首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycerate kinase (ATP: D-glycerate 2-phosphotransferase EC 2.7.1.31) is a key enzyme of glyconeogenesis from serine via hydroxypyruvate. A differential centrifugation of rat liver homogenate and an analysis of the particle fraction by sucrose density gradient centrifugation indicated that 72% and 26% of glycerate kinase are present in mitochondria and cytosol, respectively. A study on the intramitochondrial localization of the enzyme suggested that the mitochondrial glycerate kinase was present in inner membrane and/or matrix. It was found that dietary protein selectively induced mitochondrial glycerate kinase. This result suggested that mitochondrial glycerate kinase had a physiological function for gluconeogenesis from serin. However, the metabolic significance of the cytoplasmic enzyme was still unclear. The properties of solubilized-mitochondrial and cytosolic glycerate kinases were compared. However, no difference between the two enzymes could be found in the kinetic properties, thermal stability, molecular size or electrochemical properties. These results suggested that both enzymes originate from common genetic information. In order to elucidate the regulatory mechanism of the intracellular distribution of glycerate kinase in rat liver, the responses of mitochondrial and cytosolic glycerate kinases to an alteration of dietary protein were studied. The result suggested that an alteration of dietary protein content may regulate the distribution and the translocation of glycerate kinase to mitochondria and cytosol as well as the total amount of glycerate kinase.  相似文献   

2.
The distribution of glycerate kinase [ATP:D-glycerate 2-phosphotransferase, EC 2.7.1.31] in kidney was studied. This enzyme was found to be present in the renal cortex. By differential centrifugation of the homogenate and sucrose density gradient analysis, it was found that 42% and 60% of the renal glycerate kinase were localized in the cytosol and mitochondria, respectively. The mitochondrial enzyme appeared to be present in the inner membrane and/or matrix. No difference was found between the solubilized-mitochondrial and cytosolic glycerate kinase as regards kinetic properties, thermal stability, electrochemical properties, and molecular size. Immunochemical identity of these enzymes was demonstrated using a rabbit antibody against mitochondrial glycerate kinase purified from rat liver. Although the hepatic enzyme was induced by dietary protein (Kitagawa, Y., Katayama, H., & Sugimoto, E. [1979] Biochim. Biophys. Acta 582, 260--275), the renal enzyme in mitochondria and cytosol was not affected by dietary protein. These results on renal glycerate kinase are compared with those for the hepatic enzyme, and the regulatory mechanism for intracellular distribution of the enzymes is discussed.  相似文献   

3.
Intracellular localization of D-glycerate dehydrogenase (D-glycerate : NAD+ oxidoreductase, EC 1.1.1.29), one of the enzymes of the pathway for gluconeogenesis from serine via hydroxypyruvate, was studied by differential centrifugation. Almost all enzyme activity was found in cytosol. Since the major activities of two other enzymes, serine : pyruvate aminotransferase (EC 2.6.1.51) and glycerate kinase (ATP : D-glycerate 2-phosphotransferase, EC 2.7.1.31), of the pathway via hydroxypyruvate are localized in mitochondrial inner membrane and/or matrix, the possible localization of D-glyceratedehydrogenase in mitochondria was examined. Detailed analysis of mitochondrial fraction prepared by differential centrifugation indicated that rat liver mitochondria do not contain any D-glycerate dehydrogenase activity. Based on these results, a cooperative connection between mitochondria and cytosol in gluconeogenesis from serine via hydroxypyruvate is proposed. Possible mechanisms for transport of intermediates of the pathway via hydroxypyruvate across the mitochondrial membranes are also discussed.  相似文献   

4.
Precursor and mature forms of δ-aminolevulinate (ALA) synthase were purified to near homogeneity from chicken liver mitochondria and cytosol, respectively, and their properties were compared. The enzyme purified from mitochondria had apparently the same subunit molecular weight (65,000) as that of the native mitochondrial enzyme. The enzyme purified from the cytosol fraction, however, showed a subunit molecular weight of about 71,000, which was somewhat smaller than that estimated for the native cytosolic enzyme (73,000). The enzyme purified from liver cytosol seems to have been partially degraded by some endogenous protease during the purification, but may have the major part of the signal sequence. On sucrose density gradient centrifugation, the purified mitochondrial and cytosolic ALA synthases showed an apparent molecular weight of about 140,000, indicating that both enzymes exist in a dimeric form. The ALA synthase synthesized in vitro was also shown to exist as a dimer. Apparently the extra-sequence does not interfere with the formation of dimeric form of the enzyme. The purified cytosolic ALA synthase had a specific activity comparable to that of the purified mitochondrial enzyme. Kinetic properties of the two enzymes, such as the pH optimum and the apparent Km values for glycine and succinyl-CoA, were quite similar. The extra-sequence does not appear to affect the catalytic properties of ALA synthase. The isoelectric point of the cytosolic ALA synthase was 7.5, whereas that of the mitochondrial enzyme was 7.1. This suggests that the extra-sequence in the cytosolic enzyme may be relatively rich in basic amino acids.  相似文献   

5.
A study is presented of the cAMP-dependent phosphorylation in bovine heart mitochondria of three proteins of 42, 16 and 6.5 kDa associated to the inner membrane. These proteins are also phosphorylated by the cytosolic cAMP-dependent protein kinase and by the purified catalytic subunit of this enzyme. In the cytosol, proteins of 16 and 6.5 kDa are phosphorylated by the cAMP-dependent kinase. It is possible that cytosolic and mitochondrial cAMP-dependent kinases phosphorylate the same proteins in the two compartments.  相似文献   

6.
Mitochondrial and herpesvirus-specific deoxypyrimidine kinases.   总被引:13,自引:8,他引:5       下载免费PDF全文
To characterize and compare the thymidine (TdR) and deoxycytidine (CdR) kinase isozymes of uninfected and herpesvirus-infected cells: (i) the subcellular distribution of the isozymes has been studied; (ii) a specific assay for CdR kinase has been devised; (iii) the TdR kinase isozymes have been partially purified; and (iv) the purified enzymes have been analyzed by disc polyacrylamide gel electrophoresis, isoelectric focusing, and glycerol gradient centrifugation and by substrate competition and dCTP inhibition studies. The results indicate that there are interesting individual differences with respect to nucleoside acceptor specificity between the cytosol and mitochondrial pyrimidine deoxyribonucleoside kinases of uninfected cells and between the enzymes induced by different herpesviruses. In the cytosol of uninfected mouse, chicken, and owl monkey kidney cells, two different proteins, TdR kinase F and CdR kinase 2, catalyze the phosphorylations of TdR and CdR, respectively. TdR kinase F does not phosphorylate CdR, nor does CdR kinase 2 phosphorylate TdR. A second TdR kinase isozyme present in HeLa(BU25) mitochondria (TdR kinase B) also lacks CdR phosphorylating activity. In contrast, a genetically distinctive deoxypyrimidine kinase (TdR kinase A) of mouse, human, and chick mitochondria catalyzes the phosphorylation of both TdR and CdT. Three herpesviruses, marmoset herpesvirus and herpes simplex virus types 1 and 2, induce in the cytosol fraction of LM(TK-) mouse cells isozymes which share common properties with mitochondrial TdR kinase A, including the ability to catalyze the phosphorylation of both TdR and CdR. However, the herpesvirus-induced deoxypyrimidine kinases differ from mitochondrial TdR kinase A with respect to sedimentation coefficient, sensitivity to dCTP inhibition, and antigenic determinants. The herpesvirus-specific and the mitochondrial deoxypyrimidine kinases exhibit a preference for TdR over CdR as nucleoside acceptor. Pseudorabies virus and herpesvirus of turkeys induce cytosol TdR kinases resembling the other herpesvirus-induced TdR kinases in several properties, but like cellular TdR kinase F, the pseudorabies virus and herpesvirus of turkeys TdR kinases lack detectable CdR phosphorylating activities. Finally, a marmoset herpesvirus nutant resistant to bromodeoxyuridine, equine herpesvirus type 1, and Herpesvirus aotus induces neither TdR nor CdR phosphorylating enzymes during productive infections.  相似文献   

7.
Tyrosine protein kinase activity has been detected in the mitochondrial fraction purified from sarcoma 180 tumor cells. Following hypotonic disruption of mitochondria, tyrosine kinase activity appeared to cosediment with monamine oxidase, marker enzyme of mitochondrial outer membrane; meanwhile, serine and threonine kinases were found to be associated with the inner membrane and matrix of mitochondria. Mitochondrial tyrosine kinase(s) showed thermosensitivity and Mn2+ dependence, useful properties for its characterization and separation from tyrosine kinases associated with other particulate fraction and from serine and threonine kinases associated with mitochondria. Following in vitro incubation of mitochondria with labelled ATP as substrate and analysis by PAGE, a complex pattern of phosphotyrosine containing proteins with a major band of 50-55 kilodaltons resulted.  相似文献   

8.
1. The distribution of l-alanine-glyoxylate aminotransferase activity between subcellular fractions prepared from rat liver homogenates was investigated. The greater part of the homogenate activity (about 80%) was recovered in the ;total-particles' fraction sedimented by high-speed centrifugation and the remainder in the cytosol fraction. 2. Subfractionation of the particles by differential sedimentation and on sucrose density gradients revealed a specific association between the aminotransferase and the mitochondrial enzymes glutamate dehydrogenase and rhodanese. 3. The aminotransferase activities in the cytosol and the mitochondria are due to isoenzymes. The solubilized mitochondrial enzyme has a pH optimum of 8.6, an apparent K(m) of 0.24mm with respect to glyoxylate and is inhibited by glyoxylate at concentrations above 5mm. The cytosol aminotransferase shows no distinct pH optimum (over the range 7.0-9.0) and has an apparent K(m) of 1.11mm with respect to glyoxylate; there is no evidence of inhibition by glyoxylate. 4. The mitochondrial location of the bulk of the rat liver l-alanine-glyoxylate aminotransferase activity is discussed in relation to a pathway for gluconeogenesis involving glyoxylate.  相似文献   

9.
α-Ketoglutarate : glyoxylate carboligase activity has been reported by other laboratories to be present in mitochondria and in the cytosol of mammalian tissues; the mitochondrial activity is associated with the α-ketoglutarate decarboxylase moiety of the α-ketoglutarate dehydrogenase complex. The cellular distribution of the carboligase has been re-examined here using marker enzymes of known localization in order to monitor the composition of subcellular fractions prepared by differential centrifugation. Carboligase activity paralleled the activity of the mitochondrial matrix enzyme citrate synthase in subcellular fractions prepared from rat liver, heart and brain as well as from rabbit liver. Whole rat liver mitochondria upon lysis released both carboligase and citrate synthase. The activity patterns of several other extramitochondrial marker enzymes differed significantly from that of carboligase in rat liver. In addition, the distribution pattern of carboligase was similar to that of α-ketoglutarate decarboxylase and of α-ketoglutarate dehydrogenase complex.The data indicate that α-ketoglutarate : gloxylate carboligase activity is located exclusively within the mitochondria of the rat and rabbit tissues investigated. There is no evidence for a cytosolic form of the enzyme. Thus the report from another laboratory that the molecular etiology of the human genetic disorder hyperoxaluria type I is a deficiency of cytosolic carboligase must be questioned.  相似文献   

10.
Mutations found in PTEN-induced putative kinase 1 (PINK1), a putative mitochondrial serine/threonine kinase of unknown function, have been linked to autosomal recessive Parkinson's disease. It is suggested that mutations can cause a loss of PINK1 kinase activity and eventually lead to mitochondrial dysfunction. In this report, we examined the subcellular localization of PINK1 and the dynamic kinetics of PINK1 processing and degradation. We also identified cytosolic chaperone heat-shock protein 90 (Hsp90) as an interacting protein of PINK1 by PINK1 co-immunoprecipitation. Immunofluorescence of PINK1 protein and mitochondrial isolation show that the precursor form of PINK1 translocates to the mitochondria and is processed into two cleaved forms of PINK1, which in turn localize more to the cytosolic than mitochondrial fraction. The cleavage does not occur and the uncleaved precursor stays associated with the mitochondria when the mitochondrial membrane potential is disrupted. Metabolic labeling analyses show that the PINK1 processing is rapid and the levels of cleaved forms are tightly regulated. Furthermore, cleaved forms of PINK1 are stabilized by Hsp90 interaction as the loss of Hsp90 activity decreases PINK1 level after mitochondrial processing. Lastly, we also find that cleaved forms of PINK1 are degraded by the proteasome, which is uncommon for mitochondrial proteins. Our findings support a dual subcellular localization, implying that PINK1 can reside in the mitochondria and the cytosol. This raises intriguing functional roles that bridge these two cellular compartments.  相似文献   

11.
Most mitochondrial proteins are synthesized on cytosolic ribosomes and imported into mitochondria. Incubation of 35S-methionine labeled mitochondria from rat hepatocytes with proteins synthesized in a cell-free system, using messenger RNA from rat liver, dramatically increased the release of mitochondrial proteins and fragments thereof into the medium. Since the synthesized proteins include cytosolic precursors of mitochondrial proteins, our results strongly suggest that import of proteins from the cytosol into mitochondria influences the half-life of proteins in these organelles. The use of this simple approach — i.e. combining the study of protein import and exit with mitochondria — to further clarify intracellular protein turnover and its regulation is suggested.  相似文献   

12.
A new technique for single-step subcellular fractionation of adipose tissue homogenates by analytical sucrose density gradient centrifugation in a vertical pocket reorientating rotor is described. The density gradient distributions of mitochondrial and peroxisomal marker enzymes in brown and white adipose tissue of control and cold exposed rats are compared. The equilibrium density of brown fat mitochondria was found to be significantly increased compared with white fat mitochondria. GDP binding activity was localized solely to the mitochondria in both control and cold-adapted brown adipose tissue. Brown and white fat mitochondria fractions were isolated by differential centrifugation and the specific activities of various enzymes in the homogenate and mitochondrial preparations determined. The specific activity of creatine kinase in brown adipose tissue was found to be ten-fold higher than in white fat and subcellular fractionation studies showed the activity to have an exclusively cytosolic distribution in both tissues. GDP binding activity and some of the mitochondrial enzymes showed, in brown adipose, a striking increase in total activity in cold adapted rats compared to control animals. For some enzyme activities there was a small increase when expressed per mg tissue or per mg mitochondrial protein. When expressed per mg DNA i.e. per cell, there was a reduced specific activity of the mitochondrial and peroxisomal enzymes in both brown and white adipose tissue on cold adaptation.  相似文献   

13.
Whether or not various cytosolic protein kinases (and especially the type I cAMP-dependent protein kinase) of rat ventral prostate are specifically regulated with respect to total activity or specific activity by androgen has been investigated. Following androgen deprivation, the total activity per prostate of cAMP-dependent protein kinase (with histone as substrate) changed little at 24 h, declining by about 20% at 96 h. Under these conditions, its specific activity remained unaltered at 24 h, but was markedly enhanced at 96 h postorchiectomy. Type II cAMP-dependent protein kinase in rat ventral prostate cytosol was the only form of cAMP-dependent protein kinases present as determined by measurement of catalytic activity as well as [32P]-8-N3-cAMP binding to the regulatory subunits. There was no alteration in the distribution of the isoenzymes of cAMP-dependent protein kinases or the response of these kinase activities to cAMP owing to castration of animals. The prostatic cytosol also contains free regulatory subunit (with molecular weight similar to that of regulatory subunit R1) which coelutes with type II cAMP-dependent protein kinase. This finding was confirmed by using [32P]-8-N3-cAMP photoaffinity labeling of cAMP-binding proteins. With respect to cAMP-independent protein kinase (measured with dephosphophosvitin as substrate), a decline of 31% in its specific activity was observed in cytosol of prostates from rats castrated for a period of 24 h without significant further change at later periods following castration. However, there was a marked progressive reduction in total activity of this enzyme per prostate (loss of 72% at 96 h postorchiectomy). The increase in specific activity of cAMP-dependent, but not cAMP-independent, protein kinase in the face of decreasing total activity in the cytosol at later periods of castration (e.g., at 96 h) may reflect a slower loss of the former enzyme protein than the bulk of the cytosolic proteins. Administration of testosterone to castrated animals prevented these changes. These data do not indicate a specific regulation by steroid of the type I cAMP-dependent protein kinase in the prostate. Rather, the cAMP-independent protein kinase (with dephosphophosvitin as substrate) appears to be modulated by the androgenic status of the animal.  相似文献   

14.
Starvation, diabetes and insulin did not alter the concentration of casein kinases in rat liver cytosol. However, the Km for casein of casein kinase 2 from diabetic rats was about 2-fold lower than that from control animals. Administration of insulin to control rats did not alter this parameter, but increased the Km for casein of casein kinase 2 in diabetic rats. Starvation did not affect the kinetic constants of casein kinases. The effect of diabetes on casein kinase 2 persisted after partial purification of the enzyme by glycerol-density-gradient centrifugation and affected also its activity on other protein substrates such as phosvitin, high-mobility-group protein 14 and glycogen synthase. The results indicate that rat liver cytosol casein kinase 2 is under physiological control.  相似文献   

15.
Administration of T3 (20 micrograms/100 g BW) for 3 days increases phosphorylation of several proteins in rat liver cytosol in vitro. To help elucidate the mechanism of T3-induced phosphorylation, we studied which protein kinase(s) mediate phosphorylation of endogenous cytosolic proteins. Five different protein kinases were obtained by DEAE+ cellulose column chromatographic fractionation of liver cytosol. When their ability to phosphorylate heat-inactivated cytosol was investigated, casein kinase, a cAMP independent protein kinase, showed the strongest effect. Casein kinase, purified by phosphocellulose chromatography, phosphorylated more than 10 cytosolic proteins. Several T3-dependent (and cAMP independent) phosphoproteins were included among these. One protein with Mr 39 X 10(3), of which phosphorylation is stimulated by T3 within five hours after injection, was the most active substrate for casein kinase. The results suggest that casein kinase is the enzyme responsible for phosphorylation of many rat liver cytosolic proteins and that several phosphoproteins, apparently under T3-regulation, might be phosphorylated by this enzyme.  相似文献   

16.
Although protein kinase C, an enzyme dependent on calcium, phospholipid and diacylglycerol, has been found in high levels in ovarian tissues, its biologic function is yet unknown. In initial studies on the role of this enzyme in regulating ovarian functions, we compared protein kinase C activity in subcellular fractions of porcine corpora lutea and medium follicles. Highest protein kinase C-specific activities were found in the cytosol, followed by microsomes and mitochondria for both follicles and luteal tissues. Solubilization of all membrane-containing fractions by 0.2% Triton X-100 was required for full expression (a 4-fold average increase) of protein kinase activity. Extraction of membrane fractions with 0.5 M NaCl or sonication in a hypotonic medium revealed that 90% of the total mitochondrial protein kinase C activity and 50% of the microsomal activity was tightly membrane-bound. Characterization of both cytosolic and Triton X-100 extracted membrane preparations of luteal tissue by diethylaminoethyl (DEAE)-cellulose chromatography revealed a single peak of protein kinase C activity eluting at 80 mM NaCl. Cytosolic fractions of corpora lutea contained 3 times more protein kinase C-specific activity than did cytosolic fractions of follicles. In contrast, mitochondria from medium follicles contained 30% more specific protein kinase C activity than did luteal mitochondria. These higher cytosolic levels of protein kinase C-specific activity in corpora lutea suggest that the enzyme may play an important role in the process of luteinization or in the regulation of luteal function.  相似文献   

17.
(1) The association of ATP citrate lyase with mitochondria was studied with isolated rat hepatocytes and mitochondria. (2) When hepatocytes were treated with digitonin, about 25% of the lyase activity was released like a mitochondrial enzyme. (3) The effect of temperature on release of lyase from hepatocytes was different from that on the release of other cytosolic or mitochondrial enzymes. (4) The fraction of total hepatic lyase in mitochondrial preparations made with exogenous MgCl2 was 30 times greater than that for a cytosolic marker enzyme, phosphoglycerate kinase. (5) Lyase substrates enhanced the release of the enzyme both from hepatocytes and from isolated mitochondria. (6) The metabolic significance of association of ATP citrate lyase with mitochondria is discussed. (7) Data obtained in the course of these experiments indicate that less than 3% of adenylate kinase is cytosolic.  相似文献   

18.
Supernatant protein factor is a 46-kDa cytosolic protein that stimulates squalene monooxygenase, a downstream enzyme in the cholesterol biosynthetic pathway. The mechanism of stimulation is poorly understood, although supernatant protein factor belongs to a family of lipid-binding proteins that includes Sec14p and alpha-tocopherol transfer protein. Because recombinant human supernatant protein factor purified from Escherichia coli exhibited a relatively weak ability to activate microsomal squalene monooxygenase, we investigated the possibility that cofactors or post-translational modifications were necessary for full activity. Addition of ATP to rat liver cytosol increased supernatant protein factor activity by more than 2-fold and could be prevented by the addition of inhibitors of protein kinases A and C. Incubation of purified recombinant supernatant protein factor with ATP and protein kinases A or C delta similarly increased activity by more than 2-fold. Addition of protein phosphatase 1 gamma, a serine/threonine phosphatase, to rat liver cytosol reduced activity by 50%, suggesting that supernatant protein factor is partially phosphorylated in vivo. To determine whether dietary cholesterol influenced the phosphorylation state, cytosols were prepared from livers of rats fed a high fat diet. Although supernatant protein factor activity was reduced by more than one-half, it could not be restored by the addition of ATP or protein kinase C delta with ATP, suggesting that dietary cholesterol reduced the expression of this protein. Supernatant protein factor thus appears to be regulated both post-translationally through phosphorylation and at the level of expression. Phosphorylation may provide a means for the rapid short term modulation of cholesterol synthesis.  相似文献   

19.
Deoxyadenosine kinase (ATP: deoxyadenosine 5'-phosphotransferase, EC 2.7.1.76, AdR kinase) from rat liver mitochondria has been partially purified and compared with partially purified AdR kinase from the cytosol of the same biological material. Some physical properties of both enzymes, including molecular weight, gel electrophoresis and gel isoelectric focusing were investigated and considerable differences between these data for mitochondrial and cytosol AdR kinase were found.  相似文献   

20.
Two cAMP-independent protein kinases were purified from rat ventral-prostate and liver cytosol, and were designated PK-C1 and PK-C2 to distinguish them from the nuclear protein kinases described in the preceding paper. The yield of the prostate enzymes was about 5% each, and about 10% each for the liver enzymes. The average fold purification of the prostatic enzymes was 1892 and 3176 for protein kinase C1 and C2, respectively. Their average respective specific activity towards casein was 40,111 and 67,340 nmol 32P incorporated/hr per mg of enzyme protein. protein kinase C1 comprised one polypeptide of Mr 39,000 which underwent phosphorylation in the presence of Mg2+ + ATP. Protein kinase C2 comprised three polypeptides of Mr 41,000; 38,000; 26,000. Of these only the Mr 26,000 polypeptide was autophosphorylated. The Mg2+ requirement for protein kinase C1 and C2 was between 1 and 4 mM depending on the nature of the protein substrate. Both enzymes were stimulated by 100-200 mM NaCl. Km for ATP for C1 and C2 kinases was 0.01 mM; GTP could be used only by protein kinase C2 but with a markedly lower affinity. The enzymes were active towards casein, phosvitin, dephosphophosvitin, and spermine-binding protein in vitro, but demonstrated little activity towards histones. Despite several similarities in these general properties of cytosolic protein kinases C1 and C2 with those of nuclear protein kinases N1 and N2, a number of differences are also noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号