首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alternaria brassicicola produced higher quantities (3.2 U/ml) of an inducible extracellular lipase (EC 3.1.1.3) in shaken synthetic medium supplemented with 20 mM methyloleate. After purification, the M r of the lipase was determined as 80 kDa by SDS-PAGE and estimated at 85 kDa using gel filtration, which suggest that the enzyme may be a monomer. The optimum pH and temperature for activity of the enzyme were 9.0 and 25ºC, respectively. Using umbelliferone esters, the lipase was shown highly specific towards a synthetic substrate with long-chain unsaturated fatty acid.  相似文献   

2.
The effects of bovine serum albumin on rat pancreatic lipase and bovine milk lipoprotein lipase were studied in a system of triacylglycerol emulsions stabilized by 1 1 mg/ml albumin. At concentrations greater than 1 mg/ml, albumin inhibited the activity of pancreatic lipase and interfered with enzyme binding to emulsified triacylglycerol particles. These effects could be countered by occupying five fatty acid binding sites on albumin with oleic acid. Following an initial lag period which increased with albumin concentrations, enzyme activity escaped from inhibition presumably due to saturation of fatty acid sites on albumin with oleic acid. Pancreatic lipase was active at 1 mg/ml albumin and 1 mM emulsion-bound oleic acid in the system. The effects of albumin on lipoprotein lipase were diametrically opposed to the above; enzyme activity was completely inhibited by 0.1 mM oleic acid, it increased with increasing fatty acid-free albumin concentrations and decreased as the fatty acid sites on albumin were filled. At 1 mM oleic acid and no added albumin the enzyme failed to bind at the oil water interface, whereas fatty acid-free or saturated albumin had no effect on binding. It is concluded that if the inhibition of pancreatic lipase by albumin is due to the inaccessibility of the enzyme to an oil-water interface blocked by denatured albumin, then albumin saturated with oleic acid would seem to be protected from unfolding at the interface and more readily displaced by the lipase. Pancreatic lipase and lipoprotein lipase, although sharing a number of common features, are distinct enzymes both functionally and mechanistically.  相似文献   

3.
To understand the structure-function relationship of the enzyme lipase the effect of acid pH on the activity of lipase has been followed using a number of physico-chemical techniques. Lipase from wheat/germ has S20,w value of 2.2 S and a molecular weight of 42,000 +/- 1,000. The enzyme has an intrinsic viscosity of 4.72 ml/g indicating it to be elongated in shape. With decrease in pH below 7.0 microenvironmental changes occur in the neighborhood of active site accompanied by minor conformational changes without any gross change in the hydrodynamic properties of the protein, as monitored with ultraviolet difference spectra, fluorescence spectra, viscosity and circular dichroism. The kinetics of the inactivation process has been established as consisting of a fast step and a slow step with a k value of 73/sec and 7.2/sec respectively. At extreme acid pH the enzyme reaggregates to a polymer arising out of hydrophobic interaction and the polymer has no activity.  相似文献   

4.
The gene coding for an extracellular lipase of Bacillus licheniformis was cloned using PCR techniques. The sequence corresponding to the mature lipase was subcloned into the pET 20b(+) expression vector to construct a recombinant lipase protein containing 6 histidine residues at the C-terminal. High-level expression of the lipase by Escherichia coli cells harbouring the lipase gene-containing expression vector was observed upon induction with IPTG at 30 degrees C. A one step purification of the recombinant lipase was achieved with Ni-NTA resin. The specific activity of the purified enzyme was 130 units/mg with p-nitrophenyl-palmitate as substrate. The enzyme showed maximum activity at pH 10-11.5 and was remarkably stable at alkaline pH values up to 12. The enzyme was active toward p-nitrophenyl esters of short to long chains fatty acids but with a marked preference for esters with C(6) and C(8) acyl groups. The amino acid sequence of the lipase shows striking similarities to lipases from Bacillus subtilis and Bacillus pumilus. Based on the amino acid identity and biochemical characteristics, we propose that Bacillus lipases be classified into two distinct subfamilies of their own.  相似文献   

5.
In this study, a correlation was sought between the circulating lipoprotein lipase activity and nutritional state in the rat. In fed rats, the plasma lipoprotein lipase activity was between 30 and 120 munits/ml, whereas after an overnight fast in restraining cages, the lipoprotein lipase plasma levels were between 280 and 500 munits/ml. The plasma lipoprotein lipase activity was inhibited by a specific high titre goat antiserum to rat lipoprotein lipase. No effect of fasting was seen on the plasma hepatic triacylglycerol lipase. 6 h after fasting, adipose tissue lipoprotein lipase decreased maximally, but plasma lipoprotein lipase was not changed and rose only after 16 h. Thus, it seems that most of the lipoprotein lipase activity in the fasting plasma was related to the 3-fold rise in lipoprotein lipase activity in the heart, which may represent total muscle lipoprotein lipase. The increase in heart lipoprotein lipase was due in part to an increase in the t1/2 of the enzyme from 1.2 to 2.9 h. To determine whether the high plasma levels in the fasting rats might result from impaired clearance of the enzyme by the liver, functional hepatectomy was carried out. 15 min after hepatectomy, plasma lipoprotein lipase rose up to 20-fold in fed and about 6-fold in fasting rats. Lipoprotein lipase activity extracted by the liver was calculated to be 30-60 munits/ml in the fed and 171-247 munits/ml plasma per min in fasting rats. An increase in lipoprotein lipase activity in extrahepatic tissues (heart, lung, kidney, diaphragm and adrenal) occurred 30 min after hepatectomy in fed rats. The increase in heart lipoprotein lipase was due to an increase in heparin-releasable fraction. Since no impairment of hepatic clearance of circulating plasma lipoprotein lipase was found, the high fasting plasma lipoprotein lipase activity may be related to an increase in enzyme synthesis, decreased enzyme turnover and an expansion of the functional pool in tissues such as the heart and probably muscle. The present findings indicate that measurement of endogenous plasma lipoprotein lipase can provide information with respect to the size of the functional pool under normal and pathological conditions.  相似文献   

6.
The amino acid composition of the purified extracellular lipase from Candida cylindracea was determined by ion-exchange chromatography with the use of an automatic amino acid analyzer, and a high content of hydrophobic amino acid residues was found. The enzyme was a glycoprotein, in which mannose and xylose were contained as carbohydrate components. Physical properties of the enzyme were the sedimentation coefficient of 4.7 × 10?13 (cm/sec.)/(dyne/g), the partial specific volume of 0.76 ml/g and the intrinsic viscosity of 0.085 dl/g, and its molecular weight was discussed.  相似文献   

7.
Mycelium-bound lipase (MBL) was prepared using a strain of Geotrichum candidum isolated from local soil. At the time of maximum lipase activity (54 h), the mycelia to which the lipase was bound were harvested by filtration and centrifugation. Dry MBL was prepared by lyophilizing the mycelia obtained. The yield of MBL was 3.66 g/l with a protein content of 44.11 mg/g. The lipase activity and specific lipase activity were 22.59 and 510 U/g protein, respectively. The moisture content of the MBL was 3.85%. The activity of free (extracellular) lipase in the culture supernatant (after removal of mycelia) was less than 0.2 U/ml. The MBL showed selectivity for oleic acid over palmitic acid during hydrolysis of palm olein, indicating that the lipase from G. candidum displayed high substrate selectivity for unsaturated fatty acid containing a cis-9 double bond, even in crude form. This unique specificity of MBL could be a direct, simple and inexpensive way in the fats and oil industry for the selective hydrolysis or transesterification of cis-9 fatty acid residues in natural triacylglycerols.  相似文献   

8.
A lipase gene SR1 encoding an extracellular lipase was isolated from oil-contaminated soil and expressed in Escherichia coli. The gene contained a 1845-bp reading frame and encoded a 615-amino-acid lipase protein. The mature part of the lipase was expressed with an N-terminal histidine tag in E. coli BL21, purified and characterized biochemically. The results showed that the purified lipase combines the properties of Pseudomonas chlororaphis and other Serratia lipases characterized so far. Its optimum pH and temperature for hydrolysis activity was pH 5.5-8.0 and 37°C respectively. The enzyme showed high preference for short chain substrates (556.3±2.8 U/μg for C10 fatty acid oil) and surprisingly it also displayed high activity for long-chain fatty acid. The deduced lipase SR1 protein is probably from Serratia, and is organized as a prepro-protein and belongs to the GXSXG lipase family.  相似文献   

9.
从大量霉菌中选育到一株具有较高富马酸酶活性的温特曲霉(Aspergillus wentii) A5-61。在摇瓶培养条件下,32℃ 96小时,产L-苹果酸达10.49g/100ml,对富马酸的转化率达90.80%。利用菌体细胞,进行酶转化试验,结果表明:1.6g湿菌体接入25ml含富马酸10.0%(用NaOH中和至pH7.0)的转化液中,35℃16~24小时,连续转化三次,分别产生L—苹果酸9.61g/100ml、9.73g/100ml、6.93g/100ml。对菌体整体细胞酶学性质的研究表明,其最适反应温度35℃,最适反应pH7.0,Cu2+对该酶有明显的抑制作用,该酶的Km=0.154mol/L,Vmax=0.0571mol/L·h。  相似文献   

10.
Direct binding and characterization of lipase onto magnetic nanoparticles   总被引:4,自引:0,他引:4  
Lipase was covalently bound onto Fe(3)O(4) magnetic nanoparticles (12.7 nm) via carbodiimide activation. The Fe(3)O(4) magnetic nanoparticles were prepared by coprecipitating Fe(2+) and Fe(3+) ions in an ammonia solution and treating under hydrothermal conditions. The analyses of transmission electron microscopy (TEM) and X-ray diffraction (XRD) showed that the size and structure of magnetic nanoparticles had no significant changes after enzyme binding. Magnetic measurement revealed the resultant lipase-bound magnetic nanoparticles were superparamagnetic with a saturation magnetization of 61 emu/g (only slightly lower than that of the naked ones (64 emu/g)), a remanent magnetization of 1.0 emu/g, and a coercivity of 7.5 Oe. The analysis of Fourier transform infrared (FTIR) spectroscopy confirmed the binding of lipase onto magnetic nanoparticles. The binding efficiency of lipase was 100% when the weight ratio of lipase bound to Fe(3)O(4) nanoparticles was below 0.033. Compared to the free enzyme, the bound lipase exhibited a 1.41-fold enhanced activity, a 31-fold improved stability, and better tolerance to the variation of solution pH. For the hydrolysis of pNPP by bound lipase at pH 8, the activation energy within 20-35 degrees C was 6.4 kJ/mol, and the maximum specific activity and Michaelis constant at 25 degrees C were 1.07 micromol/min mg and 0.4 mM, respectively. It revealed that the available active sites of lipase and their affinity to substrate increased after being bound onto magnetic nanoparticles.  相似文献   

11.
An isolate exhibiting high extracellular lipolytic activity was identified as Pseudomonas gessardii by 16S rDNA gene sequence analysis. The slaughterhouse waste, goat tallow, was used as a lipid substrate for the production of acidic lipase by P. gessardii. The maximum lipase activity of 156 U/ml was observed at an acidic pH of 3.5 and at 0.31 g substrate concentration. The purification steps resulted in the isolation of acidic lipase with a specific activity of 1,473 U/mg and a molecular weight of 94 kDa. One interesting feature of this purified lipase is its stability at highly acidic pH ranging from 2.0 to 5.5 with a high molecular weight. The amino acid composition was determined using HPLC. This acidic lipase has potential applications in the medicinal field as a substitute for pancreatic lipases for enzyme therapy, oleochemical and in biotechnological industries.  相似文献   

12.
An enzyme-linked immunoassay for lipoprotein lipase   总被引:8,自引:0,他引:8  
Polyclonal antibodies against bovine milk lipoprotein lipase (LPL) were used to generate an enzyme-linked immunosorbent assay (ELISA) for rat LPL. The antibodies to LPL were affinity purified on bovine LPL columns and were shown to be specific for LPL by immunoprecipitation and enzyme inhibition. The solid-phase ELISA was sensitive from 1.0 to 20 ng/ml of LPL and paralleled enzyme activity. Denatured rat LPL showed the same LPL mass as undenatured samples, allowing LPL mass to be quantitated effectively in a variety of rat tissue extracts.  相似文献   

13.
A fluorimetric assay for lipase activity has been optimized for measurement of the enzyme in human neutrophils. Activity was maximal at acid (4.5) and alkaline (9.5) pH, although there was also a neutral peak of activity at pH 6.5. Neutrophils were homogenised in isotonic sucrose and subjected to analytical subcellular fractionation by sucrose density gradient centrifugation. The gradient fractions were assayed for acid, neutral and alkaline lipase activity and for the principal organelle marker enzymes. Neutral lipase showed a unimodal distribution with an equilibrium density of 1.19 g . cm-3, corresponding to the distribution of particulate leucine aminopeptidase. Acid and alkaline lipase activities showed very similar distribution profiles to each other with both soluble components and a broad peak of particulate activity. The broad modal density of 1.19-1.22 g . cm-3 suggests that acid and alkaline lipase activities could be localised to more than one population of cytoplasmic granule. Fractionation experiments with neutrophils homogenised in sucrose medium containing digitonin confirmed the localisation of neutral lipase and leucine aminopeptidase to the same cytoplasmic granule, and suggested that at least part of the acid lipase activity was localised to the specific granule. No lipase activity could be attributed to the alkaline phosphatase-containing granule. Neutrophils were isolated from control subjects, patients with chronic granulocytic leukaemia and women in the third trimester of pregnancy. The specific activity of acid, neutral and alkaline lipase, and leucine aminopeptidase, in contrast to that of alkaline phosphatase, were similar in the three patient groups.  相似文献   

14.
以短小芽孢杆菌HZbp总DNA为模板以PCR的方式获得512 bp的脂肪酶基因,并在该基因的两端引入了EcoR1和Sal1的酶切位点,将该基因与大肠杆菌表达质粒pSE380连接,获得重组质粒pSE380-BPL。重组质粒转入大肠杆菌表达细胞株BL21,获得工程菌株BL21-BPL。序列分析显示所克隆的基因具有脂肪酶的保守G-X-S-X-G序列,SDS-PAGE电泳显示该脂脂肪酶的分子质量约为20 kDa。在LB培养基中,IPTG诱导浓度为1.0 mmol/L,33℃诱导培养10 h后,发酵液酶活达到8 U/mL。  相似文献   

15.
Gallic acid (3, 4, 5‐ trihydroxybenzoic acid) is an important antioxidant, anti‐inflammatory, and radical scavenging agent. In the present study, a purified thermo‐tolerant extra‐cellular lipase of Bacillus licheniformis SCD11501 was successfully immobilized by adsorption on Celite 545 gel matrix followed by treatment with a cross‐linking agent, glutaraldehyde. The celite‐bound lipase treated with glutaraldehyde showed 94.8% binding/retention of enzyme activity (36 U/g; specific activity 16.8 U/g matrix; relative increase in enzyme activity 64.7%) while untreated matrix resulted in 88.1% binding/retention (28.0 U/g matrix; specific activity 8.5 U/g matrix) of lipase. The celite‐bound lipase was successfully used to synthesis methyl gallate (58.2%), ethyl gallate (66.9%), n‐propyl gallate (72.1%), and n‐butyl gallate (63.8%) at 55oC in 10 h under shaking (150 g) in a water‐free system by sequentially optimizing various reaction parameters. The low conversion of more polar alcohols such as methanol and ethanol into their respective gallate esters might be due to the ability of these alcohols to severely remove water from the protein hydration shell, leading to enzyme inactivation. Molecular sieves added to the reaction mixture resulted in enhanced yield of the alkyl ester(s). The characterization of synthesised esters was done through fourier transform infrared (FTIR) spectroscopy and 1H NMR spectrum analysis. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:715–723, 2015  相似文献   

16.
The source of the lipase(s) acting in the stomach was investigated in five animal species: rat, mouse (rodents), rabbit (lagomorphs), guinea pig (caviidae), baboon and human (primates). The activity of lingual and gastric lipases was quantitated in homogenates of lingual serous glands and of gastric mucosa, respectively, by the hydrolysis of tri[3H]oleylglycerol and is expressed in units/g (1 U = 1 mumol [3H]oleic acid released/min) per g tissue wet weight, mean +/- S.E. There were marked differences in the activity level of lingual and gastric lipases among species: mouse and rat had high levels of lingual lipase activity (250 +/- 20 and 824 +/- 224 U/g) and only traces of gastric lipase activity (4.5 +/- 0.9 and 0.04 U/g, respectively), whereas rabbit and guinea pig had no lingual lipase activity and only gastric lipase activity (78 +/- 48 and 27 +/- 7.4 U/g, respectively). In the baboon and human, gastric lipase was the predominant enzyme (109 +/- 20 U/g and 118 +/- 8.8 U/g, respectively), whereas lingual lipase activity was present in trace amounts only (0.04 U/g and 0.3 U/g, respectively). In addition to species differences in the origin of the preduodenal lipases, there were also species differences in the distribution of gastric lipase in the stomach. Thus, while in the rabbit, gastric lipase was localized exclusively in the cardia and body of the stomach, it was diffusely distributed in the entire stomach of the guinea pig and baboon. A comparison between the level of activity of lipase and pepsin (the two chief digestive enzymes secreted by the stomach), showed differences in their localization in the species studied. The difference in source (tongue vs. stomach) and site (cardia-body vs. entire stomach) of lipase secretion must be taken into account in future studies of these digestive enzymes. Although the exact contribution of lingual and gastric lipases individually to fat digestion in species which contain both enzymes cannot yet be evaluated, the markedly higher levels of gastric lipase activity in the baboon and human suggests that, in primates, gastric lipase is probably the major non-pancreatic digestive lipase.  相似文献   

17.
一株耐热脂肪酶产生菌的筛选及酶学性质研究   总被引:2,自引:0,他引:2  
从云南省富油地采取了60份土样中,利用透明圈法筛选出一株耐热脂肪酶产生菌。对其酶学性质和发酵条件进行了研究,酶学性质表明,该酶最适作用温度为50℃,最适pH6.0,在pH3.0-8.0范围内稳定,在60℃保温60 min酶活还保留70%;70℃保温60 min残余50%;具有良好的热稳定性;不同金属离子有不同的作用,Ca+,K+对酶有激活作用,Fe3+、Pb2+、Mn2、Cu2+、Al3+、Zn2+对酶活有抑制作用。EDTA对酶影响不大。产酶最佳条件为:MgSO4.7H2O 0.05 g,K2HPO40.1 g,CaCO30.25 g,可溶性淀粉2.5 g,大豆粉2.5 g,装液量50 mL。这株细菌通过培养基优化酶活达到20.3 U/mL。  相似文献   

18.
19.
Summary A search was implemented for a microbial lipase capable of bioconverting a diester (dimethyl 5-(3-(2-(7-chloroquinolin-2-yl)ethyl)phenyl)4,6-dithianon to its S-ester acid, an intermediate in the production of Verlukast (a leukotriene receptor antagonist). Required properties of the sought-after enzyme included a high enantiomeric selectivity (e.e. >98%), the formation of only trace amounts of diacid and a high bioconversion rate. This search yielded 57 lipase-producing microorganisms, 18 of which presented detectable bioconversion activity. Thirteen of these microbes were selected for further study based upon their lipase production level and enzyme stability at harvest. Despite their common enzymatic property, namely the hydrolysis of triglycerides, these lipase preparations presented diverse ester acid specific synthesis rates (from <0.01 g/unit/h to 0.98 g/unit/h) and diacid formation levels (from 0% to 35%). One of these microbes, identified asPseudomonas aeruginosa (strain MB 5001), was found to produce a lipase having all of the above-listed required properties. The initial fermentation process developed in shake flasks was rapidly and successfully scaled up in 23-liter labora bioreactors, achieving a maximum production of 35 units/ml of lipase after 48 h of cultivation.  相似文献   

20.
Sucrose, trehalose, and mannitol were colyophilized with lipase from Burkholderia cepacia and their effects on the activity and enantioselectitivity of the enzyme evaluated using as model reactions the transesterification between n-octanol or 6-methyl-5-hepten-2-ol with vinyl acetate. The lipase co-lyophilized with sugars showed an activity which was up to 4.7-fold higher (at a sugar/lipase ratio >or= 20) than that observed without sugar. Analogously, lipase enantioselectivity, expressed as the enantiomeric ratio, increased up to 2.8-fold in the presence of sugars. The conformation of the lipase was investigated by means of Fourier transform infrared spectroscopy (FT/IR) in water and as lyophilized powder. The infrared spectra of lyophilized lipase in the presence and, even more so, in the absence of sugars were different from that of the enzyme in water. In particular, the band at around 1,654/cm, typically assigned to alpha-helix, was less intense in the lyophilized samples. Nevertheless, the enzyme in the presence of sugars showed a decrease of the bands at 1,614-1,620/cm and at 1,680-1,695/cm that indicates a lower content of intermolecular beta-sheets (typical of protein aggregates). Additionally the increase of the component at 1,546/cm in the amide II region is consistent with a hydrogen bond pattern of the enzyme more similar to that shown in water. These results suggest that although sugars are not able to fully preserve the native secondary structure, they might contribute to reduce the conformational changes caused by protein/protein interactions. These factors in combinations with others (e.g., ability to reduce deleterious interactions between the enzyme and inert supports) make sugars (both mono- and disaccharides) an interesting class of additives for improving the performance of biocatalysts in organic solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号