首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The effect of Ca2+ in vitro on pregnenolone production rates under various incubation conditions by mitochondrial fractions fractions isolated from testes of normal rats and of rats after in vivo treatment with luteinizing hormone has been investigated. Concentrations of Ca2+ in the range of 0.1–0.5 mM stimulated succinate supported pregnenolone production in mitochondrial fractions from both control and luteinizing hormone treated testes. When mitochondrial fractions were isolated in 0.25 M sucrose without additions, Ca2+ in vitro increased succinate supported pregnenolone production rates in mitochondrial fractions isolated from control testes to a greater extent than in mitochondrial fractions, from luteinizing hormone treated testes. Production rates in control mitochondrial fractions, incubated in the presence of initial Ca2+ concentrations of 0.7 mM and higher were almost similar to production rates in relevant luteinizing hormone treated mitochondria.Pregnenolone production from endogenous substrates in mitochondrial fractions isolated in 0.25 M sucrose from control and luteinizing hormone treated testes incubated in the absence of added succinate and Ca2+, was maintained during 10–20 min.After longer incubation times no further steroid synthesis took place. Addition of 0.5 mM Ca2+ to the incubation medium at time zero slightly stimulated initial pregnenolone production rates in control mitochondrial fractions, but had no effect during prolonged incubations. Addition of 0.5 mM Ca2+ to mitochondrial fractions isolated from luteinizing hormone treated glands showed no effect either on initial production rate or during prolonged incubations.Pregnenolone production rates were maintained during 90 min in the presence of 20 mM succinate in the incubation medium. Under such conditions production rates during the first 20 min in mitochondrial fractions obtained from luteinizing hormone treated glands were approx. 3 times higher than in relevant control samples. Addition of 0.5 mM Ca2+ to the incubation medium containing 20 mM succinate markedly stimulated initial pregnenolone production rates in control mitochondrial fractions, but gave only a small stimulation of succinate-supported production rates in luteinizing hormone treated testicular mitochondrial fractions. These results indicate that Ca2+ in vitro can mimic the trophic effect of luteinizing hormone in vivo on mitochondrial pregnenolone production.Ageing of mitochondrial protein for 60 min at 33°C resulted in a marked increase in pregnenolone production rates in mitochondrial fractions obtained from control testes. The same treatement hardly influenced production rates in mitochondrial fractions isolated from luteinizing hormone treated testes. Ageing may have an effect on the ultrastructure of freshly prepared mitochondria, causing a change in the amount of cholesterol readily available for the enzyme complex.The gluco- and mucoprotein specific agent Ruthenium red (50–2000 ng/ml) did not inhibit pregnenolone production in either control or hormone treated testicular mitochondrial fractions, incubated in the absence of added Ca2+. the presence of 200–2000 ng Ruthenium red per ml incubation mixture.The present results have been discussed in relation to the possible involvement of Ca2+ in the molecular mechanism of short-term action of luteinizing hormone on testicular androgen production.  相似文献   

2.
The effect of Ca2+ in vitro on pregnenolone production rates under various incubation conditions by mitochondrial fractions isolated from testes of normal rats and of rats after in vivo treatment with luteinizing hormone has been investigated. Concentrations of Ca2+ in the range of 0.1-0.5 mM stimulated succinate supported pregnenolone production in mitochondrial fractions from both control and luteinizing hormone treated testes. When mitochondrial fractions were isolated in 0.25 M sucrose without additions, Ca2+ in vitro increased succinate supported pregnenolone production rates in mitochondrial fractions isolated from control testes to a greater extent than in mitochondrial fractions, from luteinizing hormone treated testes. Production rates in control mitochondrial fraction, incubated in the presence of initial Ca2+ concentrations of 0.7 mM and higher were almost similar to production rates in relevant luteinizing hormone treated mitochondria.  相似文献   

3.
Rat testicular interstitial fluid and hydroxycholesterol both stimulated testosterone production by isolated Leydig cells in vitro in a dose-dependent manner, but the dose-response lines were not parallel. The addition of cycloheximide blocked the stimulation by interstitial fluid but not that of hydroxycholesterol. Use of the compounds SU 10603 and cyanoketone (which inhibit 3 beta-hydroxysteroid dehydrogenase and 17 alpha-hydroxylase respectively) or aminoglutethimide (which acts on the cholesterol side-chain cleavage enzyme) showed that the stimulatory factor(s) in interstitial fluid stimulated steroidogenesis at the cholesterol side-chain cleavage enzyme, before the conversion of pregnenolone. This enzyme is rate-limiting in the synthesis of testosterone by Leydig cells and a site of action of LH; therefore, these results support the view that an interstitial fluid factor may be involved in the paracrine regulation of testicular steroidogenesis.  相似文献   

4.
An attempt has been made to correlate the rapid effect of luteinizing hormone on testicular steroid production in vivo with testicular steroid concentrations and in vitro steroid production rates in testis tissue preparations. Within 20 min after intravenous administration of 25 mug luteinizing hormone, increases were observed in testosterone concentrations in testicular venous plasma and in whole testis tissue and in pregnenlone concentrations isolated testis mitochondrial fractions. Testosterone production by whole testis homogenates and pregnenolone production by isolated mitochondrial fractions were significantly increased within 5 min after in vivo administration of luteinizing hormone. Injection of cycloheximide 10 min prior to luteinizing hormone prevented the stimulating effect of luteinizing hormone to steroid levels in testicular venous plasma and testis tissue and on steroid production rates by preparations of rat testis tissue. Cycloheximide treatment of control animals did not significantly alter testosterone concentrations and testosterone production rates vitro, although mitochondrial pregnenolone concentrations and production rates were decreased. Testosterone production by whole testis homogenates as well as the pregnenolone production by isolated mitochondrial fractions obtained from luteinizing hormone treated testes and control glands showed a biphasic time curve A period (5-10 min) of high steroid production was followed by a period lower steroid production. Addition of 25 mug luteinizing hormone or 10(-8)--10(-5) M adenosine 3':5'-monophosphate (cyclic AMP) to the incubation medium had no effect pregnenolone production by isolated mitochondrial fractions. Administration of leuteinizing hormone in vivo markedly enhance the stimulating effect of Ca2+ on testosterone production by whole testis homogenates and on pregnenolone production by isolated mitochondrial fractions.  相似文献   

5.
The rate limiting step in the production of steroids in the testis is the mitochondrial conversion of cholesterol to pregnenolone. This conversion can be stimulated by lutropin, but the precise interaction between lutropin-induced cytoplasmic factors and the mitochondrial activity in steroid production is as yet unknown. The results described in the present paper concern the steroid production of isolated mitochondrial fractions in recombination experiments with isolated supernatant fractions from total testes homogenates. Cyanoketone as well as SU-10603, an inhibitor of steroid 17α-hydroxylase activity are required to block pregnenolone metabolism. The results show that the cytoplasm contains lutropin-induced factor(s) which can exert its effect in vitro on the cholestorel side-chain cleavage activity in intact mitochondria isolated from control testes.  相似文献   

6.
A Leydig cell culture system has been used to study the in vitro modulation by luteinizing hormone (LH) of steroidogenesis in Leydig cells isolated from mice and immature rats. Mouse Leydig cells precultured for 24 h in the presence of increasing concentrations of LH (1 ng-1 microgram/ml) showed a dose-dependent decrease of the maximal LH-stimulated testosterone production. After pretreatment with 1 microgram LH/ml, maximal LH-stimulated testosterone production. After production in the presence of excess 20 alpha-hydroxycholesterol (a cholesterol side-chain cleavage substrate) were reduced to approx. 50% of control values. The possible site of action of LH is probably prior to pregnenolone, because testosterone production in the presence of excess pregnenolone was not affected by the LH pretreatment. Immature rat Leydig cells showed no decrease of maximal steroid production after 24 h culture in the presence of 1 microgram LH/ml. These results indicate that the regulation of the cholesterol side-chain cleavage activity during long-term LH action is different in mouse and rat Leydig cells. The properties of the cholesterol side-chain cleavage enzyme in mouse and rat Leydig cells were further investigated with different hydroxylated cholesterol derivatives as substrates. Steroid production by mouse Leydig cells in the presence of (22R)-22 hydroxycholesterol was similar as in the presence of LH. In contrast, steroidogenesis in rat Leydig cells in the presence of (22R)-22 hydroxycholesterol was at least 10-fold higher than in the presence of LH. It is concluded that the cholesterol side-chain cleaving enzyme in the mouse Leydig cell operates at its maximal capacity during short-term LH stimulation and can be inhibited after long-term LH action, whereas in the rat Leydig cell only a fraction of the potential activity is used during short-term LH stimulation, which is not affected during long-term LH action.  相似文献   

7.
In previous studies, nonlethal CdCl2 concentrations apparently inhibited basal Y-1 mouse adrenal tumor cell endogenous mitochondrial cholesterol conversion to pregnenolone. In addition, CdCl2 inhibited all agents stimulating both plasma membrane-dependent cAMP synthesis and 20-hydroxy-4-pregnen-3-one (20DHP) secretion. Bypassing the plasma membrane using dibutyryl-cAMP (dbcAMP) stimulated cytoplasmic cholesterol metabolism and 20DHP secretion in the presence of CdCl2. Since CdCl2 competed at metabolic steps requiring Ca2+ in other tissues, experiments were designed to examine Cd2+ competition with Ca2+ during steroidogenesis. Sets of cells incubated with either medium or adrenocorticotropin (ACTH) with or without CdCl2 were also treated with 0, 1.0, 5.0 or 10.0 mmol/L CaCl2 in the presence or absence of EGTA, a relatively specific Ca2+, but not Cd2+, chelating agent. Another experimental cell set incubated with either medium or ACTH, with or without CdCl2, was treated with or without 1 mmol/L A23187, an ionophore specifically facilitating extracellular Ca2+ transfer across plasma membranes. Besides determining Ca2+ involvement in steroidogenesis using steroid secretion as an endpoint, we directly measured Ca2+ concentrations using intracellular fura-2 fluorescence. Following loading with 2 mol/L fura-2, cells remained untreated or medium was infused with CdCl2, ACTH, ACTH/CdCl2 or ACTH followed after 50 s by CdCl2. Using Ca2+-supplemented media, we observed that Cd2+ inhibition of ACTH-stimulated 20DHP secretion was completely reversed. Standard Ca2+-containing medium supplemented with Ca2+ also enhanced maximally stimulated 20DHP secretion by ACTH. 20DHP secretion by ACTH-treated and ACTH/Cd2+-treated cells was only reduced by EGTA, when Ca2+ was not supplemented. The ionophore A23187 increased basal and ACTH-stimulated 20DHP secretion by Cd2+-treated cells, suggesting that extracellular Ca2+ resources may compete against Cd2+ effects on plasma membrane cAMP synthesis and on basal cholesterol metabolism by mitochondria. No time-dependent change in Ca2+ concentrations occurred within untreated cell suspensions. ACTH stimulation caused a 25 s burst in Ca2+ concentrations before returning to basal, steady-state levels. Cd2+ also stimulated intracellular fura-2 fluorescence. Untreated cell suspensions infused with Cd2+ exhibited a continuous rise in intracellular fluorescence. ACTH/CdCl2-treated cells exhibited a hyperbolic rise in intracellular fluorescence over the 300 s study period. Cells treated with Cd2+ 50 s after ACTH treatment initially exhibited the 25 s fluorescence burst followed by a Cd2+-induced hyperbolic rise in intracellular Cd2+. These fluorescence measurements suggested that cytoplasmic Ca2+ changes do not appear to be necessary for basal 20DHP synthesis and secretion; only a 25 s burst in intracellular Ca2+ is necessary to a slightly higher plateau level for stimulated 20DHP synthesis and secretion. Cd2+ freely enters the cell under basal conditions and Cd2+ entry is accelerated by ACTH stimulation. Data were consistent with Ca2+ being required for optimal stimulated steroid production and Cd2+ probably competing with Ca2+ during basal mitochondrial cholesterol metabolism and plasma membrane ACTH-stimulated cAMP generation.  相似文献   

8.
The effect of membrane potential on the activity of the ATP-dependent Ca2+ pump of isolated canine ventricular sarcolemmal vesicles were investigated. The membrane potential was controlled by the intravesicular and extravesicular concentration of K+, and the initial rates of Ca2+ uptake both in the presence and the absence of valinomycin were determined. The rate of Ca2+ uptake was stimulated by a inside-negative potential induced in the presence of valinomycin. The valinomycin-dependent stimulation was enhanced by the addition of K+ channel blocker, tetraethylammonium ion or Ba2+. The electrogenicity of cardiac sarcolemmal ATP-dependent Ca2+ pump is suggested from the increase of Ca2+ uptake by negative potential induced by valinomycin.  相似文献   

9.
Endozepine has recently been isolated from various steroid-forming organs. The following article explores the role of endozepine in the regulation of steroid synthesis. Steroid hormone synthesis from cholesterol begins in the inner mitochondrial membrane, where cytochrome P450 converts cholesterol to pregrenolone. Scientists thought that ACTH would stimulate this conversion, but experiments showed no such stimulation. However, addition of aminoglutethimide to block side-chain cleavage caused the expected reaction of ACTH to take place. Next the role of protein synthesis on the actions of ACTH was explored. Then endozepine was isolated from bovine fasciculata based on stimulation of pregnenolone production by freshly prepared mitochondria. After further experimentation it was concluded that endozepine is a peptide with at least two groups of actions: It binds GABAA receptors in the central nervous system, and it increases the mitochondrial synthesis of pregnenolone.  相似文献   

10.
The possible role of LH or dcAMP induced changes in polyphosphorylated phospholipid metabolism in the regulation of cholesterol side-chain cleavage activity has been studied in tumour Leydig cells. Mitochondria isolated from LH-stimulated Leydig cells were 400% more active in pregnenolone production than mitochondria from control cells. Steroid production in isolated mitochondria from control cells could be stimulated only 25% by cytosol fractions from stimulated cells and 100 microM phosphatidyl inositol-4'-phosphate (PtdIns4P). Other polyphosphorylated phospholipids were either inactive or showed aspecific effects. During a preincubation period tumour cells were labelled with [32P]phosphate and steady-state labelling was obtained for the pholyphosphorylated phospholipids after 40-60 min. [32P]Phosphate incorporation in Ptd Ins4P, phosphatidyl inositol (PtdIns), phosphatidyl choline (PtChl), phosphatidyl ethanolamine (PtdEtn) and cardiolipin (CL) was not affected by treatment of the Leydig cells with LH which stimulated (6-fold), or with cycloheximide which suppressed (4-fold) steroid production. A 25% increase of phosphate incorporation by LH was observed only in phosphatidyl inositol-4',5'-biphosphate (PtdIns4,5P2). 32P Incorporation in PtdIns4,5P2, PtdIns,PtdEtn and CL was stimulated by quinacrine 50 microM. Under these conditions the LH-stimulated pregnenolone production but not the 25-hydroxycholesterol dependent pregnenolone production, was completely inhibited. The results obtained with isolated mitochondria and intact cells indicate that increased levels of polyphosphorylated phospholipids are not consistently correlated with increased mitochondrial pregnenolone production. This argues against an important role of polyphosphorylated phospholipids in the hormonal regulation of cholesterol side-chain cleavage activity in tumour Leydig cells.  相似文献   

11.
The amination of α-ketoglutarate (α-KG) by NADH-glutamate dehydrogenase (GDH) obtained from Sephadex G-75 treated crude extracts from shoots of 5-day-old seedlings was stimulated by the addition of Ca2+. The NADH-GDH purified 161-fold with ammonium sulfate, DEAE-Toyopearl, and Sephadex G-200 was also activated by Ca2+ in the presence of 160 micromolar NADH. However, with 10 micromolar NADH, Ca2+ had no effect on the NADH-GDH activity. The deamination reaction (NAD-GDH) was not influenced by the addition of Ca2+.

About 25% of the NADH-GDH activity was solubilized from purified mitochondria after a simple osmotic shock treatment, whereas the remaining 75% of the activity was associated with the mitochondrial membrane fraction. When the lysed mitochondria, mitochondrial matrix, or mitochondrial membrane fraction was used as the source of NADH-GDH, Ca2+ had little effect on its activity. The mitochondrial fraction contained about 155 nanomoles Ca per milligram of mitochondrial protein, suggesting that the NADH-GDH in the mitochondria is already in an activated form with regard Ca2+. In a simulated in vitro system using concentrations of 6.4 millimolar NAD, 0.21 millimolar NADH, 5 millimolar α-KG, and 5 millimolar glutamate thought to occur in the mitochondria, together with 1 millimolar Ca2+, 10 and 50 millimolar NH4+, and purified enzyme, the equilibrium of GDH was in the direction of glutamate formation.

  相似文献   

12.
Substrate turnover rates by cytochrome P-450scc were measured in mitochondria isolated from corpora lutea and granulosa cells of follicles. Hydroxycholesterol substrates were added to the mitochondria to test the degree of saturation of the cytochrome with endogenous cholesterol during pregnenolone synthesis. 25-Hydroxycholesterol proved unsuitable for this since it was converted into pregnenolone with a maximum velocity of only 25% of that for cholesterol. 20 alpha-Hydroxycholesterol was found to be suitable providing correction was made for the one less hydroxylation required to convert this substrate into pregnenolone, compared to cholesterol. Mitochondria isolated from large follicles and corpora lutea displayed biphasic time courses for pregnenolone synthesis from endogenous cholesterol with a rapid phase lasting for 2-4 min and a slow phase which was linear for at least 30 min. Only a single rapid phase was observed for these mitochondria in the presence of 20 alpha-hydroxycholesterol. From the degree of stimulation of the substrate turnover rate by this steroid, it was concluded that the endogenous cholesterol concentration was saturating during the fast phase for large follicles but subsaturating in luteal mitochondria. Time courses for pregnenolone synthesis by mitochondria isolated from granulosa cells of small and medium follicles were linear for 30 min and gave a substrate turnover rate of 16-18 mol of steroid/min/mol of cytochrome P-450scc, similar to the turnover rates under saturating substrate conditions determined for large follicles and corpora lutea. The substrate turnover rate for cytochrome P-450scc in medium follicles was not increased by the addition of 20 alpha-hydroxycholesterol, indicating that the cholesterol concentration in the steroidogenic pool of these mitochondria was saturating and remained so over the 30-min duration of the incubation. It is therefore unlikely that gonadotropin stimulation of granulosa cells of small to medium follicles could acutely regulate pregnenolone synthesis by increasing the rate of transfer of cholesterol into a steroidogenic pool. This study shows that as the cytochrome P-450scc concentration in porcine ovarian mitochondria increases during follicular growth and luteinization there is a decrease in the fractional saturation of the cytochrome with cholesterol.  相似文献   

13.
Emerging findings suggest that two lineages of mitochondrial Ca2+ uptake participate during active and resting states: 1) the major eukaryotic membrane potential–dependent mitochondrial Ca2+ uniporter and 2) the evolutionarily conserved exchangers and solute carriers, which are also involved in ion transport. Although the influx of Ca2+ across the inner mitochondrial membrane maintains metabolic functions and cell death signal transduction, the mechanisms that regulate mitochondrial Ca2+ accumulation are unclear. Solute carriers—solute carrier 25A23 (SLC25A23), SLC25A24, and SLC25A25—represent a family of EF-hand–containing mitochondrial proteins that transport Mg-ATP/Pi across the inner membrane. RNA interference–mediated knockdown of SLC25A23 but not SLC25A24 and SLC25A25 decreases mitochondrial Ca2+ uptake and reduces cytosolic Ca2+ clearance after histamine stimulation. Ectopic expression of SLC25A23 EF-hand–domain mutants exhibits a dominant-negative phenotype of reduced mitochondrial Ca2+ uptake. In addition, SLC25A23 interacts with mitochondrial Ca2+ uniporter (MCU; CCDC109A) and MICU1 (CBARA1) while also increasing IMCU. In addition, SLC25A23 knockdown lowers basal mROS accumulation, attenuates oxidant-induced ATP decline, and reduces cell death. Further, reconstitution with short hairpin RNA–insensitive SLC25A23 cDNA restores mitochondrial Ca2+ uptake and superoxide production. These findings indicate that SLC25A23 plays an important role in mitochondrial matrix Ca2+ influx.  相似文献   

14.
In previous studies we demonstrated that peripheral-type benzodiazepine receptors (PBR) were coupled to steroidogenesis in several adrenocortical and Leydig cell systems (Mukhin, A.G., Papadopoulos, V., Costa, E., and Krueger, K.E. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 9813-9816; Papadopoulos, V., Mukhin, A.G., Costa, E., and Krueger, K.E. (1990) J. Biol. Chem. 265, 3772-3779). The current study elucidates the specific step in the steroid biosynthetic pathway by which PBR mediate the stimulation in steroid hormone production. The adrenocorticotropin (ACTH)-responsive Y-1 mouse adrenocortical cell line was used to compare the mechanisms by which ACTH and PK 11195 (a PBR ligand) stimulate steroidogenesis. The effects of these agents were studied at three stages along the steroid biosynthetic pathway: 1) secretion of 20 alpha OH-progesterone by Y-1 cell cultures; 2) pregnenolone production by isolated mitochondrial fractions; 3) quantities of cholesterol resident in outer and inner mitochondrial membrane fractions. Steroid synthesis stimulated by ACTH was blocked by cycloheximide, an effect documented by other laboratories characterized by an accumulation of mitochondrial cholesterol specifically in the outer membrane. In contrast, PK 11195-stimulated steroidogenesis was not inhibited by cycloheximide, and the magnitude of the stimulation was markedly enhanced when the cells were pretreated with cycloheximide and ACTH. When isolated mitochondria were used, stimulation of pregnenolone production by PK 11195 was largely independent of exogenously supplied cholesterol, indicating that PBR act on cholesterol already situated within the mitochondrial membranes. This phenomenon was found to be the result of a translocation of cholesterol from outer to inner mitochondrial membranes induced by the PBR ligand. These studies therefore suggest that mitochondrial intermembrane cholesterol transport in steroidogenic cells is mediated by a mechanism coupled to PBR.  相似文献   

15.
Stimulation of steroid production by isolated cat adrenocortical cells is partially dependent upon the presence of extracellular Ca2+ when elicited by prostacyclin (PGI2) and completely dependent upon extracellular Ca2+ when elicited by corticotropin. TMB-8, an intracellular Ca2+ antagonist, completely blocked PGI2-evoked steroid output in the absence of external Ca2+; this inhibition was partially reversed by the addition of Ca2+. The increase in secretion caused by corticotropin or PGI2 in the presence of Ca2+ was also reduced in a dose-dependent manner by TMB-8. The steroidogenic action of pregnenolone, which is induced by a Ca2+ independent mechanism, was not blocked by TMB-8, either in the presence or absence of Ca2+. Corticotropin significantly potentiated the Ca2+-independent aspect of PGI2 action. These studies provide evidence for an internal, PGI2-sensitive Ca2+ store in cat adrenocortical cells.  相似文献   

16.
The effect of cerium on mitochondria isolated from hybrid rice Shanyou 63 (Oryza sativa L) was investigated. Through in vivo culture, low dose Ce3+ promoted, but higher dose Ce3+, restrained mitochondrial heat production. However, through vitro incubation, Ce3+ showed only inhibitory action on mitochondrial energy turnover, the concentration required for 50% inhibition being 46.7 μM. In addition, Ce3+, like Ca2+, induced rice mitochondrial swelling and decreased membrane potential (△ψ), which was inhibited by the specific permeability transition inhibitor cyclosporine A (CsA). The induction approached a constant level while mitochondrial metabolism was fully prevented by Ce3+. These results demonstrated that cerium influenced rice mitochondria in vivo and in vitro via different action pathways, and the latter involved the opening of rice mitochondrial permeability.  相似文献   

17.
The effects of kaurenol, a diterpene alcohol, were evaluated on progesterone and cyclic AMP (cAMP) production in freshly dispersed avian granulosa cells. Kaurenol (50 microM) alone caused a fourfold increase in progesterone synthesis without a measurable influence on cAMP levels. When granulosa cells were challenged with near-maximally stimulating concentrations of LH (50 ng/ml) or forskolin (10 microM), kaurenol (10-100 microM) dose-dependently suppressed steroidogenesis. Similarly, cAMP production in response to LH and forskolin stimulation was also inhibited. When progesterone synthesis was stimulated by the addition of pregnenolone or 25-hydroxycholesterol substrates to the culture medium, the typical dose response to the latter precursor, but not to pregnenolone, was abolished by kaurenol. Whereas the mechanism of kaurenol's stimulatory effect on basal steroidogenesis remains unknown, it is suggested that its inhibitory action on LH- and forskolin-promoted progesterone production may be due to the inhibition of the adenylate cyclase cAMP effector system as well as to the impairment of the action of the mitochondrial cholesterol side chain cleavage enzyme system.  相似文献   

18.
The influence of cholesterol on the formation of a mitochondrial cyclosporin A-insensitive palmitate/Ca2+-activated pore has been studied. Loading of mitochondrial membranes with cholesterol increases the rate of mitochondrial swelling induced by palmitic acid (≥20 μM) and Ca2+ (30 μM). This effect is not related to changes in the functional activity of organelles, since cholesterol does not influence the mitochondrial respiration in different metabolic states. At the same time, palmitate/Ca2+-induced permeabilization of azolectin/cholesterol liposomes is more pronounced than that of azolectin liposomes. In the liposomal membrane, Ca2+ induces phase separation of palmitic acid into distinct membrane domains; the presence of cholesterol in membranes enhances this effect.  相似文献   

19.
1. Liver mitochondria suspended in an iso-osmotic buffered potassium chloride medium containing an oxidizable substrate and phosphate accumulated added Ca2+. During this process H+ appeared in the medium and the mitochondrial suspension showed increased light-scattering. Respiration was markedly stimulated. 2. The addition of excess of Ca2+, respiratory inhibitors or uncoupling agents caused extensive mitochondrial swelling associated with release of Ca2+ into the suspending medium. When the suspension became anaerobic extensive swelling also occurred. Only under conditions when the addition of uncoupling agents would have produced high rates of electron transport, e.g. in the presence of succinate, was the structural integrity of the mitochondrion maintained after Ca2+ accumulation. 3. Conditions that prevented respiration-dependent Ca2+ accumulation also prevented Ca2+-induced swelling. Bovine plasma albumin was without effect, indicating that U-factor was not involved. Oligomycin together with ADP or ATP partially stabilized the mitochondria against Ca2+-induced swelling. 4. It is suggested that a `high-energy' intermediate generated by coupled electron transport is required to prevent the mitochondrial swelling that results as a consequence of Ca2+ accumulation.  相似文献   

20.
To examine the factor affecting LH-induced progesterone production invitro in ovine luteal slices, an experimental procedure was employed wherein each slice served as its own control. The role of microfilaments in steroidogenesis was studied in luteal slices treated with cytochalasin B (an inhibitor of microfilament function). Cytochalasin B treatment resulted in significant reduction of progesterone production by luteal slices in response to LH and the addition of serum to the medium did not alter this effect. The ability of luteal slices to respond to LH with increased progesterone secretion was restored when cytochalasin B was removed from the medium. Further studies indicated that inhibition of LH-induced progesterone production by treatment with cytochalasin B was not a result of a change in: 1) cyclic adenosine 3'-5'-monophosphate production in response to LH; 2) mitochondrial membrane permeability to cholesterol; or 3) activity of 3β-hydroxysteroid dehydrogenase, Δ54-isomerase enzyme complex.The possibility existed that microfilaments were necessary for cholesterol transport to mitochondria in response to LH stimulation. However, mitochondrial cholesterol content was unchanged in response to LH in the presence or absence of aminoglutethimide (an inhibitor of cholesterol side-chain cleavage enzyme activity) as determined by uptake of 3H-cholesterol or total content determined by gas-liguid chromatography. Further, treatment with cytochalasin B had no effect on mitochondrial cholesterol content. These results suggest a role for microfilaments in LH-induced progesterone production at a point prior to the conversion of cholesterol to pregnenolone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号