首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interaction of pentafluoropyridine with hydroxyl groups of thymidine, uridine, adenosine, and deoxyadenosine at room temperature leads to the formation of aryl ethers of nucleosides with a high yield. Under severe conditions, one more tetrafluoropyridine residue is attached to pyrimidine fragments of T and U, while purine heterocycle in A remains intact. Nucleoside derivatives are formed with a quantitative yield and can be used in situ as intermediates for, as an example, molecular design of arene analogs of nucleic acids. The reaction with thymidine is a successive-parallel process, the limited stage being arylation of the secondary hydroxyl group. The presence of the vicinal hydroxyl group in pentose results in the opposite rate ratio of the formation of primary and secondary tetrafluoropyridyl ethers of adenine and uridine.  相似文献   

2.
Pentafluoropyridine reacts with thymidine, adenosine, and uridine hydroxy groups to give quantitative yields of the corresponding nucleoside di- and triaryl ethers. The nucleophilic substitution reactions proceed successively and in parallel, with the slowest step being the nucleophilic substitution of the nucleoside secondary hydroxyls. The resulting ethers contain tetrafluoropyridyl moieties, which could be smoothly modified by nucleophilic substitution of fluorine atoms. The ethers are useful intermediate synthons (both isolated and in situ) for molecular design of oligonucleotide analogues.  相似文献   

3.
Pentafluoropyridine reacts with thymidine, adenosine, and uridine hydroxy groups to give quantitative yields of the corresponding nucleoside di- and triaryl ethers. The nucleophilic substitution reactions proceed successively and in parallel, with the slowest step being the nucleophilic substitution of the nucleoside secondary hydroxyls. The resulting ethers contain tetrafluoropyridyl moieties, which could be smoothly modified by nucleophilic substitution of fluorine atoms. The ethers are useful intermediate synthons (both isolated and in situ) for molecular design of oligonucleotide analogues. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 1; see also http://www.maik.ru.  相似文献   

4.
Symmetrical polyols can be converted into benzyl ethers with one free hydroxyl group in good yield by reaction of the monodibutylstannylene acetal with excess benzyl bromide in the presence of tetrabutylammonium bromide and diisopropylethylamine in xylene. The reaction pathway involves initial benzylation of the dibutylstannylene acetal to give benzyl and bromodibutylstannyl ethers; if a hydroxyl group remains unsubstituted, the latter ether ring closes and reacts further.  相似文献   

5.
The formation of interstrand cross-links in nucleic acids can have a strong impact on biological function of nucleic acids; therefore, many cross-linking agents have been developed for biological applications. Despite numerous studies, there remains a need for cross-linking agents that exhibit both efficiency and selectivity. In this study, a 4-vinyl-substituted analog of thymidine (T-vinyl derivative) was designed as a new cross-linking agent, in which the vinyl group is oriented towards the Watson–Crick face to react with the amino group of an adenine base. The interstrand cross-link formed rapidly and selectively with a uridine on the RNA substrate at the site opposite to the T-vinyl derivative. A detailed analysis of cross-link formation while varying the flanking bases of the RNA substrates indicated that interstrand cross-link formation is preferential for the adenine base on the 5′-side of the opposing uridine. In the absence of a 5′-adenine, a uridine at the opposite position underwent cross-linking. The oligodeoxynucleotides probe incorporating the T-vinyl derivative efficiently formed interstrand cross-links in parallel-type triplex DNA with high selectivity for dA in the homopurine strand. The efficiency and selectivity of the T-vinyl derivative illustrate its potential use as a unique tool in biological and materials research.  相似文献   

6.
Uridine catabolism in Kupffer cells, endothelial cells, and hepatocytes   总被引:1,自引:0,他引:1  
Kupffer cells, endothelial cells, and hepatocytes were separated by centrifugal elutriation. The rate of uracil formation from [2-14C]uridine, the first step in uridine catabolism, was monitored in suspensions of the three different liver cell types. Kupffer cells demonstrated the highest rate of uridine phosphorolysis. 15 min after the addition of the nucleoside the label in uracil amounted to 51%, 13%, and 19% of total radioactivity in the medium of Kupffer cells, endothelial cells, and hepatocytes, respectively. If corrected for Kupffer cell contamination, hepatocyte suspensions demonstrated similar activities as endothelial cells. In contrast to non-parenchymal cells, hepatocytes continuously cleared uracil from the incubation medium. The lack of uracil consumption by Kupffer cells and endothelial cells points to uracil as the end-product of uridine catabolism in these cells. Kupffer cells and endothelial cells did not produce radioactive CO2 upon incubation in the presence of [2-14C]uridine. Hepatocytes, however, were able to degrade uridine into CO2, beta-alanine, and ammonia as demonstrated by active formation of volatile radioactivity from the labeled nucleoside. There was almost no detectable formation of thymine from thymidine or of cytosine, uracil, or uridine from cytidine by any of the different cell types tested. These results are in line with low thymidine phosphorolysis and cytidine deamination in rat liver. Our studies suggest a co-operation of Kupffer cells, endothelial cells, and hepatocytes in the breakdown of uridine from portal vein blood with uridine phosphorolysis predominantly occurring in Kupffer cells and with uracil catabolism restricted to parenchymal liver cells.  相似文献   

7.
The effect of IFN α-2b on thymidine, uridine, and leucine uptake was examined on peripheral blood mononuclear cells (PBMC) of healthy donors and 15 patients with multiple myeloma (MM). In addition, the surface ultrastructure of the cells incubated without or with IFN α-2b was examined with a scanning electron microscope. The results showed that IFN had no effect on thymidine, uridine, or leucine uptake of unstimulated MM and control PBMC. On the other hand IFN inhibited thymidine, and uridine uptake of PWM-stimulated MM PBMC, but had no effect on healthy donor stimulated PBMC. 1FN inhibited also thymidine and uridine uptake in PHA-stimulated healthy donors and MM patients′ PBMC. The cellular surface ultrastructure of MM lymphocytes incubated with 100 u/ml IFN showed disappearance of the microvilli and formation of cellular pits, whereas in healthy donor lymphocytes IFN caused flattening of microvilli.  相似文献   

8.
The location of inter-residue, cyclic hemiacetals formed following the periodate oxidation of four representative heteroglycans has been determined by methylation analysis of the periodate-oxidized glycans. The cyclic hemiacetals led to the protection of hydroxyl groups during methylation in methyl sulfoxide, and their positions were located by analysis of the resulting di- and mono-methyl ethers. Such derivatives were not observed upon methylation analysis of the native and the periodate-oxidized-borohydride-reduced glycans. Inter-residue hemiacetals were thus identified in all oxidized glycans, between aldehydic groups at C-2 or C-3 of oxidized residues and hydroxyl groups at C-3 or C-2 of adjacent, unoxidized residues. Selective removal of 6-O-substituents from oxidized residues resulted in a decreased ability of the latter to form the inter-residue hemiacetals. Analysis of the types and proportions of the methyl ethers resulting from inter-residue hemiacetal formation may also yield structural information on the glycan.  相似文献   

9.
Proton, 13C and 51V nuclear magnetic resonance spectroscopy has been used to study the interaction of vanadate with several molecules containing more than one hydroxyl group, including various aldoses and nucleosides. The aldoses D-mannose and D-ribose mainly form tridentate complexes, of trigonal bipyramidal geometry, with vanadate at pH 7. These sugars use three consecutive hydroxyl groups, cis to each other, of their pyranose forms to bind vanadate in those cyclic triesters. Other aldoses, like D-glucose, which do not have this unique structural characteristic, do not form tridentate complexes, but can form weaker bidentate cyclic diesters using two consecutive pyranose cis hydroxyl groups. Of course, the pyranose forms of D-mannose and D-ribose, as well as the furanose form of D-ribose, also yield cyclic diesters of vanadate. All these aldoses form weak monodentate noncyclic monoesters of tetrahedral geometry using a single hydroxyl group. The nucleosides uridine, cytidine and adenosine form two complexes of trigonal bipyramidal geometry with vanadate. In these complexes, having 1:1 and 2:1 ligand-to-metal stoichiometries, the nucleosides form cyclic diesters with vanadate using their C2, and C3, hydroxyl groups.  相似文献   

10.
Enzyme capable of catalyzing the phosphorylation of thymidine and uridine was isolated from Y. pseudotuberculosis cells by fractionation with the use of ammonium sulfate, ion exchange and affinity chromatography. The degree of purification of thymidine- and uridine-kinase was approximately 350 times, and at all stages of isolation the activity of both nucleoside-kinases was detected in the same peaks. The purified enzyme was capable of the phosphorylation of thymidine and uridine at temperatures of 8-10 degrees C to 50 degrees C and exhibited the maximum enzymatic activity at pH 8-8.5 and 45 degrees C in the presence of 0.5-1.0 mM MgCl2 and 2 mM ATP. The enzyme was found to have no strict substrate specificity and transferred the phosphate group from ATP to radiolabeled thymidine, uridine and desoxycytidine with different effectiveness, but did not use thymidine-monophosphate as phosphate acceptor.  相似文献   

11.
The kinetics of conversion of 5-fluoro-2'-deoxyuridine (FdUrd) to 5-fluorouracil (FUra) by isolated rat intestinal epithelial cells was investigated. Also, the effects of potential inhibitors of this reaction, which is catalyzed by uridine phosphorylase and thymidine phosphorylase, were determined. A 2.5% suspension of isolated cells was incubated with FdUrd or FUra, and at specific times cells were lysed with perchloric acid and fluoropyrimidines were determined by high-performance liquid chromatography. During a 25-min incubation with either FdUrd or FUra, the amount of drug in the incubation system (total volume 0.8 ml) fell by less than 5%. However, in the presence of FdUrd, the amount of FUra increased linearly over 25 min. The apparent Vmax and Km for FUra formation were 17-27 nmole/mg DNA/min and 1.6-2.5 mM, respectively. With each nucleoside phosphorylase inhibitor, the apparent Km increased but Vmax was unaffected. The apparent Ki values were as follows (in mM): 5-nitrouracil (an inhibitor of both uridine phosphorylase and thymidine phosphorylase), 0.12; 4-thiothymine (a uridine phosphorylase-selective inhibitor), 1.52; and 6-benzyl-2-thiouracil (a thymidine phosphorylase-selective inhibitor), 0.73. It was concluded that intestinal epithelial cells are capable of degrading FdUrd to FUra and that the cells possess both uridine phosphorylase and thymidine phosphorylase activity.  相似文献   

12.
Lentectomy of the newt eye leads to formation of the lens from the iris. The initial event which occurs in the iris after lentectomy is enhancement of uridine incorporation into RNA. The present data demonstrate that surgery on the cornea without lentectomy enhances uridine incorporation into iris RNA. However, the profile of incorporation after cornea surgery is different from that after lentectomy. Furthermore, cornea surgery fails to cause the high level of incorporation of thymidine into iris which occurs after lentectomy. Cornea surgery also causes enhancement of uridine incorporation into lens RNA with a profile different from that in iris RNA.  相似文献   

13.
The salvage pathways of nucleotide biosynthesis are more diverse and are less well understood as compared with de novo pathways. Uridine-cytidine kinase (UCK) is the rate-limiting enzyme in the pyrimidine-nucleotide salvage pathway. In this study, we have characterized a UCK homologue of Thermus thermophilus HB8 (ttCK) biochemically and structurally. Unlike other UCKs, ttCK had substrate specificity toward only cytidine and showed no inhibition by UTP, suggesting uridine does not bind to ttCK as substrate. Structural analysis revealed that the histidine residue located near the functional group at position 4 of cytidine or uridine in most UCKs is substituted with tyrosine, Tyr93, in ttCK. Replacement of Tyr93 by histidine or glutamine endowed ttCK with phosphorylation activity toward uridine. These results suggested that a single amino acid residue, Tyr93, gives cytidine-limited specificity to ttCK. However, replacement of Tyr93 by Phe or Leu did not change the substrate specificity of ttCK. Therefore, we conclude that a residue at this position is essential for the recognition of uridine by UCK. In addition, thymidine phosphorylase from T. thermophilus HB8 was equally active with thymidine and uridine, which indicates that this protein is the sole enzyme metabolizing uridine in T. Thermophilus HB8. On the basis of these results, we discuss the pyrimidine-salvage pathway in T. thermophilus HB8.  相似文献   

14.
Thymidine is poorly incorporated into deoxyribonucleic acid (DNA) of Escherichia coli. Its incorporation is greatly increased by uridine, which acts in two ways. Primarily, uridine competitively inhibits thymidine phosphorylase (E.C.2.4.4), and thereby prevents the degradation of thymidine to thymine which is not incorporated into normally growing E. coli. Uridine also inhibits induction of the enzyme by thymidine. It prevents the actual inducer, probably a deoxyribose phosphate, from being formed rather than competing for a site on the repressor. The inhibition of thymidine phosphorylase by uridine also accounts for inhibition by uracil compounds of thymine incorporation into thymine-requiring mutants. Deoxyadenosine also increases the incorporation of thymidine, by competitively inhibiting thymidine phosphorylase. Deoxyadenosine induces the enzyme, in contrast to uridine. But this is offset by a transfer of deoxyribose from deoxyadenosine to thymine. Thus, deoxyadenosine permits incorporation of thymine into DNA, even in cells induced for thymidine phosphorylase. This incorporation of thymine in the presence of deoxyadenosine did not occur in a thymidine phosphorylase-negative mutant; thus, the utilization of thymine seems to proceed by way of thymidine phosphorylase, followed by thymidine kinase. These results are consistent with the data of others in suggesting that wild-type E. coli cells fail to utilize thymine because they lack a pool of deoxyribose phosphates, the latter being necessary for conversion of thymine to thymidine by thymidine phosphorylase.  相似文献   

15.
The 5-methyl group of thymidine residues protrudes into the major groove of double helical DNA. The structural influence of this exocyclic substituent has been examined using a PCR-made 160 bp fragment in which thymidine residues were replaced with uridine residues. We show that the dT-->dU substitution and the consequent deletion of the methyl group affects the cleavage of DNA by deoxyribonuclease I and micrococcal nuclease. Analysis of the DNase I cleavage sites, in terms of di and trinucleotides, indicates that homopolymeric tracts of d(AT) become significantly more susceptible to DNase I cleavage when uridine is substituted for thymidine residues. The results indicate that removal of the thymidine methyl groups from the major groove at AT tracts induces structural perturbations that transmit into the opposite minor groove, where they can be detected by endonuclease probing. In contrast, DNase I footprinting experiments with different mono and bis-intercalating drugs reveal that dT-->dU substitution does not markedly affect sequence-specific drug-DNA recognition in the minor or major groove of the double helix. The consequences of demethylation of thymidine residues are discussed in terms of changes in the minor groove width connected to variations in the flexibility of DNA and the intrinsic curvature associated with AT tracts. The study identifies the methyl group of thymine as an important molecular determinant controlling the width of the minor groove and/or the flexibility of the DNA.  相似文献   

16.
The incorporation of exogenous thymidine and thymine into acid-insoluble material of Thermoactinomyces vulgaris has been studied during germination and subsequent growth. Thymine is not incorporated. The incorporation of thymidine stops after a short time due to the rapid breakdown of thymidine to thymine and deoxyribose-1-phosphate by the inducible thymidine phosphorylase. Deoxyadenosine enhances the incorporation of thymidine as well as of thymine and prolongs the tine of uptake. Uridine stimulates only the incorporation of thymidine but not of thymine. These effects can be explained by the function of these substances within the salvage pathway. Deoxyadenosine acts as donor of deoxyribosyl groups being necessary for the conversion of thymine to thymidine by thymidine phosphorylase and uridine inhibits thymidine phosphorylase, and thereby it prevents the degradation of thymidine to thymine. Thymidine is incorporated into alkali-, RNase-and protease-stable, hot TCA-soluble and DNase-sensitive material. That means that the cellular DNA of T. vulgaris can be specifically labelled by radioactive thymidine in the presence of deoxyadenosine and uridine, respectively.  相似文献   

17.
The human mitochondrial deoxyribonucleotidase catalyzes the dephosphorylation of thymidine and deoxyuridine monophosphates and participates in the regulation of the dTTP pool in mitochondria. We present seven structures of the inactive D41N variant of this enzyme in complex with thymidine 3'-monophosphate, thymidine 5'-monophosphate, deoxyuridine 5'-monophosphate, uridine 5'-monophosphate, deoxyguanosine 5'-monophosphate, uridine 2'-monophosphate, and the 5'-monophosphate of the nucleoside analog 3'-deoxy 2'3'-didehydrothymidine, and we draw conclusions about the substrate specificity based on comparisons with enzyme activities. We show that the enzyme's specificity for the deoxyribo form of nucleoside 5'-monophosphates is due to Ile-133, Phe-49, and Phe-102, which surround the 2' position of the sugar and cause an energetically unfavorable environment for the 2'-hydroxyl group of ribonucleoside 5'-monophosphates. The close binding of the 3'-hydroxyl group of nucleoside 5'-monophosphates to the enzyme indicates that nucleoside analog drugs that are substituted with a bulky group at this position will not be good substrates for this enzyme.  相似文献   

18.
Four 5′-deoxy-5′-nipecotic acid substituted pyrimidine nucleosides were synthesized and characterized. Their inhibitory activities towards ribonuclease A (RNase A) have been studied by enzyme kinetics and docking experiments. All inhibition constants obtained were in the sub-millimolar range. Biochemical analysis shows that the uridine derivative is more potent than the corresponding thymidine derivatives and that the inhibition is competitive in nature. For thymidine derivatives, the 3′-hydroxy group plays an important role in binding as well as in inhibition. Docking studies also support the experimental results. In the docking conformation the uridine derivative was found to bind to the P1P2 subsite with the acid group within hydrogen bonding distance of the active site histidine residues.  相似文献   

19.
The anabolism of pyrimidine ribo- and deoxyribonucleosides from uracil and thymine was investigated in phytohemagglutinin-stimulated human peripheral blood lymphocytes and in a Burkitt's lymphoma-derived cell line (Raji). We studied the ability of these cells to synthesize pyrimidine nucleosides by ribo- and deoxyribosyl transfer between pyrimidine bases or nucleosides and the purine nucleosides inosine and deoxyinosine as donors of ribose 1-phosphate and deoxyribose 1-phosphate, respectively: these reactions involve the activities of purine-nucleoside phosphorylase, and of the two pyrimidine-nucleoside phosphorylases (uridine phosphorylase and thymidine phosphorylase). The ability of the cells to synthesize uridine was estimated from their ability to grow on uridine precursors in the presence of an inhibitor of pyrimidine de novo synthesis (pyrazofurin). Their ability to synthesize thymidine and deoxyuridine was estimated from the inhibition of the incorporation of radiolabelled thymidine in cells cultured in the presence of unlabelled precursors. In addition to these studies on intact cells, we determined the activities of purine- and pyrimidine-nucleoside phosphorylases in cell extracts. Our results show that Raji cells efficiently metabolize preformed uridine, deoxyuridine and thymidine, are unable to salvage pyrimidine bases, and possess a low uridine phosphorylase activity and markedly decreased (about 1% of peripheral blood lymphocytes) thymidine phosphorylase activity. Lymphocytes have higher pyrimidine-nucleoside phosphorylases activities, they can synthesize deoxyuridine and thymidine from bases, but at high an non-physiological concentrations of precursors. Neither type of cell is able to salvage uracil into uridine. These results suggest that pyrimidine-nucleoside phosphorylases have a catabolic, rather than an anabolic, role in human lymphoid cells. The facts that, compared to peripheral blood lymphocytes, lymphoblasts possess decreased pyrimidine-nucleoside phosphorylases activities, and, on the other hand, more efficiently salvage pyrimidine nucleosides, are consistent with a greater need of these rapidly proliferating cells for pyrimidine nucleotides.  相似文献   

20.
Trypanosoma cruzi: inhibition of protein synthesis by nitrofuran SQ 18,506   总被引:1,自引:0,他引:1  
SQ 18,506 is a nitrofuran compound related to the trypanocide Lampit. In vitro, radiolabeled leucine, uridine, and thymidine were incorporated into macromolecular protein, RNA, and DNA in order to study growth inhibition of Trypanosoma cruzi. Our findings suggest that the primary effect of the drug is on protein synthesis and not mediated solely by inhibition of RNA synthesis as indicated by prior studies. The drug was also found to reduce markedly the uptake of uridine into the nucleotide precursor pool but to affect only slightly the formation of aminoacyl-tRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号