首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural domains contributing to ion permeation and selectivity in K channels were examined in inward-rectifier K(+) channels ROMK2 (Kir1.1b), IRK1 (Kir2.1), and their chimeras using heterologous expression in Xenopus oocytes. Patch-clamp recordings of single channels were obtained in the cell-attached mode with different permeant cations in the pipette. For inward K(+) conduction, replacing the extracellular loop of ROMK2 with that of IRK1 increased single-channel conductance by 25 pS (from 39 to 63 pS), whereas replacing the COOH terminus of ROMK2 with that of IRK1 decreased conductance by 16 pS (from 39 to 22 pS). These effects were additive and independent of the origin of the NH(2) terminus or transmembrane domains, suggesting that the two domains form two resistors in series. The larger conductance of the extracellular loop of IRK1 was attributable to a single amino acid difference (Thr versus Val) at the 3P position, three residues in front of the GYG motif. Permeability sequences for the conducted ions were similar for the two channels: Tl(+) > K(+) > Rb(+) > NH(4)(+). The ion selectivity sequence for ROMK2 based on conductance ratios was NH(4)(+) (1.6) > K(+) (1) > Tl(+) (0.5) > Rb(+) (0.4). For IRK1, the sequence was K(+) (1) > Tl(+) (0.8) > NH(4)(+) (0.6) > Rb(+) (0.1). The difference in the NH(4)(+)/ K(+) conductance (1.6) and permeability (0.09) ratios can be explained if NH(4)(+) binds with lower affinity than K(+) to sites within the pore. The relatively low conductances of NH(4)(+) and Rb(+) through IRK1 were again attributable to the 3P position within the P region. Site-directed mutagenesis showed that the IRK1 selectivity pattern required either Thr or Ser at this position. In contrast, the COOH-terminal domain conferred the relatively high Tl(+) conductance in IRK1. We propose that the P-region and the COOH terminus contribute independently to the conductance and selectivity properties of the pore.  相似文献   

2.
Previous studies suggested that the cytoplasmic COOH-terminal portions of inward rectifier K channels could contribute significant resistance barriers to ion flow. To explore this question further, we exchanged portions of the COOH termini of ROMK2 (Kir1.1b) and IRK1 (Kir2.1) and measured the resulting single-channel conductances. Replacing the entire COOH terminus of ROMK2 with that of IRK1 decreased the chord conductance at V(m) = -100 mV from 34 to 21 pS. The slope conductance measured between -60 and -140 mV was also reduced from 43 to 31 pS. Analysis of chimeric channels suggested that a region between residues 232 and 275 of ROMK2 contributes to this effect. Within this region, the point mutant ROMK2 N240R, in which a single amino acid was exchanged for the corresponding residue of IRK1, reduced the slope conductance to 30 pS and the chord conductance to 22 pS, mimicking the effects of replacing the entire COOH terminus. This mutant had gating and rectification properties indistinguishable from those of the wild-type, suggesting that the structure of the protein was not grossly altered. The N240R mutation did not affect block of the channel by Ba(2+), suggesting that the selectivity filter was not strongly affected by the mutation, nor did it change the sensitivity to intracellular pH. To test whether the decrease in conductance was independent of the selectivity filter we made the same mutation in the background of mutations in the pore region of the channel that increased single-channel conductance. The effects were similar to those predicted for two independent resistors arranged in series. The mutation increased conductance ratio for Tl(+):K(+), accounting for previous observations that the COOH terminus contributed to ion selectivity. Mapping the location onto the crystal structure of the cytoplasmic parts of GIRK1 indicated that position 240 lines the inner wall of this pore and affects the net charge on this surface. This provides a possible structural basis for the observed changes in conductance, and suggests that this element of the channel protein forms a rate-limiting barrier for K(+) transport.  相似文献   

3.
Inglis V  Karpinski E  Benishin C 《Life sciences》2003,73(18):2291-2305
In N1E 115 neuroblastoma cells, gamma-dendrotoxin (DTX, 200 nM) blocked the outward K(+) current by 31.1 +/- 3.5% (n = 4) with approximately 500 nM Ca(2+) in the pipet solution, but had no effect on the outward K(+) current when internal Ca(2+) was reduced. Using a ramp protocol, iberiotoxin (IbTX, 100 nM) inhibited a component of the whole cell current, but in the presence of 200 nM gamma-DTX, no further inhibition by IbTX was observed. Two types of single channels were seen using outside-out patches when the pipette free Ca(2+) concentration was approximately 500 nM; a 63 pS and a 187 pS channel. The 63 pS channel was TEA-, IbTX- and gamma-DTX-insensitive, while the 187 pS channel was blocked by 1 mM TEA, 100 nM IbTX or 200 nM gamma-DTX. Both channels were activated by external application of ionomycin, when the pipet calcium concentration was reduced. gamma-DTX (200 nM) reduced the probability of openings of the 187 pS channel, with an IC(50) of 8.5 nM. In GH(3) cells gamma-DTX (200 nM) also blocked an IbTX-sensitive component of whole-cell K(+) currents. These results suggest that gamma-DTX blocks a large conductance Ca(2+) activated K(+) current in N1E 115 cells. This is the first indication that any of the dendrotoxins, which have classically been known to block voltage-gated (Kv) channels, can also block Ca(2+) activated K(+) channels.  相似文献   

4.
Structural determinants of gating in inward-rectifier K+ channels   总被引:3,自引:0,他引:3       下载免费PDF全文
The gating characteristics of two ion channels in the inward-rectifier K+ channel superfamily were compared at the single-channel level. The strong inward rectifier IRK1 (Kir 2.1) opened and closed with kinetics that were slow relative to those of the weakly rectifying ROMK2 (Kir 1.1b). At a membrane potential of -60 mV, both IRK and ROMK had single-exponential open-time distributions, with mean open times of 279 +/- 58 ms (n = 4) for IRK1 and 23 +/- 1 ms (n = 7) for ROMK. At -60 mV (and no EDTA) ROMK2 had two closed times: 1.3 +/- 0.1 and 36 +/- 3 ms (n = 7). Under the same conditions, IRK1 exhibited four discrete closed states with mean closed times of 0.8 +/- 0.1 ms, 14 +/- 0.6 ms, 99 +/- 19 ms, and 2744 +/- 640 ms (n = 4). Both the open and the three shortest closed-time constants of IRK1 decreased monotonically with membrane hyperpolarization. IRK1 open probability (Po) decreased sharply with hyperpolarization due to an increase in the frequency of long closed events that were attributable to divalent-cation blockade. Chelation of divalent cations with EDTA eliminated the slowest closed-time distribution of IRK1 and blunted the hyperpolarization-dependent fall in open probability. In contrast, ROMK2 had shorter open and closed times and only two closed states, and its Po was less affected by hyperpolarization. Chimeric channels were constructed to address the question of which parts of the molecules were responsible for the differences in kinetics. The property of multiple closed states was conferred by the second membrane-spanning domain (M2) of IRK. The long-lived open and closed states, including the higher sensitivity to extracellular divalent cations, correlated with the extracellular loop of IRK, including the "P-region." Channel kinetics were essentially unaffected by the N- and C-termini. The data of the present study are consistent with the idea that the locus of gating is near the outer mouth of the pore.  相似文献   

5.
Kir2.1 (IRK1) is the complementary DNA for a component of a cardiac inwardly rectifying potassium channel. When Kir2.1 is expressed in Xenopus oocytes or human embryonic kidney (HEK) cells (150 mM external KCl), the unitary conductances form a broad distribution, ranging from 2 to 33 pS. Channels with a similarly broad distribution of unitary conductance amplitudes are also observed in recordings from adult mouse cardiac myocytes under similar experimental conditions. In all three cell types channels with conductances smaller, and occasionally larger, than the ~30 pS ones are found in the same patches as the ~30 pS openings, or in patches by themselves. The unitary conductances in patches with a single active channel are stable for the durations of the recordings. Channels of all amplitudes share several biophysical characteristics, including inward rectification, voltage sensitivity of open probability, sensitivity of open probability to external divalent cations, shape of the open channel i-V relation, and Cs(+) block. The only biophysical difference found between large and small conductance channels is that the rate constant for Cs(+) block is reduced for the small-amplitude channels. The unblocking rate constant is similar for channels of different unitary conductances. Apparently there is significant channel-to-channel variation at a site in the outer pore or in the selectivity filter, leading to variability in the rate at which K(+) or Cs(+) enters the channel.  相似文献   

6.
Permeant Cations and Blockers Modulate pH Gating of ROMK Channels   总被引:2,自引:2,他引:0       下载免费PDF全文
External potassium (K) activates the inward rectifier ROMK (Kir1.1) by altering the pH gating of the channel. The present study examines this link between external K and internal pH sensitivity using both the two-electrode voltage clamp and the perfused, cut-open Xenopus oocyte preparation. Elevating extracellular K from 1 mM to 10 mM to 100 mM activated ROMK channels by shifting their apparent pKa from 7.2 ± 0.1 (n = 6) in 1 mM K, to 6.9 ± 0.02 (n = 5) in 10 mM K, and to 6.6 ± 0.03 (n = 5) in 100 mM K. At any given internal pH, the number of active ROMK channels is a saturating function of external [K]. Extracellular Cs (which blocks almost all inward K current) also stimulated outward ROMK conductance (at constant 1 mM external K) by shifting the apparent pKa of ROMK from 7.2 ± 0.1 (n = 6) in 1 mM K to 6.8 ± 0.01 (n = 4) in 1 mM K + 104 mM Cs. Surprisingly, the binding and washout of the specific blocker, Tertiapin-Q, also activated ROMK in 1 mM K and caused a comparable shift in apparent pKa. These results are interpreted in terms of both a three-state kinetic model and a two-gate structural model that is based on results with KcsA in which the selectivity filter can assume either a high or low K conformation. In this context, external K, Cs, and Tertiapin-Q activate ROMK by destabilizing the low-K (collapsed) configuration of the selectivity filter.  相似文献   

7.
Macroscopic and unitary currents through Ca(2+)-activated Cl- channels were examined in enzymatically isolated guinea-pig hepatocytes using whole-cell, excised outside-out and inside-out configurations of the patch-clamp technique. When K+ conductances were blocked and the intracellular Ca2+ concentration ([Ca2+]i) was set at 1 microM (pCa = 6), membrane currents were observed under whole-cell voltage-clamp conditions. The reversal potential of the current shifted by approximately 60 mV per 10-fold change in the external Cl- concentration. In addition, the current did not appear when Cl- was omitted from the internal and external solutions, indicating that the current was Cl- selective. The current was activated by increasing [Ca2+]i and was inactivated in Ca(2+)-free, 5 mM EGTA internal solution (pCa > 9). The current was inhibited by bath application of 9- anthracenecarboxylic acid (9-AC) and 4,4'-diisothiocyanatostilbene-2,2'- disulfonic acid (DIDS) in a voltage-dependent manner. In single channel recordings from outside-out patches, unitary current activity was observed, whose averaged slope conductance was 7.4 +/- 0.5 pS (n = 18). The single channel activity responded to extracellular Cl- changes as expected for a Cl- channel current. The open time distribution was best described by a single exponential function with mean open lifetime of 97.6 +/- 10.4 ms (n = 11), while at least two exponentials were required to fit the closed time distributions with a time constant for the fast component of 21.5 +/- 2.8 ms (n = 11) and that for the slow component of 411.9 +/- 52.0 ms (n = 11). In excised inside-out patch recordings, channel open probability was sensitive to [Ca2+]i. The relationship between [Ca2+]i and channel activity was fitted by the Hill equation with a Hill coefficient of 3.4 and the half-maximal activation was 0.48 microM. These results suggest that guinea-pig hepatocytes possess Ca(2+)-activated Cl- channels.  相似文献   

8.
Cultured sensory neurons from nodose ganglia were investigated with whole-cell patch-clamp techniques and single-channel recordings to characterize the A current. Membrane depolarization from -40 mV holding potential activated the delayed rectifier current (IK) at potentials positive to -30 mV; this current had a sigmoidal time course and showed little or no inactivation. In most neurons, the A current was completely inactivated at the -40 mV holding potential and required hyperpolarization to remove the inactivation; the A current was isolated by subtracting the IK evoked by depolarizations from -40 mV from the total outward current evoked by depolarizations from -90 mV. The decay of the A current on several neurons had complex kinetics and was fit by the sum of three exponentials whose time constants were 10-40 ms, 100-350 ms, and 1-3 s. At the single-channel level we found that one class of channel underlies the A current. The conductance of A channels varied with the square root of the external K concentration: it was 22 pS when exposed to 5.4 mM K externally, the increased to 40 pS when exposed to 140 mM K externally. A channels activated rapidly upon depolarization and the latency to first opening decreased with depolarization. The open time distributions followed a single exponential and the mean open time increased with depolarization. A channels inactivate in three different modes: some A channels inactivated with little reopening and gave rise to ensemble averages that decayed in 10-40 ms; other A channels opened and closed three to four times before inactivating and gave rise to ensemble averages that decayed in 100-350 ms; still other A channels opened and closed several hundred times and required seconds to inactivate. Channels gating in all three modes contributed to the macroscopic A current from the whole cell, but their relative contribution differed among neurons. In addition, A channels could go directly from the closed, or resting, state to the inactivated state without opening, and the probability for channels inactivating in this way was greater at less depolarized voltages. In addition, a few A channels appeared to go reversibly from a mode where inactivation occurred rapidly to a slow mode of inactivation.  相似文献   

9.
The voltage-dependent K+ channel was examined in enzymatically isolated guinea pig hepatocytes using whole-cell, excised outside-out and inside- out configurations of the patch-clamp technique. The resting membrane potential in isolated hepatocytes was -25.3 +/- 4.9 mV (n = 40). Under the whole-cell voltage-clamp, the time-dependent delayed rectifier outward current was observed at membrane potentials positive to -20 mV at physiological temperature (37 degrees C). The reversal potential of the current, as determined from tail current measurements, shifted by approximately 57 mV per 10-fold change in the external K+ concentration. In addition, the current did not appear when K+ was replaced with Cs+ in the internal and external solutions, indicating that the current was carried by K+ ions. The envelope test of the tails demonstrated that the growth of the tail current followed that of the current activation. The ratio between the activated current and the tail amplitude was constant during the depolarizing step. The time course of growth and deactivation of the tail current were best described by a double exponential function. The current was suppressed in Ca(2+)-free, 5 mM EGTA internal or external solution (pCa > 9). The activation curve (P infinity curve) was not shifted by changing the internal Ca2+ concentration ([Ca2+]i). The current was inhibited by bath application of 4-aminopyridine or apamin. alpha 1-Adrenergic stimulation with noradrenaline enhanced the current but beta-adrenergic stimulation with isoproterenol had no effect on the current. In single- channel recordings from outside-out patches, unitary current activity was observed by depolarizing voltage-clamp steps whose slope conductance was 9.5 +/- 2.2 pS (n = 10). The open time distribution was best described by a single exponential function with the mean open lifetime of 18.5 +/- 2.6 ms (n = 14), while at least two exponentials were required to fit the closed time distributions with a time constant for the fast component of 2.0 +/- 0.3 ms (n = 14) and that for the slow component of 47.7 +/- 5.9 ms (n = 14). Ensemble averaged current exhibited delayed rectifier nature which was consistent with whole-cell measurements. In excised inside-out patch recordings, channel open probability was sensitive to [Ca2+]i. The concentration of Ca2+ at the half-maximal activation was 0.031 microM. These results suggest that guinea pig hepatocytes possess voltage-gated delayed rectifier K+ channels which are modified by intracellular Ca2+.  相似文献   

10.
The purpose of this study was to use whole-cell and cell-attached patches of cultured skeletal muscle myotubes to study the macroscopic and unitary behavior of voltage-dependent calcium channels under similar conditions. With 110 mM BaCl2 as the charge carrier, two types of calcium channels with markedly different single-channel and macroscopic properties were found. One class was DHP-insensitive, had a single-channel conductance of approximately 9 pS, yielded ensembles that displayed an activation threshold near -40 mV, and activated and inactivated rapidly in a voltage-dependent manner (T current). The second class could only be well resolved in the presence of the DHP agonist Bay K 8644 (5 microM) and had a single-channel conductance of approximately 14 pS (L current). The 14-pS channel produced ensembles exhibiting a threshold of approximately -10 mV that activated slowly (tau act approximately 20 ms) and displayed little inactivation. Moreover, the DHP antagonist, (+)-PN 200-110 (10 microM), greatly increased the percentage of null sweeps seen with the 14-pS channel. The open probability versus voltage relationship of the 14-pS channel was fitted by a Boltzmann distribution with a VP0.5 = 6.2 mV and kp = 5.3 mV. L current recorded from whole-cell experiments in the presence of 110 mM BaCl2 + 5 microM Bay K 8644 displayed similar time- and voltage-dependent properties as ensembles of the 14-pS channel. Thus, these data are the first comparison under similar conditions of the single-channel and macroscopic properties of T current and L current in native skeletal muscle, and identify the 9- and 14-pS channels as the single-channel correlates of T current and L current, respectively.  相似文献   

11.
Kourie JI 《FEBS letters》1999,445(1):57-62
We report the first evidence that synthetic human C-type natriuretic peptide-22 and the OaC-type natriuretic peptide-39(18-39), a 22 amino acid fragment of the OaC-type natriuretic peptide-39 from platypus venom, can function directly by forming a novel voltage-gated weakly cation-selective channel in negatively charged artificial lipid bilayer membranes. The channel activity is characterized by a tendency for inactivation at negative voltages, e.g. -60 and -70 mV, whereas at positive voltages the channel is fully open. The channel has a maximal cord conductance of 546+/-23 pS (n = 16) and shows weak outward rectification. The sequence and the permeability ratios were P(K)+: P(Cs)+: P(Na)+: P(choline)+ 1:0.88:0.76:0.13, respectively. The addition of 50 mM TEA+ cis (a blocker of outwardly rectifying K+ channels), 20 mM Cs+ cis (a blocker of inwardly rectifying K+ channels) or 0.5 mM glibenclamide cis (a blocker of ATP-sensitive K+ channels) to the cis chamber did not affect the conductance or the kinetics of the OaC-type natriuretic peptide-39(18-39)-formed channels (n = 2-5). It is concluded that the weak cation selectivity, large conductance and high open probability as well as their voltage dependency are consistent with the ability of these peptides to cause that loss of compartmentation of the membrane, which is a characteristic feature of adverse conditions that cause C-type natriuretic peptide-related pathologies.  相似文献   

12.
Ca(2+)-activated K+[K(Ca)] channels in resting and activated human peripheral blood T lymphocytes were characterized using simultaneous patch-clamp recording and fura-2 monitoring of cytosolic Ca2+ concentration, [Ca2+]i. Whole-cell experiments, using EGTA-buffered pipette solutions to raise [Ca2+]i to 1 microM, revealed a 25-fold increase in the number of conducting K(Ca) channels per cell, from an average of 20 in resting T cells to > 500 channels per cell in T cell blasts after mitogenic activation. The opening of K(Ca) channels in both whole-cell and inside-out patch experiments was highly sensitive to [Ca2+]i (Hill coefficient of 4, with a midpoint of approximately 300 nM). At optimal [Ca2+]i, the open probability of a K(Ca) channel was 0.3-0.5. K(Ca) channels showed little or no voltage dependence from - 100 to 0 mV. Single-channel I-V curves were linear with a unitary conductance of 11 pS in normal Ringer and exhibited modest inward rectification with a unitary conductance of approximately 35 pS in symmetrical 160 mM K+. Permeability ratios, relative to K+, determined from reversal potential measurements were: K+ (1.0) > Rb+ (0.96) > NH4+ (0.17) > Cs+ (0.07). Slope conductance ratios were: NH4+ (1.2) > K+ (1.0) > Rb+ (0.6) > Cs+ (0.10). Extracellular Cs+ or Ba2+ each induced voltage-dependent block of K(Ca) channels, with block increasing at hyperpolarizing potentials in a manner suggesting a site of block 75% across the membrane field from the outside. K(Ca) channels were blocked by tetraethylammonium (TEA) applied externally (Kd = 40 mM), but were unaffected by 10 mM TEA applied inside by pipette perfusion. K(Ca) channels were blocked by charybdotoxin (CTX) with a half-blocking dose of 3-4 nM, but were resistant to block by noxiustoxin (NTX) at 1-100 nM. Unlike K(Ca) channels in Jurkat T cells, the K(Ca) channels of normal resting or activated T cells were not blocked by apamin. We conclude that while K(Ca) and voltage-gated K+ channels in the same cells share similarities in ion permeation, Cs+ and Ba2+ block, and sensitivity to CTX, the underlying proteins differ in structural characteristics that determine channel gating and block by NTX and TEA.  相似文献   

13.
The ROMK (Kir1.1) family of epithelial K channels can be inactivated by a combination of low internal pH and low external K, such that alkalization does not reopen the channels unless external K is elevated. Previous work suggested that this inactivation results from an allosteric interaction between an inner pH gate and an outer K sensor, and could be described by a simple three-state kinetic model. In the present study, we report that a sustained depolarization slowly inactivated (half-time = 10-15 min) ROMK channels that had been engineered for increased affinity to internal polyamines. Furthermore, this inactivation occurred at external [K] < or =1 mM in ROMK mutants whose inner pH gate was constitutively open (ROMK2-K61M mutation). Both pH and voltage inactivation depended on external K in a manner reminiscent of C-type inactivation, but having a much slower time course. Replacement of ROMK extracellular loop residues by Kir2.1 homologous residues attenuated or abolished this inactivation. These results are consistent with the hypothesis that there are (at least) two separate closure processes in these channels: an inner pH-regulated gate, and an outer (inactivation) gate, where the latter is modulated by both voltage and external [K].  相似文献   

14.
A patch-clamp study of histamine-secreting cells   总被引:9,自引:2,他引:7       下载免费PDF全文
The ionic conductances in rat basophilic leukemia cells (RBL-2H3) and rat peritoneal mast cells were investigated using the patch-clamp technique. These two cell types were found to have different electrophysiological properties in the resting state. The only significant conductance of RBL-2H3 cells was a K+-selective inward rectifier. The single channel conductance at room temperature increased from 2-3 pS at 2.8 mM external K+ to 26 pS at 130 mM K+. This conductance, which appeared to determine the resting potential, could be blocked by Na+ and Ba2+ in a voltage-dependent manner. Rat peritoneal mast cells had a whole-cell conductance of only 10-30 pS, and the resting potential was close to zero. Sometimes discrete openings of channels were observed in the whole-cell configuration. When the Ca2+ concentration on the cytoplasmic side of the membrane was elevated, two types of channels with poor ion specificity appeared. A cation channel, observed at a Ca2+ concentration of approximately 1 microM, had a unit conductance of 30 pS. The other channel, activated at several hundred micromolar Ca2+, was anion selective and had a unit conductance of approximately 380 pS in normal Ringer solution and a bell-shaped voltage dependence. Antigenic stimulation did not cause significant changes in the ionic conductances in either cell type, which suggests that these cells use a mechanism different from ionic currents in stimulus-secretion coupling.  相似文献   

15.
Ca2+ entry under resting conditions may be important for contraction of vascular smooth muscle, but little is known about the mechanisms involved. Ca2+ leakage was studied in the A7r5 smooth muscle-derived cell line by patch-clamp techniques. Two channels that could mediate calcium influx at resting membrane potentials were characterized. In 110 mM Ba2+, one channel had a slope conductance of 6.0 +/- 0.6 pS and an extrapolated reversal potential of +41 +/- 13 mV (mean +/- SD, n = 8). The current rectified strongly, with no detectable outward current, even at +90 mV. Channel gating was voltage independent. A second type of channel had a linear current-voltage relationship, a slope conductance of 17.0 +/- 3.2 pS, and a reversal potential of +7 +/- 4 mV (n = 9). The open probability increased e-fold per 44 +/- 10 mV depolarization (n = 5). Both channels were also observed in 110 mM Ca2+. Noise analysis of whole-cell currents indicates that approximately 100 6-pS channels and 30 17-pS channels are open per cell. These 6-pS and 17-pS channels may contribute to resting calcium entry in vascular smooth muscle cells.  相似文献   

16.
Two types of potassium channels in murine T lymphocytes   总被引:7,自引:4,他引:3       下载免费PDF全文
The properties of two types of K+ channels in murine T lymphocytes are described on the basis of whole-cell and isolated-patch recordings using the gigohm-seal technique. Type l (standing for "lpr gene locus" or "large") channels were characterized mainly in T cells from mutant MRL/MpJ-lpr/lpr mice, in which they are present in large numbers. Type n ("normal") K+ channels are abundant and therefore most readily studied in concanavalin A-activated T cells from four strains of mice, MRL-+/+, CBA/J, C57BL/6J, and BALB/c. Type l channels, compared with type n, are activated at potentials approximately 30 mV more positive, and close much more rapidly upon repolarization. Type l channels inactivate more slowly and less completely than type n during maintained depolarization, but recover from inactivation more rapidly, so that little inactivation accumulates during repetitive pulses. Type l channels have a higher unitary conductance (21 pS) than type n (12 pS) and are less sensitive to block by external Co++, but are 100-fold more sensitive to block by external tetraethylammonium (TEA), with half-block of type l channels at 50-100 microM TEA compared with 8-16 mM for type n. TEA blocks both types of channels by reducing the apparent single channel current amplitude, with a dose-response relation similar to that for blocking macroscopic currents. Murine type n K+ channels resemble K+ channels in human T cells.  相似文献   

17.
Voltage-gated potassium channels in brown fat cells   总被引:6,自引:4,他引:2       下载免费PDF全文
We studied the membrane currents of isolated cultured brown fat cells from neonatal rats using whole-cell and single-channel voltage-clamp recording. All brown fat cells that were recorded from had voltage-gated K currents as their predominant membrane current. No inward currents were seen in these experiments. The K currents of brown fat cells resemble the delayed rectifier currents of nerve and muscle cells. The channels were highly selective for K+, showing a 58-mV change in reversal potential for a 10-fold change in the external [K+]. Their selectivity was typical for K channels, with relative permeabilities of K+ greater than Rb+ greater than NH+4 much greater than Cs+, Na+. The K currents in brown adipocytes activated with a sigmoidal delay after depolarizations to membrane potentials positive to -50 mV. Activation was half maximal at a potential of -28 mV and did not require the presence of significant concentrations of internal calcium. Maximal voltage-activated K conductance averaged 20 nS in high external K+ solutions. The K currents inactivated slowly with sustained depolarization with time constants for the inactivation process on the order of hundreds of milliseconds to tens of seconds. The K channels had an average single-channel conductance of 9 pS and a channel density of approximately 1,000 channels/cell. The K current was blocked by tetraethylammonium or 4-aminopyridine with half maximal block occurring at concentrations of 1-2 mM for either blocker. K currents were unaffected by two blockers of Ca2+-activated K channels, charybdotoxin and apamin. Bath-applied norepinephrine did not affect the K currents or other membrane currents under our experimental conditions. These properties of the K channels indicate that they could produce an increase in the K+ permeability of the brown fat cell membrane during the depolarization that accompanies norepinephrine-stimulated thermogenesis, but that they do not contribute directly to the norepinephrine-induced depolarization.  相似文献   

18.
Secretion of enzymes and fluid induced by Ca(2+) in pancreatic acini is not completely understood and may involve activation of ion conductive pathways in zymogen granule (ZG) membranes. We hypothesized that a chromanol 293B-sensitive K(+) conductance carried by a KCNQ1 protein is expressed in ZG membranes (ZGM). In suspensions of rat pancreatic ZG, ion flux was determined by ionophore-induced osmotic lysis of ZG suspended in isotonic salts. The KCNQ1 blocker 293B selectively blocked K(+) permeability (IC(50) of approximately 10 microM). After incorporation of ZGM into planar bilayer membranes, cation channels were detected in 645/150 mM potassium gluconate cis/trans solutions. Channels had linear current-voltage relationships, a reversal potential (E(rev)) of -20.9 +/- 0.9 mV, and a single-channel K(+) conductance (g(K)) of 265.8 +/- 44.0 pS (n = 39). Replacement of cis 500 mM K(+) by 500 mM Na(+) shifted E(rev) to -2.4 +/- 3.6 mV (n = 3), indicating K(+) selectivity. Single-channel analysis identified several K(+) channel groups with distinct channel behaviors. K(+) channels with a g(K) of 651.8 +/- 88.0 pS, E(rev) of -22.9 +/- 2.2 mV, and open probability (P(open)) of 0.43 +/- 0.06 at 0 mV (n = 6) and channels with a g(K) of 155.0 +/- 11.4 pS, E(rev) of -18.3 +/- 1.8 mV, and P(open) of 0.80 +/- 0.03 at 0 mV (n = 3) were inhibited by 100 microM 293B or by the more selective inhibitor HMR-1556 but not by the maxi-Ca(2+)-activated K(+) channel (BK channel) inhibitor charybdotoxin (5 nM). KCNQ1 protein was demonstrated by immunoperoxidase labeling of pancreatic tissue, immunogold labeling of ZG, and immunoblotting of ZGM. 293B also inhibited cholecystokinin-induced amylase secretion of permeabilized acini (IC(50) of approximately 10 microM). Thus KCNQ1 may account for ZG K(+) conductance and contribute to pancreatic hormone-stimulated enzyme and fluid secretion.  相似文献   

19.
A cation selective channel was identified in the apical membrane of fetal rat (Wistar) alveolar type II epithelium using the patch clamp technique. The single channel conductance was 23 +/- 1.2 pS (n = 16) with symmetrical NaCl (140 mM) solution in the bath and pipette. The channel was highly permeable to Na+ and K+ (PNa/PK = 0.9) but essentially impermeant to chloride and gluconate. Membrane potential did not influence open state probability when measured in a high Ca2+ (1.5 mM) bath. The channel reversibly inactivated when the bath was exchanged with a Ca(2+)-free (less than 10(-9) M) solution. The Na+ channel blocker amiloride (10(-6) M) applied to the extracellular side of the membrane reduced P(open) relative to control patches; P(control) = 0.57 +/- 0.11 (n = 5), P(amiloride) = 0.09 +/- 0.07 (n = 4, p less than 0.01), however, amiloride did not significantly influence channel conductance (g); g(control) 19 +/- 0.9 pS (n = 5), 18 +/- 3.0 pS (n = 4). More than one current level was observed in 42% (16/38) of active patches; multiple current levels (ranging from 2 to 6) were of equal amplitude suggesting the presence of multiple channels or subconductance states. Channel activity was also evident in cell attached patches. Since monolayers of these cells absorb Na+ via an amiloride sensitive transport mechanism we speculate that this amiloride sensitive cation selective channel is a potential apical pathway for electrogenic Na+ transport in the alveolar region of the lung.  相似文献   

20.
The septal membranes of the median and lateral giant axons of earthworm, which contain gap junctions, were exposed by cutting one segment of the cord. Patch recordings were obtained from the exposed cytoplasmic side of the septum. Seal resistances ranged from 2 to 15 G omega. The patch could be excised (detached) or left attached to the whole cell. Two types of channels were observed. One type was blocked by tetraethylammonium (TEA) or Cs+ and had a unitary conductance of 30-40 pS. It appears to be a K+ channel. The other channel type had a unitary conductance of 90-110 pS and was unaffected by TEA+ or Cs+. In the detached configuration the channel was shown to conduct Cs+, K+, Na+, TMA+, Cl- and TEA+ even in the presence of 2 mM Zn2+, 1 mM Ni2+, 1 mM Co2+, and 4 mM 4-aminopyridine. The conductance ratios relative to K+ were 1.0 for Cs+, 0.84 for Na+, 0.64 for TMA+, 0.52 for Cl- and 0.2 for TEA+. The channel appears to be voltage insensitive whether monitored in detached or attached recording mode. Both H+ and Ca2+ reduce the probability of opening. Thus, the 100 pS channel has many of the properties expected of a gap junction channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号