首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Staphylococcus aureus plasmid pE194 manifests a natural thermosensitivity for replication and can be established in several species, both gram positive and gram negative, thus making it attractive for use as a delivery vector. Like most characterized plasmids of gram-positive bacteria, pE194 generates single-stranded DNA. The direction of pE194 replication is clockwise, as determined by the strandedness of free single-stranded DNA. Significant homology exists between a 50-base-pair sequence in the origin of pE194 and sequences present in plasmids pMV158 (Streptococcus agalactiae), pADB201 (Mycoplasma mycoides), and pSH71 (Lactococcus lactis). We used an initiation-termination reaction, in which pE194 initiates replication at its own origin and is induced to terminate at the related pMV158 sequence, to demonstrate that pE194 replicates by a rolling-circle mechanism; the initiation nick site was localized to an 8-base-pair sequence.  相似文献   

2.
Plasmids pMV158 and pTB913, originating from Streptococcus agalactiae and a thermophilic Bacillus respectively, were sequenced to completion. Both contained a BA3-type minus origin of replication and an RSA-site, believed to constitute a site-specific recombination site. These two regions were more than 99% homologous to the corresponding regions of the Staphylococcus aureus plasmid pUB110. Deleting the BA3-type minus origin resulted in the accumulation of a considerable amount of single-stranded DNA, both in L. lactis subsp. lactis and B. subtilis, indicating that this minus origin was functional in both bacterial species. Like pUB110, both plasmids contained an open reading frame encoding a putative plasmid recombination enzyme (Pre protein), which was located downstream of the RSA-site. On the basis of sequence comparisons between pUB110, pMV158, pTB913, pT181, pE194, pNE131 and pT48 two distinct families of RSA-sites and Pre proteins could be distinguished.  相似文献   

3.
4.
The complete nucleotide sequence of a naturally occurring Staphylococcus aureus plasmid, pT48 (from S. aureus strain T48), has been determined. The 2475 bp plasmid confers inducible resistance to macrolide-lincosamide-streptogramin B (MLS) type antibiotics. It is similar to the constitutive MLS resistance plasmid, pNE131, from Staphylococcus epidermidis and shows homology with S. aureus plasmids pSN2 and pE194. It contains a palA structure homologous to that on S. aureus plasmid pT181. The open reading frame, ORF B, within the pSN2 homologous region has a frameshifted C-terminus, relative to pNE131, resulting in a smaller, 158 amino acid putative polypeptide. The pE194 homologous region has the ermC resistance determinant and retains the leader region, deleted in pNE131, required for inducible expression of an adenine methylase. Another naturally occurring S. aureus strain, J74, shows constitutive resistance to erythromycin and contains a small plasmid, pJ74, which is similar to pNE131 but with a different deletion in the leader sequence. The results are consistent with the translational attenuation model for ermC expression.  相似文献   

5.
pIH01, a small cryptic plasmid from Leuconostoc citreum IH3   总被引:1,自引:0,他引:1  
Park J  Lee M  Jung J  Kim J 《Plasmid》2005,54(2):184-189
A small cryptic plasmid pIH01 from Leuconostoc citreum IH3 was characterized. This 1.8-kb sized plasmid contains single open reading frame that encodes a RepC class protein (342 amino acids) and a conserved pT181-type double strand origin, suggesting a rolling circle replication mode. This putative replicase protein shows the highest similarity to a replicase from pFR18 plasmid of Leuconostoc mesenteroides FR52 (64% identity), one of the pT181-type rolling circle plasmid family and contains a strictly conserved RepC-type active site sequence of pT181 family. A shuttle vector that was developed on the basis of this cryptic plasmid by insertion of both erythromycin resistance gene (ermC) from pE194 and Escherichia coli ColE1 origin was able to transform Leuconostoc strains, Lactobacillus plantarum, and Lactococcus lactis. Therefore, pIH01 derivative plasmids might be useful for the manipulation of Leuconostoc strains.  相似文献   

6.
Summary Cointegrates involving pairs of compatible staphylococcal plasmids can be isolated either by co-selection during transduction (Novick et al. 1981) or by selection for survival at the restrictive temperature of a thermosensitive, replication defective plasmid in the presence of a stable one. Cointegrates are formed by recombination at two specific sites, RSA and RSB. RSB is present on each of six plasmids analyzed, namely pT181, pE194, pC194, pS194, pUB110, and pSN2, and RSA is present on two of these, pT181 and pE194. In this communication, it is shown that the RS represent short regions of homology (RSA is some 70 bp in length and RSB is about 30) embedded in largely non-homologous contexts and that the crossovers take place within these homologous regions. The pT181 and pE194 RSA sequences contain several mismatches which permit the localization of the crossover events to several different sites within the overall RS segment. The recombination system involved is therefore general (homology-specific) rather than site-specific (sequence-specific). Mismatches included within the crossover region are always corrected to the pT181 configuration. The cointegrates are therefore formed by a relatively efficient general rec system that recognizes short regions of homology and gives rise to Holliday junctions that probably involve very short heteroduplex overlaps. The sequence results are consistent with asymmetric single-strand invasion of a contralateral gap with nucleotide conversion by copying. It is noted that RSB has substantial homology with the par sequence of plasmid pSC101, suggesting that it may be involved in plasmid partitioning.  相似文献   

7.
pIP501 is a streptococcal conjugative plasmid which can be transmitted among numerous gram-positive strains. To identify a minimal mobilization (mob) locus of pIP501, DNA fragments of pIP501 were cloned into nonconjugative target plasmids and tested for mobilization by pIP501. We show that nonmobilizable plasmids containing a specific fragment of pIP501 are transmitted at high frequencies between Lactococcus lactis subsp. lactis strains if transfer (tra) functions are provided in trans by a pIP501 derivative. Independent transfer of the mobilized plasmid was observed in up to 44% of transconjugants. A 2.2-kb segment containing mob was sequenced. This DNA segment is characterized by three palindromes (palI, palII, and palIII) and a 202-amino-acid open reading frame (ORFX) of unknown function. The smallest DNA fragment conferring high frequency mobilization was localized to a 1.0-kb region (extending from pIP501 coordinates 3.60 to 4.60 on the 30.2-kb map) which contains palI (delta G = -27 kcal/mol [ca. -110,000 J/mol]). A 26-bp sequence identical to palI is present on pIP501, upstream of the plasmid copy control region. Further homologies with the palI sequence are also found with the related Enterococcus faecalis conjugative plasmid pAM beta 1. The region containing mob maps outside the previously described segment mediating pIP501 conjugation. Our results with recA strains indicate that the mob site is a hot spot for cointegrate formation.  相似文献   

8.
This work characterizes a recently discovered natural tetracycline-resistance plasmid called pMA67 from Paenibacillus larvae--a Gram-positive bacterial pathogen of honey bees. We provide evidence that pMA67 replicates by the rolling-circle mechanism, and sequence comparisons place it in the pMV158 family of rolling-circle replicons. The plasmid contains predicted rep, cop, and rnaII genes for control of replication initiating at a predicted double-strand origin. The plasmid has an ssoT single-strand origin, which is efficient enough to allow only very small amounts of the single-stranded DNA intermediate to accumulate. The overall efficiency of replication is sufficient to render the plasmid segregationally stable without selection in P. larvae and in Bacillus megaterium, but not in Escherichia coli. The plasmid is expected to be mobilizable due to the presence of a mob gene and an oriT site. The plasmid contains a tetL gene, whose predicted amino acid sequence implies a relatively ancient divergence from all previously known plasmid-encoded tetL genes. We confirm that the tetL gene alone is sufficient for conferring resistance to tetracyclines. Sequence comparisons, mostly with the well-characterized pMV158, allow us to predict promoters, DNA and RNA secondary structures, DNA and protein motifs, and other elements.  相似文献   

9.
The pBHR1 plasmid is a derivative of the small (2.6-kb), mobilizable broad-host-range plasmid pBBR1, which was isolated from the gram-negative bacterium Bordetella bronchiseptica (R. Antoine and C. Locht, Mol. Microbiol. 6:1785-1799, 1992). Plasmid pBBR1 consists of two functional cassettes and presents sequence similarities with the transfer origins of several plasmids and mobilizable transposons from gram-positive bacteria. We show that the Mob protein specifically recognizes a 52-bp sequence which contains, in addition to the transfer origin, the promoter of the mob gene. We demonstrate that this gene is autoregulated. The binding of the Mob protein to the 52-bp sequence could thus allow the formation of a protein-DNA complex with a double function: relaxosome formation and mob gene regulation. We show that the Mob protein is a relaxase, and we located the nic site position in vitro. After sequence alignment, the position of the nic site of pBBR1 corresponds with those of the nick sites of the Bacteroides mobilizable transposon Tn4555 and the streptococcal plasmid pMV158. The oriT of the latter is characteristic of a family of mobilizable plasmids that are found in gram-positive bacteria and that replicate by the rolling-circle mechanism. Plasmid pBBR1 thus appears to be a new member of this group, even though it resides in gram-negative bacteria and does not replicate via a rolling-circle mechanism. In addition, we identified two amino acids of the Mob protein necessary for its activity, and we discuss their involvement in the mobilization mechanism.  相似文献   

10.
pMV158, a non-self-transmissible plasmid encoding tetracycline resistance, was conjugally transferred from Enterococcus faecalis JH203 to Lactococcus lactis subsp. lactis IL1403. This transfer appeared to be dependent on the cotransfer of the conjugative plasmids pAM beta 1 or pIP501. Intraspecies conjugal transfer of pMV158 also occurred in strain IL1403. In contrast to the transfer from E. faecalis, transfer in IL1403 did not require the presence of a conjugative plasmid in the donor strain but, rather, appeared to be dependent on putative chromosomal functions in strain IL1403. The transfer of pMV158 from strain IL1403 required the presence of an active pMV158-encoded protein, which showed homology to the Pre (plasmid recombination enzyme) proteins encoded by several small plasmids extracted from Staphylococcus aureus, such as pT181.  相似文献   

11.
Characterization of a cryptic plasmid from Lactobacillus plantarum   总被引:11,自引:0,他引:11  
E E Bates  H J Gilbert 《Gene》1989,85(1):253-258
  相似文献   

12.
pT181 is a fully sequenced 4.4-kb 20 copy Tcr plasmid from Staphylococcus aureus. Its replication system involves a unique unidirectional origin embedded in the coding sequence for a plasmid-determined protein, RepC, that is required for initiation. When joined to a 55 copy carrier plasmid, pE194, pT181 excludes autonomous isologous replicons by inhibiting their replication. Two types of spontaneous pT181 copy mutants have been isolated, one that eliminates sensitivity to this inhibition and another that does not. A spontaneous 180-bp deletion, delta 144, eliminates both the inhibitory activity and sensitivity to it. This deletion increases copy number by 50-fold and RepC production by at least 10-fold. It is located directly upstream from the repC coding sequence and the deletion-bearing plasmid supports the replication of inhibitor-sensitive plasmids in cells containing active inhibitor. This effect is probably due to the overproduction of RepC by the delta 144 plasmid. On the basis of these results, it is suggested that RepC synthesis is negatively controlled by an inhibitor that is encoded directly upstream from the repC coding sequence and acts as a tareget set in the same region. It is likely, therefore, that pT181 replication rate is determined by the level of RepC.  相似文献   

13.
A Lactobacillus hilgardii plasmid, pLAB1000, was studied to understand the organization of autonomous replicons from lactobacilli. Two cassettes could be identified. First, the replication region consisted of a sequence coding for a replication protein (Rep) and its corresponding target site, similar to those from plasmids pUB110, pC194 (Staphylococcus aureus), pFTB14, pBAA1 (Bacillus sp.), and pLP1 (Lactobacillus sp.). Sequence analysis indicated the possible synthesis of an antisense RNA that might regulate Rep production. The results also suggested that pLAB1000 replicates via a single-stranded DNA intermediate, and a putative lagging-strand initiation site was found that had similarities to those of alpha 3, St-1, and G4 isometric bacteriophages. The second cassette of pLAB1000 consisted of a sequence coding for a putative mobilization protein (Mob) and its corresponding RSA site. This cassette was similar to those found in pT181, pUB110, pE194 (S. aureus), and pG12 (Bacillus sp.), and it was found to be conserved among different Lactobacillus plasmid replicons. The origin and evolution of these functional cassettes are also discussed.  相似文献   

14.
We present data which indicate that (i) the origin of replication of plasmids pT181 and pC221 can also function as termination signals; (ii) termination of replication occurs when a round of replication initiated either by RepC at the pT181 origin or by RepD at the pC221 origin reaches either of these origins, proving that the two plasmids cross-react for termination of replication; and (iii) the replication initiated at the origin of another staphylococcal plasmid, pE194, does not terminate at the origin of pT181 or pC221, indicating the existence of a specific relationship between the initiation and termination of a replication event.  相似文献   

15.
Abstract The complete nucleotide sequence of pNS1 (3879 bp), a tetracycline-resistance (TcR) plasmid drived from staphylococcal plasmid pTP5, has been determined and compared with that of the staphylococcal TcR plasmid pT181 [6]. The nucleotide sequences of the 2 plasmids are in agreement, except for 18 nucleotides, but these differences are significant in that they give rise to new open reading frames (ORFs). A short ORF-D is found in the copy control region, and the TcR region contains a single large ORF-A, that encodes the Tet protein (50 kDa). The upstream region of ORF-A contains 3 inverted repeat sequences, which can generate structures very similar in conformation of the structure of the control region of the inducible erythromycin-resistance gene of pE194.  相似文献   

16.
Promiscuous, rolling-circle replication plasmid pMV158 determines tetracycline resistance to its host and can be mobilized by conjugation. Plasmid pLS1 is a deletion derivative of pMV158 that has lost its conjugative mobilization ability. Both plasmids replicate efficiently and are stably inherited in Streptococcus pneumoniae. We have analyzed the effect of pMV158 and pLS1 carriage on the bacterial growth rate. Whereas the parental plasmid does not significantly modify the cell doubling time, pLS1 slows down the growth of the bacterial host by 8-9%. The bases of the differential burden caused by pMV158 and pLS1 carriage are not yet understood. The negligible cost of the pMV158 parental natural plasmid on the host might explain the prevalence of small, multicopy, rolling-circle replication plasmids, even though they lack any selectable trait.  相似文献   

17.
A number of small, multicopy plasmids from Gram-positive bacteria replicate by an asymmetric rolling-circle mechanism. Previous studies with several of these plasmids have identified a palindromic sequence, SSOA, that acts as the single-strand origin (SSO) for the replication of the lagging-strand DNA. Although not all the SSOA sequences share ONA sequence homology, they are structurally very similar. We have used an in vitro system to study the lagging-strand replication of several plasmids from Gram-positive bacteria using the SSOA sequences of pT181, pE194 and pSN2 as representative of three different groups of Staphylococcus aureus plasmids. In addition, we have investigated the lagging-strand replication of the pUB110 plasmid that contains an alternative single-strand origin, ssou. Our results confirm that RNA polymerase is involved in lagging-strand synthesis from both SSOA and ssou-type lagging-strand origins. Interestingly, while initiation of lagging-strand DNA synthesis of pUB110 occurred predominantly at a single position within ssou, replication of pT181, pSN2 and pE194 plasmids initiated at multiple positions from SSOA.  相似文献   

18.
pE194 is a small plasmid (isolated originally in Staphylococcus aureus) which confers erythromycin-inducible resistance to macrolide, lincosamide, and streptogramin type B (MLS) antibiotics. The nucleotide sequence of pE194 contains 3,728 base pairs (bp), corresponding to a molecular mass of 2.4 million daltons. By means of site-specific cleavage with restriction endonucleases and cloning resultant fragments, determinants of the two major biological functions of p E194, i.e., inducible MLS resistance and replication, could be localized and assigned to specific sequences in the plasmid. Restriction endonuclease TaqI cut pE194 at three sites. TaqI fragment A (1,443 bp) contained the determinant for inducible MLS resistance, whereas TaqI fragment B (1,354 bp) contained a determinant necessary for plasmid replication. Regulatory mutations resulting in constitutive expression of MLS resistance mapped in TaqI fragment A, whereas a mutation associated with elevated plasmid copy number was mapped in TaqI fragment B. Also mapping in TaqI fragment B was a plasmid replication determinant comprising two sets of inverted complementary repeat sequences, one of which spanned 124 bp and was adjacent to a second smaller set which was rich in guanine and cytosine residues. pE194 contained six open reading frames which were theoretically capable of coding for proteins with maximum molecular masses as follows (in daltons): A, 48,300; B, 29,200; C, 14,000; D, 13,900; E, 12,600; and F, 2,700. Insertion of plasmid pBR322 into the single PstI site located in frame A of pE194 resulted in a composite plasmid which could replicate in both Bacillus subtilis and Escherichia coli, suggesting that an intact polypeptide A is dispensable for both replication of pE194 and for MLS resistance. Frame B specified inducible MLS resistance, whereas frame F specified the putative peptide associated with the proposed B determinant translational attenuator. The extent to which frames C, D, and E, all contained in TaqI fragment B, were translated into polypeptide products is not known; however, a base change in frame E was found in a comparison between the high-copy-number mutant, cop-6, and the wild-type strains.  相似文献   

19.
20.
The streptococcal plasmid pMV158 encodes the relaxase protein, MobM, involved in its mobilisation. Purified MobM protein specifically cleaved supercoiled or single-stranded DNA containing the plasmid origin of transfer, oriT. Gel retardation and DNase I footprinting assays performed with DNA fragments containing the plasmid oriT provided evidence for specific binding of MobM by oriT DNA. Dissection of the MobM-binding sequence revealed that the oriT region protected by MobM spanned 28 nucleotides, and includes an inversely repeated sequence, termed IR2. MobM exhibits a high degree of similarity with the mob gene product of the Streptococcus ferus plasmid pVA380-1. Although the origins of transfer of pMV158 and pVA380-1 show 20% sequence divergence in a 24-bp sequence included in their oriT regions, the pMV158 MobM was able to cleave a supercoiled derivative of pVA380-1 in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号