首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acrylamide gel electrophoresis of crude cellular extracts of Bacillus subtilis revealed the presence of two acetyl esterases. Esterase A, the slower migrating enzyme, was found to be present in both vegetative and sporulating cells, whereas esterase B activity was more abundant after exponential growth ceased. Both esterases were present in the supernatant fraction of lysed spheroplasts and in a disrupted spore preparation. Of four pleiotropic asporogenous mutants tested, three exhibited decreased esterase B activity. Esterases A and B were partially purified by differential precipitation and co-chromatographed on diethylaminoethyl (DEAE)-cellulose (pH 7.5) and DEAE-Sephadex (pH 8.5). By employing gel filtration chromatography, the two esterases were separated, and molecular weights of 160,000 and 51,000 were estimated for esterases A and B, respectively. Esterase A was further purified to electrophoretic homogeneity by differential heating and preparative starch block electrophoresis. Sodium dodecyl sulfate-acrylamide gel electrophoresis of purified esterase A yielded a single protein band with a molecular weight of 31,000. The pI values of esterases A and B were determined to be 6.4 and 5.4, respectively.  相似文献   

2.
A membrane-bound aldehyde dehydrogenase was solubilized from rat liver microsomes and purified about 150-fold by chromatography on ω-aminohexyl- and 5′-AMP-Sepharose columns with a recovery of about 40%. The purified enzyme was homogeneous upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis and its monomeric molecular weight was estimated to be 51,000. In aqueous solution, it existed as large, polymeric aggregates. Its activity towards straight-chain aliphatic aldehydes increased as their carbon chain length was increased at least up to dodecanal, whereas aldehyde dehydrogenase in the cytosolic fraction of rat liver was most active with hexanal as substrate.  相似文献   

3.
Purification and molecular properties of rabbit liver esterase ES-1A   总被引:1,自引:0,他引:1  
1. The isolation of esterase ES-1A from rabbit liver microsomes/lysosomes is reported. The purification as measured by methylbutyrate-hydrolysing activity, was about 27-fold with a recovery of 2.4%. 2. The resulting product is apparently homogeneous by polyacrylamide (gradient) gel electrophoresis and sodium dodecyl sulphate/polyacrylamide gradient gel electrophoresis after protein staining. The enzyme exhibits heterogeneity after staining for esterase activity and in isoelectric focusing. 3. The molecular mass of the native protein was found to be about 183 kDa (determined by gel filtration and polyacrylamide gel electrophoresis) with a subunit mass of about 63 kDa, indicating a trimeric structure of the enzyme, with subunits of equal size. 4. ES-1A is a glycoprotein and is classified as a carboxylesterase (EC 3.1.1.1). 5. The high degree of similarity of the properties of rabbit ES-1A with those of mouse ES-6A and rat ES-10 suggests that these three esterases may have a common evolutionary origin.  相似文献   

4.
Phenylacetic acid at 1.5 × 10-3 M inhibits the activity of some esterase isoenzymes from pea leaves separated by means of polyacrylamide gel electrophoresis. Some of the inhibited esterases show cholinesterase activity. Inhibition of the total activity has been demonstrated with a partially purified protein fraction from pea leaves containing choline esterase. The inhibition constant established after Dixon was 7.9 × 10-3 M and the type of inhibition was competitive.  相似文献   

5.
Two distinct L-asparaginase (EC 3.5.1.1) activities were detected in guinea pig liver: Asparaginase 1 and Asparaginase 2. Asparaginase 1 has been purified 272 fold from the crude homogenate; its molecular weight was evaluated by gel filtration to be about 150 000. The purified preparation was shown to be homogeneous by cellulose acetate strip and polyacrylamide disc-gel electrophoresis. Asparaginase 2 has been purified 63.5 fold from the crude homogenate. Its molecular weight was evaluated by gel filtration to be about 21 500. Cellulose acetate strip electrophoresis demonstrated two bands, one of which corresponded to Asparaginase 1 and the other to Asparaginase 2. Cellular fractionation in the ultracentrifuge, showed Asparaginase 1 to be present only in the cytosol fraction. Asparaginase 2 which was unstable at 105 000 X g seemed mostly localized in the mitochondria and secondarily in the cytoplasmic fraction.  相似文献   

6.
S-Adenosylmethionine synthetase exists in at least two distinct forms, alpha- and beta-forms, in adult liver. The beta-form was purified to homogeneity from the soluble fraction of rat liver with a yield of about 10%. An antiserum directed against the purified beta-form from rat liver was prepared by injecting the purified enzyme into a rabbit. Ouchterlony double diffusion analysis and immunochemical titrations revealed that the isozymes, alpha- and beta-forms, are identical. Thus, the alpha-form was isolated from rat liver as a single protein using immunoaffinity chromatography against the beta-form. The molecular weights of the beta- and alpha-forms were determined to be 48,000 each by sodium dodecyl sulfate disc gel electrophoresis, and about 100,000, and 200,000, respectively, by Sephacryl S-200 gel filtration. These results indicate that the beta-form consisted of two subunits of 48,000 daltons and the alpha-form of four subunits of 48,000 daltons. The sedimentation coefficient was calculated to be 5.5S for the beta-form and 8.0S for the alpha-form.  相似文献   

7.
To elucidate the mammalian system for synthesis of cobalamin coenzymes, microsomal NADPH-linked aquacobalamin reductase was purified and characterized. The enzyme was purified about 534-fold over rat liver microsomal fraction in a yield of about 32%. The purified enzyme was homogeneous in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and had a monomeric molecular weight of 79,000. The purified aquacobalamin reductase showed a high specific activity (about 55 mumol/min per mg protein) of NADPH-cytochrome c (P-450) reductase. About 33% of the NADPH-cytochrome c reductase activity found in the microsomal fraction was recovered in the final purified preparation. The activity ratio of NADPH-cytochrome c reductase/NADPH-linked aquacobalamin reductase was about 5.0 through the purification steps, indicating that the rat liver microsomal NADPH-linked aquacobalamin reductase is the NADPH-cytochrome c reductase.  相似文献   

8.
Total liver RNA has been isolated from normal and 8 day phenobarbital treated rats by guanidine thiocyanate β-mercaptoethanol extraction and fractionated by oligo (dT)-cellulose chromatography to yield poly (A+)-RNA. Poly (A+)-RNA from normal and phenobarbital treated rats have similar translational activity in the rabbit reticulocyte cell-free system. However major alterations occurred in the polypeptide products directed by these two classes of RNA. The translation products directed by 8 day phenobarbital poly(A+)-RNA were immunoprecipitated with rabbit IgG prepared against purified rat liver epoxide hydrase. The immunoprecipitate was subjected to SDS-polyacrylamide gel electrophoresis and the radioactive products detected by fluorography. Analysis of the fluorogram revealed that the major immunoprecipitable product co-electrophoresed with purified epoxide hydrase. These data suggest that the primary translation product of epoxide hydrase messenger RNA has the same molecular weight as the mature form of the enzyme.  相似文献   

9.
Total polysomal RNA of rat liver was translated in vitro in a rabbit reticulocyte lysate system. The translation products were mixed with a postnuclear supernatant fraction of rat liver and incubated post-translationally at 26 degrees C for 15-60 min. The import assay mixture was separated into a particulate fraction and supernatant by centrifugation, both of which were analyzed by immunoprecipitation with a goat antibody against rat liver peroxisomal proteins, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and fluorography. One peroxisomal translation product (Mr 72,000) appeared in the particulate fraction, was partly proteinase K-resistant, and addition of detergents prior to proteolysis abolished this resistance. In isopycnic centrifugation of the uptake assay mixture, the protease-resistant 35S-polypeptide of Mr 72,000 cosedimented with the peroxisomes. This translation product was identified immunochemically as fatty acyl-CoA oxidase; both before and after import it was indistinguishable in size from subunit A of the purified enzyme by prolonged sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When the cell-free translation products were incubated with highly purified peroxisomes, 35S-catalase entered peroxisomes (by the criterion of protease resistance), and its entry was stimulated by the addition of a high speed supernatant (cytosolic) fraction of rat liver. These results demonstrate the post-translational import into peroxisomes in vitro of at least two cell-free translation products.  相似文献   

10.
Liver cytochrome P-450 from rats treated intraperitoneally with troleandomycin (TAO) were solubilized and partially purified using DE 52 anion exchange chromatography. The major TAO-induced cytochrome P-450 form appears in fraction A which is not bound on the DE 52 column. It is different from the major form induced in rats by phenobarbital or 3-methylcholanthrene in terms of absolute visible spectroscopy, gel electrophoresis (M 45000) and reactions with antibodies. This TAO-induced form mainly exists in vivo as an iron-TAO metabolite complex and exhibits a characteristic Soret peak at 456 nm. Reconstitution experiments using this partially purified form, after dissociation of its iron-metabolite bond by ferricyanide treatment, underline its particular ability to demethylate TAO itself. TAO also leads to an important induction of other cytochromes P-450 that are present in fraction B (retained on DE 52 column) like the major phenobarbital-induced form, but are immunologically distinct from it.  相似文献   

11.
Purification and properties of a thiol protease from rat liver nuclei   总被引:1,自引:0,他引:1  
A thiol protease was purified about 800-fold from the chromatin fraction of rat liver by employing Sepharose 6B gel filtration, chromatofocusing and Sephadex G-100 gel filtration. It was nearly homogeneous on sodium dodecyl sulfate/polyacrylamide gel electrophoresis and its molecular weight was about 29000. The isoelectric point of the enzyme was 7.1. The pH optimum for degradation of 3H-labelled ribosomal proteins was 4.5. It is noticeable that the maximal activity was shifted to pH 5.5 by DNA, and that 30-40% of the maximal activity was observed at neutral pH in the presence of DNA. The activity was increased about twice by 2-4 mM dithiothreitol. The protease may be specific for the nuclei because it is different from all lysosomal thiol proteases ever known.  相似文献   

12.
A factor responsible for stimulating an increase in ornithine decarboxylase activity in the liver of mice was found in tumor cell-free ascites fluid of mice 3 days after inoculation of tumor cells. The factor was purified about 70-fold in 25% yield from tumor cell-free ascites fluid. As little as 1 μg of protein of purified fraction, injected intraperitoneally into normal mice, significantly increased the activity of ornithine decarboxylase in the liver. The most active preparation of the factor formed two major protein bands on analytical polyacrylamide gel electrophoresis and both these bands stained with periodic acid-Schiff's reagent. The factor was a heat-labile, alkaline-stable, acidic protein with a molecular weight of more than 300 000. It was inactivated by treatment with 10 mM dithiothreitol, 5M urea, pronase or mixed glycosidase, but was stable on treatment with DNAase, RNAase or neuraminidase.  相似文献   

13.
Isozymes of adenylate kinase (ATP:AMP phosphotransferase, EC 2.7.4.3) were purified from skeletal muscle and liver of rats to essentially homogeneous states by acrylamide gel electrophoresis and sodium dodecyl sulfate gel electrophoresis. The isozyme from muscle was purified by acidification to pH 5.0, and column chromatography on phosphocellulose, Sephadex G-75 and Blue Sepharose CL-6B, while that from liver was purified by column chromatography on Blue Sepharose CL-6B, Sephadex G-75 and carboxymethyl cellulose. By these procedures the muscle isozyme was purified about 530-fold in 29% yield, and the liver isozyme about 3600-fold in 27% yield from the respective tissue extracts. The molecular weights of the muscle and liver isozymes were estimated as about 23 500 and 30 500, respectively, by both sodium dodecyl sulfate gel electrophoresis and molecular sieve chromatography, and no subunit of either isozyme was detected. The isoelectric points of the muscle and liver isozymes were 7.0 and 8.1, respectively. The Km values of the respective enzymes for ATP and ADP were similar, but the Km(AMP) of the liver isozyme was about one-fifth of that of the muscle isozyme. Immunological studies with rabbit antiserum against the rat muscle isozyme showed that the muscle isozyme was abundant in muscle, heart and brain, while the liver isozyme was abundant in liver and kidney.  相似文献   

14.
Quantitation of microsomal components in ammonium sulfate fractions using a high-resolution sodium dodecyl sulfate-polyacrylamide gel electrophoresis system, and a comparison of these results with those from similar experiments on total liver microsomes has enabled us to identify and better characterize the interactions between microsomal electron transport components. It was found that: (1) phenobarbital decreased the amount of one protein component of approximately 50 000 molecular weight while increasing a component of very similar molecular weight; (2) only two proteins appeared to be associated with CO binding; (3) another protein of approximately 68 000 molecular weight, one of the glycoproteins found in liver microsomes, appears to be induced by phenobarbital pretreatment; (4) the induction of NADPH-cytochrome c reductase activity after phenobarbital pretreatment is not dependent on an increase in the known NADPH-dependent flavoprotein, but rather on the increase in some component found predominately in our most soluble sub-microsomal fraction. A very good separation of the above components was achieved by ammonium sulfate fractionation, e.g. simply on the basis of their solubility. This and the fact that the more-or-less soluble proteins were induced by phenobarbital or 3-methylcholanthrene respectively indicate that the solubility of membrane proteins plays a major role in the structure and function of microsomal membranes.  相似文献   

15.
Lysosomal α-glucosidase (EC 3.2.1.20) was purified from a lysosome-enriched fraction of rat liver using an improved procedure. A purification factor of 2900-fold was reached, with a yield of 35%. Polyacrylamide gel electrophoresis of the purified enzyme in nondenaturing conditions, or in the presence of SDS, showed only one band. However, a microheterogeneity among enzyme subunits was detected by high-resolution two-dimensional electrophoresis.  相似文献   

16.
Protein phosphatases assayed with phosphorylase alpha are present in the soluble and particulate fractions of rat thymocytes. Phosphorylase phosphatase activity in the cytosol fraction was resolved by heparin-Sepharose chromatography into type-1 and type-2A enzymes. Similarities between thymocyte and muscle or liver protein phosphatase-1 included preferential dephosphorylation of the beta subunit of phosphorylase kinase, inhibition by inhibitor-2 and retention by heparin-Sepharose. Similarities between thymocyte and muscle or liver protein phosphatase-2A included specificity for the alpha subunit of phosphorylase kinase, insensitivity to the action of inhibitor-2, lack of retention by heparin-Sepharose and stimulation by polycationic macromolecules such as polybrene, protamine and histone H1. Protein phosphatase-1 from the cytosol fraction of thymocytes had an apparent molecular mass of 120 kDa as determined by gel filtration. The phosphatase-2A separated from the cytosol of thymocytes may correspond to phosphatase-2A0, since it was completely inactive (latent) in the absence of polycation and had activity only in the presence of polycations. The apparent molecular mass of phosphatase-2A0 from thymocytes was 240 kDa as determined by gel filtration. The catalytic subunit of thymocyte type-1 protein phosphatase was purified with heparin-Sepharose chromatography followed by gel filtration and fast protein liquid chromatography on Mono Q column. The purified type-1 catalytic subunit exhibited a specific activity of 8.2 U/mg and consisted of a single protein of 35 kDa as judged by SDS-gel electrophoresis. The catalytic subunit of type-2A phosphatase from thymocytes appearing in the heparin-Sepharose flow-through fraction was further purified on protamine-Sepharose, followed by gel filtration. The specific activity of the type-2A catalytic subunit was 2.1 U/mg and consisted of a major protein of 34.5 kDa, as revealed by SDS-gel electrophoresis.  相似文献   

17.
Park J  Cho SY  Choi SJ 《BMB reports》2008,41(3):254-258
Lipase was purified from squid (Todarodes pacificus) liver in an attempt to investigate the possibility of applying the enzyme for biotechnological applications. Crude extract of squid liver was initially fractionated by the batch type ion exchange chromatography. The fraction containing lipase activity was further purified with an octyl-Sepharose column. Finally, lipase was purified by eluting active protein from a non-dissociating polyacrylamide gel after zymographic analysis. Molecular weight of the purified enzyme was determined to be 27 kDa by SDS-polyacrylamide gel electrophoresis. The enzyme showed the highest activity at a temperature range of 35-40 degrees C and at pH 8.0. The activity was almost completely inhibited at 1 mM concentration of Hg(2+) or Cu(2+) ion. Partial amino acid sequence of the enzyme was also determined.  相似文献   

18.
19.
Phosphofructokinase (ATP:D-fructose-6-phosphate 1-phosphotransferase, EC 2.7.1.11) was purified to homogeneity from pig livers. Polyclonal antibody against the enzyme was induced in a rabbit, and the IgG fraction was obtained by chromatography on a Protein A-Sepharose CL-4B column. The specific antibody was purified further by immunoaffinity chromatography on a phosphofructokinase-conjugated affinity column. Intermediate catabolic products of phosphofructokinase were extracted from fresh pig livers under conditions of inhibition of proteinases, concentrated by chromatography on an anti-phosphofructokinase IgG-conjugated affinity column, and purified by two-dimensional polyacrylamide gel electrophoresis. Their cross-reactivities to the purified phosphofructokinase were assessed by an immunoelectrotransfer blot method. The intact form of phosphofructokinase in pig liver was demonstrated as the major spot of 84 kDa on the blot. Polypeptides of 68, 64, 56, and 51 kDa showed apparent cross-reactivities to phosphofructokinase. The structural homology among them was confirmed by proteinase V8 digestion followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The possibility of artifacts in preparation was ruled out by an internal tracer method. Thus, it is concluded that the predominant isozyme of phosphofructokinase in pig liver (84 kDa) is in vivo degraded via intermediate catabolic products of 68, 64, 56, and 51 kDa.  相似文献   

20.
alpha-L-Iduronidase was purified about 100,000-fold from pig liver by employing column chromatography on cellulose phosphate (P11), concanavalin A-Sepharose 4B, heparin-Sepharose 4B, Toyopearl HW-55, Sephadex G-100 and chelating Sepharose 6B charged with cupric ions. The molecular mass of the purified enzyme was estimated to be 70 kDa by Sephadex G-100 column chromatography. The purified enzyme gave a single band on disc polyacrylamide gel electrophoresis without using sodium dodecyl sulfate. However, two separate components of 70 kDa and 62 kDa appeared when it was analyzed by SDS/polyacrylamide gel electrophoresis. These 70-kDa and 62-kDa components were confirmed as alpha-L-iduronidase immunochemically. The isoelectric points of these enzymes were both 9.1 as measured by isoelectric focusing in a polyacrylamide gel containing ampholine and sucrose. The optimal pH and Km values were 3.0-3.5 and 65 microM 4-methylumbelliferyl-alpha-L-iduronide, respectively. The purified enzyme was stable in the pH range 3.5-6.0 under conditions with or without 0.5 M NaCl. However, in the presence of 0.5 M NaCl, it was unstable at pH 3.0. Moreover, it was conversely stabilized at pH 7.0 in the presence of 0.5 M NaCl. Immunohistochemically, the enzyme was found in the Kupffer cells and was abundant on their lysosomal membranes. In liver cells, however, the immunohistochemical reaction was weak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号