首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) based on three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were conducted on a series (44 compounds) of diaryloxy-methano-phenanthrene derivatives as potent antitubercular agents. The best predictions were obtained with a CoMFA standard model (q (2)=0.625, r (2)=0.994) and with CoMSIA combined steric, electrostatic, and hydrophobic fields (q (2)=0.486, r (2)=0.986). Both models were validated by a test set of seven compounds and gave satisfactory predictive r (2) values of 0.999 and 0.745, respectively. CoMFA and CoMSIA contour maps were used to analyze the structural features of the ligands to account for the activity in terms of positively contributing physicochemical properties: steric, electrostatic, and hydrophobic fields. The information obtained from CoMFA and CoMSIA 3-D contour maps can be used for further design of phenanthrene-based analogs as anti-TB agents. The resulting contour maps, produced by the best CoMFA and CoMSIA models, were used to identify the structural features relevant to the biological activity in this series of analogs. Further analysis of these interaction-field contour maps also showed a high level of internal consistency. This study suggests that introduction of bulky and highly electronegative groups on the basic amino side chain along with decreasing steric bulk and electronegativity on the phenanthrene ring might be suitable for designing better antitubercular agents.  相似文献   

2.
A 3D-QSAR investigation of 95 diaminobenzophenone yeast farnesyltransferase (FT) inhibitors selected from the work of Schlitzer et al. showed that steric, electrostatic, and hydrophobic properties play key roles in the bioactivity of the series. A CoMFA/CoMSIA combined model using the steric and electrostatic fields of CoMFA together with the hydrophobic field of CoMSIA showed significant improvement in prediction compared with the CoMFA steric and electrostatic fields model. The similarity of the 3D-QSAR field maps for yeast FT inhibition activity (from this work) and for antimalarial activity data (from previous work) and the correlation between those activities are discussed.  相似文献   

3.
Urease (EC 3.5.1.5) serves as a virulence factor in pathogens that are responsible for the development of many diseases in humans and animals. Urease allows soil microorganisms to use urea as a source of nitrogen and aid in the rapid break down of urea-based fertilizers resulting in phytopathicity. It has been well established that hydroxamic acids are the potent inhibitors of urease activity. The 3D-QSAR studies on thirty five hydroxamic acid derivatives as known urease inhibitors were performed by Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) methods to determine the factors required for the activity of these compounds. The CoMFA model produced statistically significant results with cross-validated (q(2)) 0.532 and conventional (r(2)) correlation coefficients 0.969.The model indicated that the steric field (70.0%) has greater influence on hydroxamic acid inhibitors than the electrostatic field (30.0%). Furthermore, five different fields: steric, electrostatic, hydrophobic, H-bond donor and H-bond acceptor assumed to generate the CoMSIA model, which gave q(2) 0.665 and r(2) 0.976.This model showed that steric (43.0%), electrostatic (26.4%) and hydrophobic (20.3%) properties played a major role in urease inhibition. The analysis of CoMFA and CoMSIA contour maps provided insight into the possible modification of the hydroxamic acid derivatives for improved activity.  相似文献   

4.
Thymidine kinase 1 (TK1) is a key target for antiviral and anticancer chemotherapy. Three-dimensional quantitative structure-activity relationship (3D-QSAR) using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques was applied to analyze the phosphorylation capacity of a series of 31 TK1 substrates. The optimal predictive CoMFA model with 26 molecules provided the following values: cross-validated r(2) (q(2))=0.651, non-cross-validated r(2)=0.980, standard error of estimate (s)=0.207, F=129.3. For the optimal CoMSIA model the following values were found: q(2)=0.619, r(2)=0.994, s=0.104, F=372.2. The CoMSIA model includes steric, electrostatic, and hydrogen bond donor fields. The predictive capacity of both models was successfully validated by calculating known phosphorylation rates of five TK1 substrates that were not included in the training set. Contour maps obtained from CoMFA and CoMSIA models correlated with the experimentally developed SAR.  相似文献   

5.
6.
Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) based on three dimensional quantitative structure-activity relationship (3D-QSAR) studies were conducted on a series (78 compounds) of 2, 4-diamino-5-methyl-5-deazapteridine (DMDP) derivatives as potent anticancer agents. The best prediction were obtained with a CoMFA standard model (q(2) = 0.530, r(2) = 0.903) and with CoMSIA combined steric, electrostatic, hydrophobic and hydrogen bond donor fields (q(2) = 0.548, r(2) = 0.909). Both models were validated by a test set of ten compounds producing very good predictive r(2) values of 0.935 and 0.842, respectively. CoMFA and CoMSIA contour maps were then used to analyze the structural features of ligands to account for the activity in terms of positively contributing physiochemical properties such as steric, electrostatic, hydrophobic and hydrogen bond donor fields. The resulting contour maps produced by the best CoMFA and CoMSIA models were used to identify the structural features relevant to the biological activity in this series of analogs. This study suggests that the highly electropositive substituents with low steric tolerance are required at 5 position of the pteridine ring and bulky electronegatve substituents are required at the meta-position of the phenyl ring. The information obtained from CoMFA and CoMSIA 3-D contour maps can be used for the design of deazapteridine-based analogs as anticancer agents.  相似文献   

7.
Three-dimensional quantitative structure-activity relationship (3D-QSAR) and molecular docking studies were carried out to explore the binding of 73 inhibitors to dipeptidyl peptidase IV (DPP-IV), and to construct highly predictive 3D-QSAR models using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The negative logarithm of IC50 (pIC50) was used as the biological activity in the 3D-QSAR study. The CoMFA model was developed by steric and electrostatic field methods, and leave-one-out cross-validated partial least squares analysis yielded a cross-validated value (rcv2 {\hbox{r}}_{{\rm{cv}}}^{\rm{2}} ) of 0.759. Three CoMSIA models developed by different combinations of steric, electrostatic, hydrophobic and hydrogen-bond fields yielded significant rcv2 {\hbox{r}}_{{\rm{cv}}}^{\rm{2}} values of 0.750, 0.708 and 0.694, respectively. The CoMFA and CoMSIA models were validated by a structurally diversified test set of 18 compounds. All of the test compounds were predicted accurately using these models. The mean and standard deviation of prediction errors were within 0.33 and 0.26 for all models. Analysis of CoMFA and CoMSIA contour maps helped identify the structural requirements of inhibitors, with implications for the design of the next generation of DPP-IV inhibitors for the treatment of type 2 diabetes.  相似文献   

8.
As a part of our ongoing research to develop novel antitubercular agents, a series of N-phenyl-3-(4-fluorophenyl)-4-substituted pyrazoles have been synthesized and tested for antimycobacterial activity in vitro against Mycobacterium tuberculosis H37Rv strain using the BACTEC 460 radiometric system. A 3D-QSAR study based on CoMFA and CoMSIA was performed on these pyrazole derivatives to correlate their chemical structures with the observed activity against M. tuberculosis. The CoMFA model provided a significant correlation of steric and electrostatic fields with the biological activity while the CoMSIA model could additionally shed light on the role of hydrogen bonding and hydrophobic features. The important features identified in the 3D-QSAR models have been used to propose new molecules whose activities are predicted higher than the existing systems. This study provides valuable directions to our ongoing endeavor of rationally designing more potent antitubercular agents.  相似文献   

9.
Urease (EC 3.5.1.5) serves as a virulence factor in pathogens that are responsible for the development of many diseases in humans and animals. Urease allows soil microorganisms to use urea as a source of nitrogen and aid in the rapid break down of urea-based fertilizers resulting in phytopathiCIT000y. It has been well established that hydroxamic acids are the potent inhibitors of urease activity. The 3D-QSAR studies on thirty five hydroxamic acid derivatives as known urease inhibitors were performed by Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) methods to determine the factors required for the activity of these compounds. The CoMFA model produced statistically significant results with cross-validated (q2) 0.532 and conventional (r2) correlation coefficients 0.969.The model indicated that the steric field (70.0%) has greater influence on hydroxamic acid inhibitors than the electrostatic field (30.0%). Furthermore, five different fields: steric, electrostatic, hydrophobic, H-bond donor and H-bond acceptor assumed to generate the CoMSIA model, which gave q2 0.665 and r2 0.976.This model showed that steric (43.0%), electrostatic (26.4%) and hydrophobic (20.3%) properties played a major role in urease inhibition. The analysis of CoMFA and CoMSIA contour maps provided insight into the possible modification of the hydroxamic acid derivatives for improved activity.  相似文献   

10.
Sodium hydrogen exchanger (SHE) inhibitor is one of the most important targets in treatment of myocardial ischemia. In the course of our research into new types of non-acylguanidine, SHE inhibitory activities of 5-tetrahydroquinolinylidine aminoguanidine derivatives were used to build pharmacophore and 3D-QSAR models. Genetic Algorithm Similarity Program (GASP) was used to derive a 3D pharmacophore model which was used in effective alignment of data set. Eight molecules were selected on the basis of structure diversity to build 10 different pharmacophore models. Model 1 was considered as the best model as it has highest fitness score compared to other nine models. The obtained model contained two acceptor sites, two donor atoms and one hydrophobic region. Pharmacophore modeling was followed by substructure searching and virtual screening. The best CoMFA model, representing steric and electrostatic fields, obtained for 30 training set molecules was statistically significant with cross-validated coefficient (q(2)) of 0.673 and conventional coefficient (r(2)) of 0.988. In addition to steric and electrostatic fields observed in CoMFA, CoMSIA also represents hydrophobic, hydrogen bond donor and hydrogen bond acceptor fields. CoMSIA model was also significant with cross-validated coefficient (q(2)) and conventional coefficient (r(2)) of 0.636 and 0.986, respectively. Both models were validated by an external test set of eight compounds and gave satisfactory prediction (r(pred)(2)) of 0.772 and 0.701 for CoMFA and CoMSIA models, respectively. This pharmacophore based 3D-QSAR approach provides significant insights that can be used to design novel, potent and selective SHE inhibitors.  相似文献   

11.
For the first time, a set of experimentally reported [60] fullerene derivatives were subjected to the 3D-QSAR/CoMFA and CoMSIA studies. The aim of this study is to propose a series of novel [60] fullerene-based inhibitors with optimal binding affinity for the HIV-1 PR enzyme. The position of the template molecule at the cavity of HIV-1 PR was optimized and 3D QSAR models were developed. Relative contributions of steric/electrostatic fields of the 3D-QSAR/CoMFA and CoMSIA models have shown that steric effects govern the bioactivity of the compounds, but electrostatic interactions play also an important role.The de novo drug design Leapfrog simulations provided a series of novel compounds with predicted improved inhibition effect.  相似文献   

12.
Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were conducted on a series of N(1)-arylsulfonylindole compounds as 5-HT(6) antagonists. Evaluation of 20 compounds served to establish the models. The lowest energy conformer of compound 1 obtained from random search was used as template for alignment. The best predictions were obtained with CoMFA standard model (q2 = 0.643, r2 = 0.939 ) and with CoMSIA combined steric, electrostatic, hydrophobic, and hydrogen bond acceptor fields (q2 = 0.584, r2 = 0.902 ). Both the models were validated by an external test set of eight compounds giving satisfactory predictive r2 values of 0.604 and 0.654, respectively. The information obtained from CoMFA and CoMSIA 3D contour maps can be used for further design of specific 5-HT(6) antagonists.  相似文献   

13.
The dopamine reuptake inhibitor GBR 12909 (1-{2-[bis(4-fluorophenyl)methoxy]ethyl}-4-(3-phenylpropyl)piperazine, 1) and its analogs have been developed as tools to test the hypothesis that selective dopamine transporter (DAT) inhibitors will be useful therapeutics for cocaine addiction. This 3D-QSAR study focuses on the effect of substitutions in the phenylpropyl region of 1. CoMFA and CoMSIA techniques were used to determine a predictive and stable model for the DAT/serotonin transporter (SERT) selectivity (represented by pK(i) (DAT/SERT)) of a set of flexible analogs of 1, most of which have eight rotatable bonds. In the absence of a rigid analog to use as a 3D-QSAR template, six conformational families of analogs were constructed from six pairs of piperazine and piperidine template conformers identified by hierarchical clustering as representative molecular conformations. Three models stable to y-value scrambling were identified after a comprehensive CoMFA and CoMSIA survey with Region Focusing. Test set correlation validation led to an acceptable model, with q(2)=0.508, standard error of prediction=0.601, two components, r(2)=0.685, standard error of estimate=0.481, F value=39, percent steric contribution=65, and percent electrostatic contribution=35. A CoMFA contour map identified areas of the molecule that affect pK(i) (DAT/SERT). This work outlines a protocol for deriving a stable and predictive model of the biological activity of a set of very flexible molecules.  相似文献   

14.
Class III antiarrhythmic agents selectively delay the effective refractory period (ERP) and increase the transmembrance action potential duration (APD). Based on our previous studies, a set of 17 methylsulfonamido phenylethylamine analogues were investigated by 3D-QSAR techniques of CoMFA and CoMSIA. The 3D-QSAR models proved a good predictive ability, and could describe the steric, electrostatic and hydrophobic requirements for recognition forces of the receptor site. According to the clues provided by this 3D-QSAR analysis, we designed and synthesized a series of new analogues of methanesulfonamido phenylethylamine (VIa-i). Pharmacological assay indicated that the effective concentrations of delaying the functional refractory period (FRP) 10ms of these new compounds have a good correlation with the 3D-QSAR predicted values. It is remarkable that the maximal percent change of delaying FRP in microM of compound VIc is much higher than that of dofetilide. The results showed that the 3D-QSAR models are reliable.  相似文献   

15.
Seventy-five 1,5,6,7-tetrahydro-pyrrolo[3,2-C]pyridinone derivatives displaying potent activities against Cdc7 kinase were selected to establish 3D-QSAR models using CoMFA and CoMSIA methods. Internal and external cross-validation techniques were investigated as well as some measures including region focusing, progressive scrambling, bootstraping and leave-group-out. The satisfactory CoMFA model predicted a q 2 value of 0.836 and an r 2 value of 0.950, indicating that electrostatic and steric properties play a significant role in potency. The best CoMSIA model, based on a combination of steric, electrostatic and H-bond acceptor effects, predicted a q 2 value of 0.636 and an r 2 value of 0.907. The models were graphically interpreted using contour plots which provided insight into the structural requirements for increasing the activity of a compound. The final 3D-QSAR results could be used for rational design of potent inhibitors against Cdc7 kinase.  相似文献   

16.
Members of the epidermal growth factor receptor (EGFR) family of proteins are frequently overactive in solid tumors. A relatively new therapeutic approach to inhibit the kinase activity is the use of ATP-competitive small molecules. In silico techniques were employed to identify the key interactions between inhibitors and their protein receptors. A series of EGFR inhibitory anilinoquinolines was studied within the framework of hologram quantitative structure activity relationship (HQSAR), density functional theory (DFT)-based QSAR, and three-dimensional (3D) QSAR (CoMFA/CoMSIA). The HQSAR analysis implied that substitutions at certain sites on the inhibitors play an important role in EGFR inhibition. DFT-based QSAR results suggested that steric and electronic interactions contributed significantly to the activity. Ligand-based 3D-QSAR and receptor-guided 3D-QSAR analyses such as CoMFA and CoMSIA techniques were carried out, and the results corroborated the previous two approaches. The 3D QSAR models indicated that steric and hydrophobic interactions are dominant, and that substitution patterns are an important factor in determining activity. Molecular docking was helpful in identifying a bioactive conformer as well as a plausible binding mode. The docked geometry-based CoMFA model with steric and electrostatic fields effect gave q 2 = 0.66, r 2 = = 0.94 with r 2 predictive = 0.72. Similarly, CoMSIA with hydrophobic field gave q 2 = 0.59, r 2 = 0.85 with r 2 predictive = 0.63. Bulky groups around site 3 of ring “C”, and hydrophilic and bulky groups at position 6 of ring “A” are desirable, with a hydrophobic and electron-donating group at site 7 of ring “A” being helpful. Accordingly, potential EGFR inhibitors may be designed by modification of known inhibitors.  相似文献   

17.
For the first time, a set of (43) natural sesquiterpene polyol esters isolated from the root bark of Celastrus angulatus Maxim and Euonymus japonicus Thunb were subjected to 3D-QSAR comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) studies, with the aim of proposing novel sesquiterpene-based compounds with optimal narcotic or insecticidal activities. The established 3D-QSAR models exhibit reasonable statistical quality and prediction capabilities, with internal cross-validated Q 2 values of ∼0.5 and external predicted R 2 values of >0.9, respectively. The relative contributions of the steric/electrostatic fields of the 3D-QSAR models show that the electronic effect governs the narcotic activities of the molecules, but the hybrid effect of the electrostatic and hydrophobic interactions is more influential in the insecticidal activities of the compounds. These findings may have valuable implications for the development of novel natural insecticides.  相似文献   

18.
Heat shock protein 90(Hsp90), as a molecular chaperone, play a crucial role in folding and proper function of many proteins. Hsp90 inhibitors containing isoxazole scaffold are currently being used in the treatment of cancer as tumor suppressers. Here in the present studies, new compounds based on isoxazole scaffold were predicted using a combination of molecular modeling techniques including three-dimensional quantitative structure–activity relationship (3D-QSAR), molecular docking and molecular dynamic (MD) simulations. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were also done. The steric and electrostatic contour map of CoMFA and CoMSIA were created. Hydrophobic, hydrogen bond donor and acceptor of CoMSIA model also were generated, and new compounds were predicted by CoMFA and CoMSIA contour maps. To investigate the binding modes of the predicted compounds in the active site of Hsp90, a molecular docking simulation was carried out. MD simulations were also conducted to evaluate the obtained results on the best predicted compound and the best reported Hsp90 inhibitors in the 3D-QSAR model. Findings indicate that the predicted ligands were stable in the active site of Hsp90.  相似文献   

19.
A series of benzofuran antifungals was examined to determine the structural requirements of N-myristoyltransferase (Nmt) enzyme inhibition by three-dimensional quantitative structure-activity relationship (3D-QSAR) using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods. Evaluation of 20 compounds (training set) served to establish the model, which was validated by evaluation of a set of 6 compounds (test set). The lowest energy conformer of the most active molecule obtained from systematic search was used as the template structure for the alignment. The best predictions were obtained with the CoMFA model from RMS fit, with r(2)(cv)=0.828, r(2)(conv)=0.989, r(2)(pred)=0.754 and with the CoMSIA model combining hydrophobic, hydrogen bond donor and hydrogen bond acceptor fields with r(2)(cv)=0.821, r(2)(conv)=0.978 and r(2)(pred)=0.747. The models obtained from the present study can be useful for the development of new Nmt inhibitors as potential antifungals. The docking studies were also carried out wherein the active and inactive molecules were docked into the active site of the recently reported Candida albicans Nmt (CaNmt) crystal structure to analyze enzyme-inhibitor interactions. The results obtained from the present 3D-QSAR and docking studies were found complimentary.  相似文献   

20.
3D QSAR studies on T-type calcium channel blockers using CoMFA and CoMSIA   总被引:1,自引:0,他引:1  
Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on a series of isoxazolyl compounds as a potent T-type calcium channel blockers. A set of 24 structurally similar compounds served to establish the model. Four different conformations of the most active compound were used as template structures for the alignment, three of which were obtained from Catalyst pharmacophore modeling and one by using SYBYL random search option. All CoMFA and CoMSIA models gave cross-validated r(2) (q(2)) value of more than 0.5 and conventional r(2) value of more than 0.85. The predictive ability of the models was validated by an external test set of 10 compounds, which gave satisfactory pred r(2) values ranging from 0.577 to 0.866 for all models. Best predictions were obtained with CoMFA std model of Conformer no: 3 alignment (q(2)=0.756, r(2)=0.963), giving predictive r(2) value of 0.866 for the test set. CoMFA and CoMSIA contour maps were used to analyze the structural features of the ligands accounting for the activity in terms of positively contributing physicochemical properties: steric, electrostatic, hydrophobic and hydrogen bonding fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号