotropin (ACTH)-induced aldosterone secretion is compared to that of ACTH-induced intracellular cAMP, the ED50 for intracellular cAMP is more than 10 times as high as that for aldosterone production. In contrast, the dose-response curve of forskolin-induced aldosterone secretion correlates well with that for forskolin-induced intracellular cAMP. ACTH, but not forskolin, increases calcium influx into glomerulosa cells without inducing the mobilization of calcium from an intracellular pool. The effect of ACTH on calcium influx is dose-dependent and ED50 is 3.5 X 10(-11) M. In a perifusion system, the effect of 1 nM ACTH on aldosterone secretion is much greater than that of 1 microM forskolin, even though these two stimulators induce identical increases in the intracellular cAMP. Perifusion with combined A23187 (50 nM) and forskolin (1 microM) stimulates aldosterone secretion to a value comparable to that induced by 1 nM ACTH. Likewise, BAY K 8644 (1 nM), which induces a comparable increase in calcium influx, potentiates the effect of 1 microM forskolin. When the intracellular [Ca2+] is fixed at either 100 or 300 nM, forskolin-stimulated intracellular cAMP content is identical, but ACTH-stimulated intracellular cAMP content at 100 nM [Ca2+]i is 60% of that at 300 nM [Ca2+]i. Both the ACTH- and forskolin-induced aldosterone secretion rate is higher at 300 nM than at 100 nM [Ca2+]i. These results indicate that ACTH stimulates calcium influx, that calcium potentiates ACTH-induced but not forskolin-induced cAMP generation, and that Ca2+ and cAMP act as synarchic messengers in ACTH-mediated aldosterone secretion.  相似文献   

3.
The influx of the toxic cation Cd2+ was studied in fura 2-loaded rat cerebellar granule neurons. In cells depolarized with Ca2(+)-free, high-KCI solutions, the fluorescence emission ratio (R) increased in the presence of 100 microM Cd2(+). This increase was fully reversed by the Cd2+ chelator tetrakis(2-pyridylmethyl)ethylenediamine, indicating a cadmium influx into the cell. The rate of increase, dR/dt, was greatly reduced (67+/-5%) by 1 microM nimodipine and enhanced by 1 microM Bay K 8644. Concurrent application of nimodipine and omega-agatoxin IVA (200 nM) blocked Cd2+ permeation almost completely (88+/-5%), whereas omega-conotoxin MVIIC (2 microM) reduced dR/dt by 24+/-8%. These results indicate a primary role of voltage-dependent calcium channels in Cd2+ permeation. Stimulation with glutamate or NMDA and glycine also caused a rise of R in external Cd2+. Simultaneous application of nimodipine and omega-agatoxin IVA moderately reduced dR/dt (25+/-3%). NMDA-driven Cd2(+) entry was almost completely prevented by 1 mM Mg2+, 50 microM memantine, and 10 microM 5,7-dichlorokynurenic acid, suggesting a major contribution of NMDA-gated channels in glutamate-stimulated Cd2+ influx. Moreover, perfusion with alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate caused a slow increase of R. These results suggest that Cd2+ permeates the cell membrane mainly through the same pathways of Ca2+ influx.  相似文献   

4.
The characteristics of angiotensin II-, K+-, and adrenocorticotropin (ACTH)-induced calcium influx were studied in isolated adrenal glomerulosa cells. Basal calcium influx rate is 0.64 +/- 0.09 nmol/min/mg of protein. Addition of angiotensin II (1 nM) causes a rapid 230% increase in calcium influx rate. This angiotensin II-induced calcium influx is sustained and is rapidly reversed by angiotensin II antagonist, [Sar1,Ala8]angiotensin II. Addition of either K+ or ACTH (1 nM) causes a 340 or 160% increase, respectively, in the rate of calcium influx. The effect of either angiotensin II, K+, or ACTH on calcium influx is dependent on extracellular calcium. The apparent Km for calcium is 0.46, 0.35, and 0.32 mM, respectively. When the extracellular concentration of K+ is 2 mM, neither angiotensin II nor ACTH stimulates calcium influx. Conversely, when extracellular K+ is increased to 6 mM, both angiotensin II and ACTH cause a greater stimulation of calcium influx than at 4 mM K+. When extracellular K+ is increased to 10 mM, calcium influx is 360% of the basal influx seen at 4 mM K+, and neither angiotensin II nor ACTH further stimulates the influx rate. Nitrendipine (1 microM) blocks both angiotensin II- and K+-induced calcium influx completely. In contrast, 10 microM nitrendipine does not completely block ACTH-induced calcium influx. The calcium channel agonist, BAY K 8644, also stimulates calcium influx; 10 nM BAY K 8644 leads to a rate of calcium influx which is 185% of basal. This BAY K 8644-induced increase in calcium influx and that caused by either angiotensin II or ACTH are additive. In contrast, BAY K 8644 has more than an additive effect on the calcium influx when paired with 6 mM K+. These results suggest that angiotensin II, K+, and ACTH stimulate calcium influx via a common calcium channel but act by different mechanisms to alter its function.  相似文献   

5.
The crustacean hepatopancreas is an epithelial-lined, multifunctional organ that, among other activities, regulates the flow of calcium into and out of the animal's body throughout the life cycle. Transepithelial calcium flow across this epithelial cell layer occurs by the combination of calcium channels and cation exchangers at the apical pole of the cell and by an ATP-dependent, calcium ATPase in conjunction with a calcium channel and an Na+/Ca2+ antiporter in the basolateral cell region. The roles of intracellular organelles such as mitochondria, lysosomes, and endoplasmic reticulum (ER) in transepithelial calcium transport or in transient calcium sequestration are unclear, but may be involved in transferring cytosolic calcium from one cell pole to the other. The ER membrane has a complement of ATP-dependent calcium ATPases (SERCA) and calcium channels that regulate the uptake and possible transfer of calcium through this organelle during periods of intense calcium fluxes across the epithelium as a whole. This investigation characterized the mechanisms of calcium transport by lobster hepatopancreatic ER vesicles and the effects of drugs and heavy metals on them. Kinetic constants for 45Ca2+ influx under control conditions were K(n) (m)=10.38+/-1.01 microM, J(max)=14.75+/-1.27 pmol/mg protein x sec, and n=2.53+/-0.46. The Hill coefficient for 45Ca2+ influx under control conditions, approximating 2, suggests that approximately two calcium ions were transported for each transport cycle in the absence of ATP or the inhibitors. Addition of 1 mM ATP to the incubation medium significantly (P<0.01) elevated the rate of 45Ca2+ influx at all calcium activities used and retained the sigmoidal nature of the transport relationship. The kinetic constants for 45Ca2+ influx in the presence of 1 mM ATP were K(n) (m)=12.76+/-0.91 microM, J(max)=25.46+/-1.45 pmol/mg protein x sec, and n=1.95+/-0.15. Kinetic analyses of ER 65Zn2+ influx resulted in a sigmoidal relationship between transport rate and zinc activity under control conditions (K(n) (m)=38.63+/-0.52 microM, J(max)=19.35+/-0.17 pmol/mg protein x sec, n=1.81+/-0.03). The Addition of 1 mM ATP enhanced 65Zn2+ influx at each zinc activity, but maintained the overall sigmoidal nature of the kinetic relationship. The kinetic constants for zinc influx in the presence of 1 mM ATP were K(n) (m)=34.59+/-2.31 microM, J(max)=26.09+/-1.17 pmol/mg protein x sec, and n=1.96+/-0.17. Both sigmoidal and ATP-dependent calcium and zinc influxes by ER vesicles were reduced in the presence of thapsigargin and vanadate. This investigation found that lobster hepatopancreatic ER exhibited a thapsigargin- and vanadate-inhibited, SERCA-like, calcium ATPase. This transporter displayed cooperative calcium transport kinetics (Hill coefficient, n approximately 2.0) and was inhibited by the heavy metals zinc and copper, suggesting that the metals may reduce the binding and transport of calcium when they are present in the cytosol.  相似文献   

6.
Induction of a sodium ion influx by progesterone in human spermatozoa   总被引:5,自引:0,他引:5  
In human spermatozoa, progesterone (P(4)) induces a depolarization of the plasma membrane, a rapid calcium (Ca(2+)) influx, and a chloride efflux. The sodium ion (Na(+)) was partly responsible for the P(4)-induced depolarizing effect but was not required for calcium influx. We used fluorescent probes for spectrofluorometry to investigate whether P(4) induced a Na(+) influx and whether voltage-operated channels were involved in Na(+) and/or Ca(2+) entries. We found that 10 microM P(4) significantly increased intracellular Na(+) concentration from 17.8 +/- 2.0 mM to 27.2 +/- 1. 6 mM (P < 0.001). Prior incubation of spermatozoa with 10 microM flunarizine, a Na(+) and Ca(2+) voltage-dependent channel blocker, inhibited the sodium influx induced by 10 microM P(4) by 84.6 +/- 15.4%. The Ca(2+) influx induced by 10 microM P(4) was also significantly inhibited in a Na(+)-containing medium by 10 microM flunarizine or 10 microM pimozide (P < 0.01). In contrast, flunarizine had no inhibitory effect on the Ca(2+) influx induced by 10 microM P(4) in spermatozoa incubated in Na(+)-depleted medium. The P(4)-promoted acrosome reaction (AR) was significantly higher when spermatozoa were incubated in Na(+)-containing medium as compared to Na(+)-depleted medium. These data demonstrate that P(4) stimulates a Na(+) influx that could be involved in the AR completion. They also suggest that voltage-dependent Na(+) and Ca(2+) channels are implicated in P(4)-mediated signaling pathway in human spermatozoa.  相似文献   

7.
OBJECTIVE: The purpose of this study was to evaluate the contribution of capacitative calcium influx to intracellular calcium levels during agonist-induced stimulation of vascular smooth muscle cells. METHODS: Aortic vascular smooth muscle cells (A7r5) were loaded with Indo-1 and intracellular calcium transients were measured. Cells were challenged with either arginine vasopressin (0. 5 microM) or thapsigargin (1 microM). Lanthanum (1 mM) was used to block capacitative calcium influx through store-operated channels. Calcium traces were analyzed for basal, peak and plateau responses. Recordings were derivatized and integrated to gain additional information. Nonlinear regression provided a time constant that describes restoration of ionic equilibrium involving both sequestration and extrusion pathways. RESULTS: Stimulation of cells with thapsigargin produced a non-L-type calcium influx that was attenuated by lanthanum. Cells excited with vasopressin exhibited a rapid calcium increase followed by a gradual decrease to a plateau level. Lanthanum pretreatment prior to stimulation caused no significant change in baseline, peak or plateau calcium levels as compared to control. Lanthanum caused no significant change in maximal calcium release rate, calcium integrals or time constant as compared to control. CONCLUSIONS: Capacitative calcium entry can occur in vascular smooth muscle cells, but does not appear to contribute significantly to the vasopressin response.  相似文献   

8.
The effect of Ca2+ on steroid production was examined in electropermeabilized bovine adrenal zona glomerulosa and fasciculata cells. The cells were superfused with a medium mimicking cytosolic ionic content but deprived of Ca2+. The permeabilized glomerulosa cells produced aldosterone at a low basal rate. Upon addition of NADP+ to the medium, a transient and concentration-dependent (EC50 = 6 microM) peak of aldosterone production occurred. When the superfusion medium was supplemented with buffered Ca2+ at submicromolar concentrations, a concentration-dependent and sustained increase of aldosterone output was observed. The maximal response (2-3 times the basal secretion rate) was achieved with 1-2 microM ambient free Ca2+, and the EC50 for Ca2+ was 0.5 microM. The continuous presence of NADP+ was found to be necessary for a Ca2+ effect. The Ca2+-induced aldosterone response was entirely blocked by ruthenium red (1 microM), an inhibitor of mitochondrial Ca2+ uptake, and by W-7 (5 microM), a calmodulin inhibitor. Qualitatively and quantitatively similar results were obtained for corticosterone production in adrenal fasciculata cells. These results show that permeabilized adrenal cortical cells retain the ability to produce steroids. Moreover, Ca2+ influx into the mitochondria and Ca2+/calmodulin-dependent reactions appear to be critical steps in the activation of steroidogenesis. These studies provide a further direct link between cytosolic free calcium concentration and biological responses induced by steroidogenic, calcium-mobilizing stimulators in the adrenal cortex.  相似文献   

9.
We previously reported that paclitaxel acted directly on mitochondria isolated from human neuroblastoma SK-N-SH cells. Here, we demonstrate that the direct mitochondrial effect of paclitaxel observed in vitro is relevant in intact SK-N-SH cells. After a 2 h incubation with 1 microM paclitaxel, the mitochondria were less condensed. Paclitaxel (1 microM, 1-4 h) also induced a 20% increase in respiration rate and a caspase-independent production of reactive oxygen species by mitochondria. The paclitaxel-induced release of cytochrome c was detected only after 24 h of incubation, was caspase-independent and permeability transition pore-dependent. Thus, paclitaxel targets mitochondria upstream of caspase activation, early during the apoptotic process in intact human neuroblastoma cells.  相似文献   

10.
Lead buffers (citrate and Tiron) were used to investigate the effects of low concentrations (0.1-6 microM) of Pb2+ on stimulus-secretion coupling in isolated bovine chromaffin cells. Nicotinic agonists and high K elicit secretion by enhancing Ca2+ influx into chromaffin cells. Pb2+ inhibited the catecholamine secretion in response to 500 microM carbachol and 77 mM K+ depolarization but was without significant effect on basal secretion. Pb2+ also inhibited the influx of 45Ca occurring in response to these agents. The K0.5 values for inhibition suggest that the carbachol-evoked flux is more sensitive to Pb2+ than influx in response to a direct depolarization. When extracellular calcium was lowered in the absence of Pb2+, both secretion and 45Ca entry were reduced. The effects of Pb2+ were comparable to those of lowered Ca2+. 22Na influx through nicotinic receptor-mediated channels, measured in the presence of tetrodotoxin (2 microM) and ouabain (50 microM), was inhibited by Pb2+. The results suggest that Pb2+ inhibits exocytotic catecholamine secretion by inhibiting Ca2+ influx. The differential sensitivity to Pb2+ of K- and carbachol-evoked 45Ca flux, coupled with the 22Na measurements, indicates that Pb2+ inhibits the movement of ions through acetylcholine-induced channels as well as through voltage-sensitive calcium channels.  相似文献   

11.
In adrenal glomerulosa cells, angiotensin II causes an immediate release of calcium from an intracellular trigger pool (Kojima, I., Kojima, K., and Rasmussen, H. (1985) Am. J. Physiol. 247, E36-E43). The present study was conducted to determine how the trigger pool of calcium is restored after cessation of the agonist action. Upon termination of angiotensin II action, calcium influx rate decreased immediately while total cell calcium increased rapidly. The increase in total cell calcium is not affected by 1 microM nitrendipine, which blocks angiotensin II-stimulated calcium influx without inhibiting basal influx of calcium. In contrast, total cell calcium did not increase in medium containing 1 microM calcium, in which basal calcium influx is negligible. A rapid increase in total cell calcium after an addition of the antagonist was not accompanied by changes in cytoplasmic free calcium concentration. A second stimulation of cells with either angiotensin II or carbachol did not cause calcium release when the interval of two stimulations was shorter than 20 min. The longer the interval, the greater the magnitude of calcium release in response to the second stimulator. The maximum response was obtained when the interval was 40 min or more. When exogenous arachidonic acid, which mobilized calcium by acting directly on the inositol trisphosphate-sensitive pool, was employed as a second stimulator, the magnitude of the decrease in total cell calcium was also dependent on the interval. These results suggest that, upon termination of angiotensin II action, calcium is rapidly accumulated first in an intracellular pool which is insensitive to either inositol 1,4,5-trisphosphate or arachidonic acid and that the trigger pool is restored gradually thereafter.  相似文献   

12.
Glutamate is believed to be an excitatory amino acid neurotransmitter in the retina. Enzymes for glutamate metabolism, such as glutamate dehydrogenase, ornithine aminotransferase, glutaminase, and aspartate aminotransferase (AAT), exist mainly in the mitochondria. The abnormal increase of intracellular calcium ions in ischemic retinal cells may cause an influx of calcium ions into the mitochondria, subsequently affecting various mitochondrial enzyme activities through the activity of mitochondrial calpain. As AAT has the highest level of activity among enzymes involved in glutamate metabolism, we investigated the change of AAT activity in ischemic and hypoxic rat retinas and the protection against such activity by calpain inhibitors. We used normal RCS (rdy+/rdy+) rats. For the in vivo studies, we clamped the optic nerve of anesthetized rats to induce ischemia. In the in vitro studies, the eye cups were incubated with Locke's solution saturated with 95% N2/5% CO2. The activity of cytosolic AAT (cAAT) was about 20% of total activity, whereas mitochondrial AAT (mAAT) was about 75% in rat retina. Ninety minutes of ischemia or hypoxia caused a 20% decrease in mAAT activity, whereas cAAT activity remained unchanged. To examine the contribution of intracellular calcium ions to the degradation of mAAT, we used Ca2+-free Locke's solution containing 1 mM EGTA, ryanodine (Ca2+ channel blocker), and thapsigargin (Ca2+-ATPase inhibitor). In the present study, thapsigargin in Ca2+-free Locke's solution, but not ryanodine in this solution, was found to prevent AAT degradation. AAT degradation was also prevented by calpain inhibitors (Ca2+-dependent protease inhibitor) such as calpeptin at 1 nM, 10 nM, 0.1 microM, 1 microM and 10 microM, and by calpain inhibitor peptide, but not by other protease inhibitors (10 microM leupeptin, pepstatin, chymostatin). Additionally, we determined the subcellular localization of calpain activity and examined the change of calpain activity in ischemic rat retinas. Our results suggest that decreased activity of mAAT in ischemic and hypoxic rat retinas might be evoked by the degradation by calpain-catalyzed proteolysis in mitochondria.  相似文献   

13.
Calcium entry is a component of the processes regulating the proliferative phenotype of some types of cancer. In non-excitable cells, capacitative calcium entry (CCE) and non-capacitative calcium entry (NCCE) are thought to be the main pathways of Ca2+ influx into cells. Thus, blocking calcium entry may prevent normal and pathological cell proliferation and there is evidence to suggest that molecules blocking calcium entry also have antiproliferative properties. Carboxyamidotriazole (CAI), a novel inhibitor of the non-voltage-dependent calcium entry has been shown to have such properties in model systems in vitro and in vivo. We used Hep G2 and Huh-7 human hepatoma cells to investigate the effects of calcium entry blockers on cell proliferation. CAI (10 microM) and 2-APB (20 microM) completely blocked CCE in thapsigargin-treated Huh-7, and CAI and 2-APB inhibited cell proliferation with IC50 of 4.5 and 43 microM, respectively. The plateau phase of the [Ca2+]i increases triggered by 10% FCS were abolished in the absence of external Ca2+ and in the presence of CAI or 2-APB. We, therefore, suggest that CCE is the main pathway involved in regulation of the processes leading to cell proliferation.  相似文献   

14.
It has been widely reported that the in vivo administration of glucagon to rats results in the stimulation of calcium influx in subsequently isolated liver mitochondria. The mechanism of this effect is investigated through simultaneous measurements of calcium uptake rate and mitochondrial membrane potential. This allows the measurement of the calcium uniporter conductance independent of hormonal effects on electron transport or respiration. Two experimental approaches are used. The first involves measuring the uptake of 40-50 nmol of Ca2+/mg of mitochondrial protein with the calcium dye antipyrylazo III; the second uses 45Ca2+ to follow uptake in the presence of 0.5 to 1.5 microM free calcium, buffered with HEDTA. In both cases a tetraphenyl phosphonium electrode is used to follow membrane potential, and membrane potential is varied using either malonate or butylmalonate in the presence of rotenone. The relative merits of these two approaches are discussed. The conductance of the calcium uniporter is found not to be stimulated by glucagon pretreatment. Also, the relative glucagon stimulation of both calcium influx and membrane potential is found to increase with increasing malonate concentration. These results imply that there is no direct stimulation of calcium uptake into liver mitochondria following glucagon treatment. The results are consistent with a glucagon stimulation of substrate transport, substrate oxidation, or a stimulation of electron transport resulting in an increased membrane potential and secondary stimulation of calcium uptake.  相似文献   

15.
The concentration of intracellular free calcium ions in the follicle wall cells and in the follicle cells of Rana temporaria in Ringer solution is 150 +/- 10 and in the follicle wall cells of Xenopus laevis, 220 +/- 10 nM. In a chloride-free saline, its concentration in the same cells is 2.5-3 times that in Ringer solution. Voltage-dependent Ca(2+)-channel blockers diltiazem and verapamil (100 microM) reduce the level of intracellular free calcium ions in R. temporaria follicle wall cells cultivated in a chloride-free saline to 170 +/- 20 nM, which practically does not differ from the level in Ringer solution. Inhibitors (100 microM) decrease the rate of "spontaneous" maturation of R. temporaria follicle-enclosed oocytes both in chloride-free and Ringer solutions. It was concluded that an increased level of intracellular free calcium ions in the follicle cells, among other factors, may determine the stimulating effect of the medium (Ringer or chloride-free solution) on "spontaneous" maturation of follicle-enclosed amphibian oocytes. Voltage-dependent calcium channels appear to be involved in Ca2+ influx into the cells.  相似文献   

16.
Cell polarization enables restriction of signalling into microdomains. Polarization of lymphocytes following formation of a mature immunological synapse (IS) is essential for calcium-dependent T-cell activation. Here, we analyse calcium microdomains at the IS with total internal reflection fluorescence microscopy. We find that the subplasmalemmal calcium signal following IS formation is sufficiently low to prevent calcium-dependent inactivation of ORAI channels. This is achieved by localizing mitochondria close to ORAI channels. Furthermore, we find that plasma membrane calcium ATPases (PMCAs) are re-distributed into areas beneath mitochondria, which prevented PMCA up-modulation and decreased calcium export locally. This nano-scale distribution-only induced following IS formation-maximizes the efficiency of calcium influx through ORAI channels while it decreases calcium clearance by PMCA, resulting in a more sustained NFAT activity and subsequent activation of T cells.  相似文献   

17.
Calcium uptake into filipin-treated bovine spermatozoa is completely inhibited by the uncoupler CCCP or by ruthenium red. Both Pi and mitochondrial substrates are required to obtain the maximal rate of calcium uptake into the sperm mitochondria. Bicarbonate and other anions such as lactate, acetate or beta-hydroxybutyrate do not support a high rate of calcium uptake. There are significant differences among various mitochondrial substrates in supporting calcium uptake. The best substrates are durohydroquinone, alpha-glycerophosphate and lactate. Pyruvate is a relatively poor substrate, and its rate can be greatly enhanced by malate or succinate but not by oxalacetate or lactate. This stimulation is blocked by the dicarboxylate translocase inhibitor, butylmalonate and can be mimiced by the non-metabolized substrate D-malate. The Ka for pyruvate was found to be 17 microM and 67 microM in the presence and absence of L-malate, respectively. The Ka for L-malate is 0.12 mM. It is suggested that in addition to the known pyruvate/lactate translocase there is a second translocase for pyruvate which is malate/succinate-dependent and does not transport lactate. In the presence of succinate, glutamate stimulates calcium uptake 3-fold, and this effect is not inhibited by rotenone. In the presence of glutamate plus malate or oxalacetate there is only an additive effect. It is suggested that glutamate stimulates succinate transport and/or oxidation in bovine sperm mitochondria. The alpha-hydroxybutyrate is almost as good as lactate in supporting calcium uptake. Since the alpha-keto product is not further metabolized in the citric acid cycle, it is suggested that lactate can supply the mitochondrial needs for NADH from its oxidation to pyruvate by the sperm lactate dehydrogenase x. Thus, when there is sufficient lactate in the sperm mitochondria, pyruvate need not be further metabolized in the citric acid cycle in order to supply more NADH.  相似文献   

18.
Spermine enhances electrogenic Ca2+ uptake and inhibits Na(+)-independent Ca2+ efflux in rat brain mitochondria. As a result, Ca2+ retention by brain mitochondria increases greatly and the external free Ca2+ level at steady-state can be lowered to physiologically relevant concentrations. The stimulation of Ca2+ uptake by spermine is more pronounced at low concentrations of Ca2+, effectively lowering the apparent Km for Ca2+ uptake from 3 microM to 1.5 microM. However, the apparent Vmax is also increased. At low Ca2+ concentrations, Ca2+ uptake is diffusion-limited. Spermine strongly inhibits Ca2+ binding to anionic phospholipids and it is suggested that this increases the rate of surface diffusion which reduces the apparent Km for uptake. The same effect could inhibit the Na(+)-independent efflux if the rate of efflux is limited by Ca2+ dissociation from the efflux carrier. In brain mitochondria (but not in liver) the spermine effect depends on the presence of ADP. In a medium that contains physiological concentrations of Pi, Mg+, K+, ADP and spermine, brain mitochondria sequester Ca2+ down to 0.1 microM and below, depending on the matrix Ca2+ load. Moreover, brain mitochondria under the same conditions buffer the external medium at 0.4 microM, a concentration at which the set point becomes independent of the matrix Ca2+ content. Thus, mitochondria appear to be capable of modulating calcium oscillations in brain cells.  相似文献   

19.
Polyamidoamino (PAMAM) dendrimer of generation 3.5 (G3.5) specific interactions with rat liver mitochondria were studied. Selected parameters of mitochondria (transmembrane potential and uptake of Ca2+ ions) were investigated after the exposure to G3.5 used at the concentration of 10, 30 and 50 microM and Ca2+ ions used at 1mM. The times of preincubation of isolated liver mitochondria with dendrimer were 5, 15 and 30 min at room temperature. The mitochondrial membrane potential was monitored spectrofluorimetrically by fluorescence quenching of Rhodamine 123 (Rh 123). The changes in calcium homeostasis upon dendrimer exposure were detected using flow cytometric analysis with Fluo-3. On the one hand the obtained results revealed an impact of the tested chemical on rat liver mitochondrial function. We found that dendrimer G3.5 in a concentration above 10 microM contributes to the reduction in the transmembrane potential and hinders in the influx of Ca2+ ions to mitochondria added externally, or accelerates their efflux from mitochondria. The most effective preincubation time was observed to be 15 min for all tested concentrations. On the other hand the combined treatment of dendrimer G3.5 with Ca2+ demonstrated the protective effect of G3.5 against mitochondrial depolarization caused by calcium ions. These preliminary studies suggest that tested dendrimer can significantly affect the mitochondria and modulate their functionality.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号