首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The influence of exogenous cyclic nucleotides or theophylline either on basal or stimulated volume and protein secretion is studied on the isolated perfused canine pancreas in dependence on varied extracellular calcium concentrations. Bt2cAMP or theophylline do not influence basal secretory rates of pancreatic juice but potentiate secretin-stimulated volume output. They additionally increase basal protein secretion under exclusive secretin stimulation and potentiate dose-dependently CCK- or acetylcholine-induced protein output. The hydrokinetic and ecbolic effects of Bt2cAMP and theophylline persist in a calcium-free medium but fail in normalizing inhibited protein secretion during calcium deprivation. Bt2cGMP neither increases basal nor stimulated volume and protein secretion. The demonstrated influence of Bt2cAMP and theophylline on ductal volume and acinar protein secretion accomplishes two criteria, as suggested by Sutherland, for cAMP as second messenger for secretin and CCK or acetylcholine as well.  相似文献   

2.
The secretion of cAMP is studied in vivo and in the isolated perfused canine pancreas after administration of secretin and CCK or caerulein in comparison with hydrokinetic or ecbolic secretory events as well as with the magnitude and time course of changes in tissue cAMP. 1) The total output of cAMP and pancreatic juice shows a significant and positive correlation after stimulation with secretin. The linear correspondence between cAMP concentration and secretory rates of pancreatic juice beyond 3 ml/5 min and their non-linear, reciprocal correlation at lower rates of fluid secretion point to an active as well as to a passive secretory mechanism for cAMP. 2) CCK and caerulein increase secretion of cAMP too. The output of cAMP however neither corresponds to the time course of protein secretion nor correlates quantitatively with the latter. 3) The behaviour of cAMP secretion and concentration in the pancreatic juice after administration of secretin and CCK or caerulein as well as differs from the changes in tissue cAMP levels. The respective maximum of cAMP output after addition of secretin or ecbolic secretagogues during the greatest decrease in cellular cAMP levels yields on the average about 1% of the estimated reduction in total tissue cAMP content. The results indicate a functional coherence in secretion of pancreatic juice and cAMP but oppose the assumption, that essential amounts of cAMP are released during exocytosis of zymogen granules. The secretion of cAMP may be possibly influenced by cytoplasmatic cAMP levels, but neither reflects the present changes in cellular cAMP nor seems to be of a regulatory importance for the latter.  相似文献   

3.
The present state of chemistry, structure-activity relationship and cellular mode of action of gastrointestinal polypeptide hormones (gastrin, secretin, cholecystokinin-pancreozymin, caerulein and bombesin) are reviewed. Possible structure of polypeptide receptors and the mechanism of peptide--receptor interaction are described, and the role of acetylcholine and histamine in secretion discussed. The present data support the hormonal-receptor significance of cyclic nucleotides (cAMP, cGMP) in the cellular regulation of secretion.  相似文献   

4.
Cyclic nucleotide modulation of electrolyte transport across intestinal brushborder membranes is initiated by binding of cGMP and cAMP to high-affinity receptors at the interior of the microvilli. Previously these receptors have been identified by photoaffinity-labelling techniques as regulatory domains of cGMP- and cAMP-dependent protein kinases. In the present study, the receptor concentration in isolated brushborder membrane vesicles and their fractional saturation in absorptive and secretory states of the tissue were estimated. In microvillous membrane vesicles isolated from rat small intestine in the absorptive state, about 10% of the total number of cGMP receptors (25.5 pmol/mg protein) and 40% of all cAMP receptors (28.7 pmol/mg protein) were occupied by endogenous cyclic nucleotides. Luminal exposure of the intestinal segments in vivo to heat-stable Escherichia coli toxin for 3-5 min increased the occupancy of cGMP receptors by about 5-fold without affecting receptor-bound cAMP levels. In contrast, incubation with cholera toxin for 2 h increased the fractional saturation solely of cAMP receptors by 2-fold. Addition of heat-stable E. coli toxin to cholera toxin-pretreated segments, again raising the cGMP levels by 5-fold, did not reduce the amount of receptor-bound cAMP. This finding argues against the concept that increased levels of cAMP during cholera would mimick cGMP effects on ion transport by low-affinity binding to microvillar cGMP receptors. This analysis of local changes in cyclic nucleotide levels at the microvillous level might help to explore the mechanism of action of other secretagogues or antidiarrhoeal agents and to delineate a possible compartmentation of cGMP and cAMP pools within the intestinal mucosa responding differently to external signals.  相似文献   

5.
Statistically significant data indicating selective interaction of noradenaline and cAMP as well as of acetylcholine and cGMP were obtained in experiments on the microionophoretic bringing of cyclic purine nucleotides and mediator substances acetylcholine and noradrenaline to the rabbit cortical neurons. Studies on the relationships between cAMP and cGMP at the single unit level suggest their multilevel functional interaction with other systems of intracellular regulators.  相似文献   

6.
Studies on the level of cyclic nucleotides (cAMP and cGMP) in human and animal glial tumours showed that the content of both nucleotides, especially that of cAMP, decreases in all the tumours. The cAMP/cGMP ratio also drops down. Concurrently it appears to be the most consistent parameter of nucleotide metabolism both in brain tissue and in human or animal glial tumours. The growing tumour affects cAMP and cGMP metabolism not only in the involved but also in the other hemisphere. No principal differences between human and animal tumours have been revealed in the content of cyclic nucleotides and its variation in tumour tissue.  相似文献   

7.
The secretion of cyclic AMP, cyclic GMP, protein, calcium, and bicarbonate in the pancreatic juice of three nonanesthetized dogs with chronic gastric and duodenal Thomas cannulae has been studied. Intravenous infusions of increasing doses of cholecystokinin-pancreozymin (CCK) (1.5, 3, 6, 12, 24 Crick Harper-Raper (CHR) U kg-1 h-1) were administered together with a continuous submaximal dose of secretin (1 clinical unit (CU) kg-1 h-1). Doubling CCK doses every 45 min induced a parallel increase in the output of both cyclic nucleotides. Cyclic AMP output peaked at between 15 and 30 min for 3 and 6 U kg-1 h-1 of CCK and later for 12 and 24 U kg-1 h-1 of CCK whereas cyclic GMP output increased more constantly. Calcium output followed a pattern similar to that of cyclic GMP secretion. Flow rate and protein output attained their peaks at between 30 and 45 min. A strong linear correlation was found between the quantities of cyclic AMP, cyclic GMP, and the quantities of protein secreted in response to each CCK dose. This study demonstrates the presence of cyclic GMP in the canine pancreatic juice and the dose-dependent stimulation of the secretion of cyclic GMP and cyclic AMP by CCK in the presence of secretin.  相似文献   

8.
The actions of gastric inhibitory polypeptide (GIP) on insulin release from the isolated perfused rat pancreas were compared with those of pure secretin and cholecystokinin (CCK). At dose levels physiologically achievable for GIP (1 ng/mL perfusate), infusions of CCK stimulated significant insulin release both on a weight (1 ng/mL) and a molar (770 pg/mL) basis. Although 50% as potent as GIP on a weight basis and 43% as potent on a molar basis, the insulin response to CCK was multiphasic and sustained for the duration of the infusion. The action of CCK, like that of GIP, was glucose dependent yielding no significant insulin release at a low perfusate glucose concentration (80 mg/dL). Irrespective of perfusate glucose concentration or dose (1 or 5 ng/mL), secretin failed to stimulate significant release of insulin from the perfused pancreas. It was concluded that secretin is ineffective as an incretin and that a physiological role for CCK in an enteroinsular axis awaits accurate measurement of circulating levels of immunoreactive CCK.  相似文献   

9.
The secretory function of the exocrine pancreas has been studied in dispersed pancreatic acini from obese and homozygous lean Zucker rats at 6 and 22 wk. No abnormality was found in acini from young rats. Acini from 22 wk obese and lean rats were equally responsive to secretagogues which stimulate cAMP, i.e. vasoactive intestinal peptide (VIP) and secretin. By contrast, there was a reduction in the maximum responsiveness to caerulein and carbamylcholine in acini from obese rats. These latter secretagogues act through mobilization of intracellular Ca2+. Since obese animals are insulin resistant and amylase release is modulated by insulin, the role of insulin resistance in the secretory defect was then investigated. A group of 22 wk obese rats received treatment with Ciglitazone (a drug which reduces insulin resistance in obese laboratory animals) for 4 wk before the secretion study. Despite the expected reduction in insulin resistance there was no improvement of the secretory defect seen with caerulein and carbamylcholine stimulation. Thus, the secretory abnormality in the exocrine pancreas of adult obese Zucker rats does not appear to be directly associated with insulin resistance. Furthermore, the secretory defect is linked to those secretagogues which induce Ca2+-independent phosphoinositide hydrolysis and Ca2+ mobilization in the target cell.  相似文献   

10.
The relationship between accumulation of cyclic AMP and the secretion of α-amylase was investigated in the rat pancreas in vitro. Theophylline and secretin induced an increase in tissue cyclic AMP levels, however, only secretin stimulated secretion of α-amylase. Pancreozymin caused a release of α-amylase and had a biphasic effect on nucleotide levels — stimulation followed by inhibition. Carbachol, which induced a secretory response in the rat pancreas, reduced tissue levels of the cyclic nucleotide.  相似文献   

11.
12.
We recently reported that addition of a small amount of hemolysate to the salt solution that perfused isolated rat lungs hypersensitized the vasculature to subsequent additions of ANG II or exposure to hypoxia, and addition of NO gas (. NO) to the perfusate that contained hemolysate caused a strong vasoconstrictor rather than a vasodilator response. In the present study, we demonstrate that CO and the secondary messengers cGMP and cAMP (usually associated with vasodilation) exert similar effects in hemolysate-perfused lungs. Analogs of the cyclic nucleotides cGMP or cAMP (8-bromo-cGMP and dibutyryl-cAMP, respectively) caused profound vasoconstriction in the isolated rat lung perfused with a salt solution that contained hemolysate. The cGMP- or cAMP-analog-induced vasoconstriction was inhibited by chemically dissimilar Ca2+ antagonists, by the protein phosphatase inhibitor okadaic acid, and, to a lesser degree, by protein kinase inhibitor H-7. Antiphosphothreonine immunoblotting demonstrated that lungs perfused with hemolysate exhibit increased phosphorylation of several proteins. These data indicate that, in the presence of hemolysate, pulmonary vasculature responds to nominally vasodilatory stimuli, including analogs of cGMP and cAMP, with vasoconstriction rather than vasodilation. The importance of our finding is the paradoxical nature of the response to (analogs of) cyclic nucleotides because, to our knowledge, cyclic nucleotide-induced vasoconstriction has not been previously reported.  相似文献   

13.
Phosphodiesterases (PDEs) capable of degrading cAMP and cGMP are indispensable for the regulation of cyclic nucleotide-mediated signals. The existence of other cyclic nucleotides such as cCMP and cUMP has been discussed controversially in the literature. Despite publications on PDEs hydrolyzing cCMP or cUMP, the molecular identity of such enzymes remained elusive. Recently, we have provided evidence for a role of cCMP as second messenger in vascular relaxation and inhibition of platelet aggregation. Using an HPLC-MS based assay, here, we show that human PDEs belonging to various families hydrolyze not only cAMP and cGMP but also other cyclic nucleotides.  相似文献   

14.
Isolated acini were prepared from the pancreas of immature rats (age less than 1 hr. - 48 hrs) in order to study the development of the secretory process. The ultrastructural integrity of the acinar cells was maintained after digestion and stimulation with secretagogues. Acini prepared from rats aged 24 - 48 hours responded to both CCK-8 and carbachol with significant increases in amylase release. Although typical biphasic dose response curves were obtained, the curves were shifted to the right by 1 - 2 log units, compared to the responses of adult acini. At ages younger than 24 hours, acini were insensitive to secretagogues but were sensitive to the calcium ionophore A23187. CCK receptors were virtually absent from membranes prepared from newborn pancreases, but binding of CCK, although small, was measurable at 12 hours and slowly increased up to 48 hours. A greater amount of binding was seen at 72 hours, which appeared constant up to 14 days. At 21 days, adult levels of binding were found. These results confirm previous studies that the rat pancreas is insensitive to secretagogues in the first 24 hours of life. After age 24 hours the secretory process is intact but less sensitive to secretory agents than the more mature pancreas. In the case of CCK, this may be due to lesser numbers of CCK receptors and/or affinity of CCK for its receptor.  相似文献   

15.
Adaptive exocrine pancreatic growth is mediated primarily by dietary protein and the gastrointestinal hormone cholecystokinin (CCK). Feeding trypsin inhibitors such as camostat (FOY-305) is known to induce CCK release and stimulate pancreatic growth. However, camostat has also been reported to stimulate secretin release and, because secretin often potentiates the action of CCK, it could participate in the growth response. Our aim was to test the role of secretin in pancreatic development and adaptive growth through the use of C57BL/6 mice with genetic deletion of secretin or secretin receptor. The lack of secretin in the intestine or the secretin receptor in the pancreas was confirmed by RT-PCR. Other related components, such as vasoactive intestinal polypeptide (VIP) receptors (VPAC(1) and VPAC(2)), were not affected. Secretin increased cAMP levels in acini from wild-type (WT) mice but had no effect on acini from secretin receptor-deleted mice, whereas VIP and forskolin still induced a normal response. Secretin in vivo failed to induce fluid secretion in receptor-deficient mice. The pancreas of secretin or secretin receptor-deficient mice was of normal size and histology, indicating that secretin is not necessary for normal pancreatic differentiation or maintenance. When WT mice were fed 0.1% camostat in powdered chow, the pancreas doubled in size in 1 wk, accompanied by parallel increases in protein and DNA. Camostat-fed littermate secretin and secretin receptor-deficient mice had similar pancreatic mass to WT mice. These results indicate that secretin is not required for normal pancreatic development or adaptive growth mediated by CCK.  相似文献   

16.
cAMP- and cGMP-dependent protein kinases are homologous proteins and are predicted to exhibit very similar three-dimensional structures. Their cyclic nucleotide binding domains share a high degree of amino acid sequence identity. cAMP- and cGMP-dependent protein kinases are activated relatively specifically by cAMP and cGMP, respectively; and a single alanine-threonine difference between cAMP- and cGMP-binding domains partially accounts for this specificity. Thus, it would be expected that cAMP and cGMP mediate separate physiological effects. However, owing in part to the lack of absolute specificity of either enzyme and to the relatively high level of cAMP or cGMP in certain tissues, it is also possible that either cyclic nucleotide could cross-activate the other kinase. Increases in either cAMP or cGMP cause pig coronary artery relaxation. However, only cGMP-dependent protein kinase specific cyclic nucleotide analogues are very effective in causing relaxation, and cAMP elevation in arteries treated with isoproterenol or forskolin activates cGMP-dependent protein kinase, in addition to cAMP-dependent protein kinase. Conversely, increases in either cAMP or cGMP cause Cl- secretion in T-84 colon carcinoma cells, and the cGMP level in T-84 cells can be elevated sufficiently by bacterial enterotoxin to activate cAMP-dependent protein kinase. These results imply specific regulation of cAMP- and cGMP-dependent protein kinases by the respective cyclic nucleotides, but either cyclic nucleotide is able to cross-activate the other kinase in certain tissues.  相似文献   

17.
The effects of exogenous prostaglandin E1 (PGE1) or prostaglandin E2 (PGE2) were studied in the isolated perfused rat liver and in the intact canine liver in order to determine the possible physiological role of prostaglandins on hepatic carbohydrate and lipid metabolism. The data indicate that PGE1 and PGE2 did not stimulate cyclic AMP (cAMP) and cyclic GMP (cGMP) concentrations in intact dog liver and PGE1 failed to stimulate cAMP or cGMP in fed or fasted perfused rat liver. PGE1 did not promote hyperglycemia, glycogenolysis, lipolysis, or prevent epinephrine-induced hyperglycemia in the isolated perfused rat liver. Other known glycogenolytic agents including glucagon and epinephrine increased cAMP and glycogenolysis in the same perfusion system. This study does not support a physiologic role for PGE1 on hepatic glycogenolysis or lipolysis. If PGE1 subsequently is found to influence other metabolic parameters such as lipogenesis, gluconeogenesis, ureogenesis or amino acid transport in isolated perfused liver, such alterations would probably occur independent of changes in cyclic nucleotide activity.  相似文献   

18.
The effect of collagen, its hydrolysate and glycin on metabolism of cyclic nucleotides in wound tissue was studied in experiments on animals. Collagen was found to reduce the cAMP level in muscles of the wound fundus, while the concentration of cGMP remained unchanged. Collagen hydrolysate induced unidirectional changes in cyclic nucleotides, whereas glycin opposite ones. The basal activity of cAMP phosphodiesterase was not changed. The mechanism of the stimulatory effect of collagen on wound healing is discussed.  相似文献   

19.
Helodermin, VIP and PHI, which share a high degree of homology with secretin, have been identified in the gut but their physiological role is unknown. In this study 3 series of tests were carried out to determine the actions of helodermin, VIP and PHI on pancreatic secretion in 6 conscious dogs and amylase release from the dispersed canine pancreatic acini and to correlate the alterations in pancreatic secretory and circulatory effects in 24 anesthetized dogs. Helodermin, VIP and PHI infused i.v. in graded doses (12.5-200 pmol/kg.h) resulted in a dose-dependent increase in pancreatic HCO3 secretion reaching, respectively, 100%, 7% and 2% of secretin maximum. When combined with constant dose infusion of CCK-8 (100 pmol/kg.h), helodermin but not VIP or PHI augmented dose-dependently the HCO3 secretion. When added in various concentrations (10(-10)-10(-5)M) to the incubation medium of dispersed pancreatic acini only helodermin but not VIP or PHI increased dose-dependently amylase release reaching about 50% of CCK-8 maximum. In anesthetized dogs, the pancreatic blood flow (PBF) measured by electromagnetic blood flowmetry showed an immediate and dose-dependent increase following the injections of various doses of helodermin, VIP, PHI and secretin, the peak blood flow preceding by about 1 min the peak secretory stimulation. This study shows that helodermin resembles secretin in its potent pancreatic HCO3 stimulation but differs from VIP or PHI which are poor secretagogues but potent vasodilators. We conclude that if tested peptides are released in the gut, helodermin, like secretin, may be involved in the hormonal stimulation of exocrine pancreas, whereas VIP and PHI may serve mainly as vasodilators in the pancreatic circulation.  相似文献   

20.
Homogenates of rat neostriatum hydrolysed cGMP faster than cAMP at both high (100 microM) and low (1 microM) substrate concentrations, although the hydrolysis of both nucleotides exhibited similar kinetic properties. Kinetic analysis of the effect of substrate concentration on the rate of cAMP and cGMP hydrolysis gave results characteristic of a negatively cooperative enzyme species, with two apparent Km's for each nucleotide. The ratio between the Vmax of the high Km form and the Vmax of the low Km form was similar in various subcellular fractions of neostriatal tissue, in a preparation of synaptic membranes from whole brain, and in homogenates of other brain regions, including both neural-rich and glial-rich tissues. In homogenates of neostriatum cAMP could almost completely block cGMP hydrolysis and vice versa. The kinetics of this inhibition were competitive at low (1 microM) substrate concentrations, and non-competitive at high (100 microM) substrate concentrations. Various phosphodiesterase inhibitors failed to preferentially inhibit the hydrolysis of either nucleotide at high or low nucleotide concentrations. Preliminary studies of the effect of a Ca(2+)-dependent endogenous activator preparation on the hydrolysis of cyclic nucleotides in homogenates of rat neostriatum showed a specific activation of cGMP hydrolysis at low nucleotide concentrations. The rate of cGMP hydrolysis at 1 microM substrate concentration was doubled in the presence of the activator preparation and 100 microM-CaCl2, while cGMP hydrolysis at 100 microM or cAMP hydrolysis at both 1 microM and 100 microM remained unaffected. These observations raise the possibility that cAMP and cGMP may be hydrolysed by the same enzyme in rat neostriatum, and that an endogenous activating factor may determine the relative affinities of the enzyme for the two nucleotides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号