共查询到20条相似文献,搜索用时 0 毫秒
1.
Douglas Popp Marin Anaysa Paola Bolin Rita de Cassia Macedo dos Santos Rui Curi Rosemari Otton 《Cell biochemistry and function》2010,28(5):394-402
The in vitro effect of testosterone on human neutrophil function was investigated. Blood neutrophils from healthy male subjects were isolated and treated with 10 nM, 0.1 and 10 µM testosterone for 24 h. As compared with untreated cells, the testosterone treatment produced a significant decrease of superoxide production as indicated by the measurement of extra‐ and intracellular superoxide content. An increment in the production of nitric oxide was observed at 0.1 and 10 µM testosterone concentrations, whereas no effect was found for 10 nM. Intracellular calcium mobilization was significantly increased at 10 nM, whereas it was reduced at 10 µM testosterone. There was an increase in phagocytic capacity at 10 nM and a decrease of microbicidal activity in neutrophils treated with testosterone at 10 µM. Glutathione reductase activity was increased by testosterone treatment, whereas no effect was observed in other antioxidant enzyme activities. An increase in the content of thiol groups was observed at all testosterone concentrations. Lipid peroxidation in neutrophils evaluated by levels of TBARS was decreased at 10 nM and 0.1 µM testosterone. These results indicate the antioxidant properties of testosterone in neutrophils as suggested by reduction of superoxide anion production, and lipid peroxidation, and by the increase in nitric oxide production, glutathione reductase activity and the content of thiol groups. Therefore, the plasma levels of testosterone are important regulators of neutrophil function and so of the inflammatory response. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
2.
氧化磷酸化是细菌生成ATP的重要途径之一,同时有研究表明能量供应不足是发生锰毒害的重要机制。为了解析锰胁迫条件下,耐锰细菌是如何通过能量代谢的改变以应对锰毒害。以耐锰菌沙福芽孢杆菌S7为研究材料,挑选细菌电子传递链细胞色素亚基编码基因qcrB、ctaD,以及ATP合成酶亚基编码基因atpA、atpD和atpG,采用荧光定量PCR方法,设置250 mg/L和2 200mg/L两个锰处理浓度,比较基因表达的时序性变化。与无锰对照组的表达量相比,3个ATP合成酶亚基编码基因的表达量较为接近,中等浓度锰胁迫条件下,3个基因的表达量明显低于2 200mg/L锰处理的表达量;锰作用初期各基因的表达量较低,4 h后表达量上升,8 h和/或32 h时表达量达到峰值,基因的表达量的时间变化呈现出单峰或双峰变化趋势。两个电子传递链上细胞色素亚基编码基因qcrB和ctaD的表达量略高于ATP合成酶3个亚基基因的相应值,表达规律与ATP合成酶一样。研究结果提示,耐锰菌沙福芽孢杆菌S7的能量代谢水平随着作用时间和浓度的提高而上升,产生大量的ATP以应对锰毒害作用。 相似文献
3.
Airborne manganese exposure differentially affects end points of oxidative stress in an age-and sex-dependent manner 总被引:3,自引:0,他引:3
Erikson KM Dorman DC Lash LH Dobson AW Aschner M 《Biological trace element research》2004,100(1):49-62
Juvenile female and male (young) and 16-mo-old male (old) rats inhaled manganese in the form of manganese sulfate (MnSO4) at 0, 0.01, 0.1, and 0.5 mg Mn/m3 or manganese phosphate at 0.1 mg Mn/m3 in exposures of 6h/d, 5d/wk for 13 wk. We assessed biochemical end points indicative of oxidative stress in five brain regions:
cerebellum, hippocampus, hypothalamus, olfactory bulb, and striatum. Glutamine synthetase (GS) protein levels, metallothionein
(MT) and GS mRNA levels, and total glutathione (GSH) levels were determined for all five regions. Although most brain regions
in the three groups of animals were unaffected by manganese exposure in terms of GS protein levels, there was significantly
increased protein (p<0.05) in the hippocampus and decreased protein in the hypothalamus of young male rats exposed to manganese phosphate as well
as in the aged rats exposed to 0.1 mg/m3 MnSO4. Conversely, GS protein was elevated in the olfactory bulb of females exposed to the high dose of MnSO4. Statistically significant decreases (p<0.05) in MT and GS mRNA as a result, of manganese exposure were observed in the cerebellum, olfactory bulb, and hippocampus
in the young male rats, in the hypothalamus in the young female rats, and in the hippocampus in the senescent males. Total
GSH levels significantly (p<0.05) decreased in the olfactory bulb of manganese exposed young male rats and increased in the olfactory bulb of female
rats exposed to manganese. Both the aged and young female rats had significantly decreased (p<0.05) GSH in the striatum resulting from manganese inhalation. The old male rats also had depleted GSH levels in the cerebellum
and hypothalamus as a result, of the 0.1-mg/m3 manganese phosphate exposure. These results demonstrate that age and sex are variables that must be considered whenassessing
the neurotoxicity of manganese. 相似文献
4.
Mahbobeh Satari Esmat Aghadavod Moein Mobini Zatollah Asemi 《Journal of cellular physiology》2019,234(6):8522-8532
Diabetic retinopathy (DR) is a major cause of vision reduction in diabetic patients. Hyperglycemia is a known instigator for the development of DR, even though the role of oxidative stress pathways in the pathogenesis of DR is established. The studies indicate that microRNAs (miRNAs) are significant to the etiology of DR; changes in miRNAs expression levels may be associated with onset and progression of DR. In addition, miRNAs have emerged as a useful disease marker due to their availability and stability in detecting the severity of DR. The relationship between miRNAs expression levels and oxidative stress pathways has been investigated in several studies. The aim of this study is the examination of function and expression levels of target miRNAs in oxidative stress pathway and pathogenesis of diabetic retinopathy. 相似文献
5.
Tas S Celikler S Ziyanok-Ayvalik S Sarandol E Dirican M 《Cell biochemistry and function》2011,29(2):108-113
This study was designed to investigate the effects of Ulva rigida, one of the green algae, on the lipid profile and oxidative–antioxidative systems in streptozotocin‐induced diabetic rats. Forty Wistar rats randomly divided into four groups: control (C), control + U. rigida extract (C + URE), diabetes (D) and diabetes + U. rigida extract (D + URE). U. rigida (2%) was administered in drinking water for 5 weeks after the induction of diabetes. U. rigida reduced the blood glucose, serum total cholesterol, triglyceride levels and plasma and tissue malondialdehyde (MDA) levels in the D + URE group. Insulin levels were significantly higher in the D + URE than those of the D group. Serum total cholesterol and tissue MDA levels were reduced in the C + URE group. Whole blood glutathione peroxidase and erythrocyte superoxide dismutase activities were higher in the D and C + URE groups compared with the C group. Paraoxonase and arylesterase activities were lower in the D group while U. rigida increased paraoxonase activities in C + URE and D + URE groups. This is the first study which showed U. rigida has antidiabetic and antihyperlipidemic effects and improves oxidative stress in diabetic rats. We conclude that U. rigida might have a potential use as a protective and/or therapeutic agent in diabetes mellitus. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
6.
Protective effect of alpha-tocopherol on oxidative stress in experimental pulmonary fibrosis in rats
The study was undertaken to investigate the influence of alpha-tocopherol (vitamin E) on malondialdehyde (MDA) and glutathione (GSH) levels and catalase (CAT) activity in lung of rats with bleomycin-induced pulmonary fibrosis (PF). Fourteen Wistar-albino rats were randomly divided into two groups of seven animals each. The first group was treated intra-tracheally with bleomycin hydrochloride (BM group); the second group was also instilled with BM but received injections of alpha-tocopherol twice a week (BM + E group). The third group was treated in the same manner with saline solution only, acting as controls (C). There were decreases in GSH level and CAT activity while an increase in MDA level in BM group was found compared to the control group (p < 0.05). Vitamin E had a regulator effect on these parameters. After administration of alpha-tocopherol, the increase in GSH level and CAT activity and the decrease in MDA level were seen in BM + E group compared to BM group (p < 0.05). Distinct histopathological changes were found in the BM group compared to the untreated rats. Less severe fibrotic lesions were also observed in the BM + E group. The results show that vitamin E is effective on the prevention of BM-induced PF, as indicated by differences in the lung levels of oxidants and antioxidants. 相似文献
7.
《Animal : an international journal of animal bioscience》2017,11(10):1783-1790
We aimed to evaluate the effects of acute heat stress (HS) and age on the redox state in broilers aged 21 and 42 days. We evaluated the expression of genes related to antioxidant capacity, the production of hydrogen peroxide (H2O2), and the activity of antioxidant enzymes in the liver, as well as oxidative stress markers in the liver and plasma. The experiment had a completely randomized factorial design with two thermal environments (thermoneutral and HS, 38°C for 24 h) and two ages (21 and 42 days). Twenty-one-day-old animals exposed to HS showed the highest thioredoxin reductase 1 (TrxR1) (P<0.0001) and glutathione synthetase (GSS) (P<0.0001) gene expression levels. Age influenced the expression of the thioredoxin (Trx) (P=0.0090), superoxide dismutase (SOD) (P=0.0194), glutathione reductase (GSR) (P<0.0001) and glutathione peroxidase 7 (GPx7) (P<0.0001) genes; we observed greater expression in birds at 21 days than at 42 days. Forty-two-day-old HS birds showed the highest H2O2 production (222.31 pmol dichlorofluorescein produced/min×mg mitochondrial protein). We also verified the effects of age and environment on the liver content of Glutathione (GSH) (P<0.0001 and P=0.0039, respectively) and catalase (CAT) enzyme activity (P=0.0007 and P=0.0004, respectively). Higher GSH content and lower CAT activity were observed in animals from the thermoneutral environment compared with the HS environment and in animals at 21 days compared with 42 days. Broilers at 42 days of age had higher plasma creatinine content (0.05 v. 0.01 mg/dl) and higher aspartate aminotransferase activity (546.50 v. 230.67 U/l) than chickens at 21 days of age. Our results suggest that under HS conditions, in which there is higher H2O2 production, 21-day-old broilers have greater antioxidant capacity than 42-day-old animals. 相似文献
8.
Guoyong Jiang Tao Jiang Jing Chen Haibo Yao Renqun Mao Xiaofan Yang Zhenbing Chen Wenqing Li 《Journal of biochemical and molecular toxicology》2023,37(7):e23407
Diabetic wounds nowadays have become a major health challenge with the changes of the disease spectrum. Mitochondria are closely associated with stubborn nonhealing diabetic wounds for their vital role in energy metabolism, redox homeostasis, and signal transduction. There is significant mitochondrial dysfunction and oxidative stress in diabetic wounds. However, the contribution of mitochondrial dysfunction in oxidative stress induced nonhealing diabetic wound is still not fully understood. In this review, we will briefly summarize the current knowledge of the reported signaling pathways and therapeutic strategies involved in mitochondrial dysfunction in diabetic wounds. The findings provide further understanding of strategies that focus on mitochondria in diabetic wound treatment. 相似文献
9.
Jierong Luo Dan Yan Sisi Li Shiming Liu Fei Zeng Chi Wai Cheung Hong Liu Michael G. Irwin Huansen Huang Zhengyuan Xia 《Journal of cellular and molecular medicine》2020,24(2):1760-1773
Allopurinol (ALP) attenuates oxidative stress and diabetic cardiomyopathy (DCM), but the mechanism is unclear. Activation of nuclear factor erythroid 2‐related factor 2 (Nrf2) following the disassociation with its repressor Keap1 under oxidative stress can maintain inner redox homeostasis and attenuate DCM with concomitant attenuation of autophagy. We postulated that ALP treatment may activate Nrf2 to mitigate autophagy over‐activation and consequently attenuate DCM. Streptozotocin‐induced type 1 diabetic rats were untreated or treated with ALP (100 mg/kg/d) for 4 weeks and terminated after heart function measurements by echocardiography and pressure‐volume conductance system. Cardiomyocyte H9C2 cells infected with Nrf2 siRNA or not were incubated with high glucose (HG, 25 mmol/L) concomitantly with ALP treatment. Cell viability, lactate dehydrogenase, 15‐F2t‐Isoprostane and superoxide dismutase (SOD) were measured with colorimetric enzyme‐linked immunosorbent assays. ROS, apoptosis, was assessed by dihydroethidium staining and TUNEL, respectively. The Western blot and qRT‐PCR were used to assess protein and mRNA variations. Diabetic rats showed significant reductions in heart rate (HR), left ventricular eject fraction (LVEF), stroke work (SW) and cardiac output (CO), left ventricular end‐systolic volume (LVVs) as compared to non‐diabetic control and ALP improved or normalized HR, LVEF, SW, CO and LVVs in diabetic rats (all P < .05). Hearts of diabetic rats displayed excessive oxidative stress manifested as increased levels of 15‐F2t‐Isoprostane and superoxide anion production, increased apoptotic cell death and cardiomyocytes autophagy that were concomitant with reduced expressions of Nrf2, heme oxygenase‐1 (HO‐1) and Keap1. ALP reverted all the above‐mentioned diabetes‐induced biochemical changes except that it did not affect the levels of Keap1. In vitro, ALP increased Nrf2 and reduced the hyperglycaemia‐induced increases of H9C2 cardiomyocyte hypertrophy, oxidative stress, apoptosis and autophagy, and enhanced cellular viability. Nrf2 gene silence cancelled these protective effects of ALP in H9C2 cells. Activation of Nrf2 subsequent to the suppression of Keap1 and the mitigation of autophagy over‐activation may represent major mechanisms whereby ALP attenuates DCM. 相似文献
10.
丛枝菌根真菌提高盐胁迫植物抗氧化机制的研究进展 总被引:3,自引:0,他引:3
土地盐渍化是在自然环境和人为活动的双重作用下形成的全球性的重要生态问题,其会对植物造成渗透失衡、离子胁迫、氧化损伤等危害,导致植物生长缓慢、生物量减少甚至是绝产。丛枝菌根真菌(AMF)是一种普遍存在于土壤中的有益微生物,能够与大多数植物根系形成共生关系,其共生关系在多种逆境生态系统中均具有重要生态意义。AMF-植物共生体具有高效抗氧化系统,能够提高植物在盐胁迫下的抗氧化反应进而增强耐盐性。本文从氧化损伤、渗透调节、抗氧化机制和生物活性分子等角度,系统地阐述了丛枝菌根真菌提高植物抗氧化机制的研究进展,并提出了研究展望,以期为利用菌根生物技术提高植物耐盐性提供理论参考。 相似文献
11.
Kolawole A. Olofinsan Rafiat A. Ajala‐Lawal Taofeek O. Ajiboye 《Journal of biochemical and molecular toxicology》2019,33(4)
At therapeutic dose, loperamide is a safe over‐the‐counter antidiarrheal drug but could induce cardiotoxic effect at a supratherapeutic dose. In this study, we use cardiac and oxidative biomarkers to evaluate loperamide‐induced cardiotoxicity in rats. Rats were orally gavaged with 1.5, 3, or 6 mg/kg body weight (BW) of loperamide hydrochloride for 7 days. The results after 7 days administration of loperamide, revealed dose‐dependent increase (P < 0.05) in aspartate aminotransferase, lactate dehydrogenase, creatine kinase‐MB, and serum concentration of cardiac troponin I, total homocysteine, and nitric oxide. A 50% decrease in antioxidant enzymes activity was observed at 6 mg/kg BW. Furthermore, malondialdehyde and fragmented DNA also increased significantly in the heart of the treatment groups. Loperamide provoked cardiotoxicity through oxidative stress, lipid peroxidation, and DNA fragmentation in rats. This study has provided a possible biochemical explanation for the reported cardiotoxicity induced by loperamide overdose. 相似文献
12.
Karin A. Simon Giavarotti Luciano Rodrigues Tania Rodrigues Virginia B.C. Junqueira Luis A. Videla 《Free radical research》2013,47(1):35-42
Liver microsomal functions related to xenobiotic biotransformation and free radical production were studied in control rats and in animals subjected to L-3,3′,5-triiodothyronine (T3) and/or lindane administration as possible mechanisms contributing to oxidative stress, in relation to the activity of enzymes (superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), and glucose-6-phosphate dehydrogenase (G-6PDH)) and content of lipid-soluble vitamins (α-tocopherol, β-carotene, and lycopene) affording antioxidant protection. Lindane treatment in euthyroid rats at a dosage of 20 mg/kg did not modify the content of liver microsomal cytochromes P450 and b5, the activity of NADPH-cytochrome P450 reductase and NADH-cytochrome b5 reductase, and the production of superoxide radical (O·-2), as well as antioxidant systems, except for the reduction in lycopene levels. Hyperthyroidism elicited a calorigenic response and increased specific and molecular activities of NADPH-cytochrome P450 reductase, O·-2 generation, and G-6PDH activity, concomitantly with diminution in liver SOD and catalase activities and in α-tocopherol, β-carotene, and lycopene levels. The administration of lindane to hyperthyroid animals led to a further increase in the molecular activity of NADPH-cytochrome P450 reductase and in the O·-2 production/SOD activity ratio, and decrease of hepatic α-tocopherol content, in a magnitude exceeding the sum of effects elicited by the separate treatments, as previously reported for reduced glutathione depletion. Collectively, these data support the contention that the increased susceptibility of the liver to the toxic effects of acute lindane treatment in hyperthyroid state is conditioned by potentiation of the hepatic oxidative stress status. 相似文献
13.
Oxidative stress has been identified as a possible element in the neuropathological processes of schizophrenia(SCZ).Alteration of oxidative stress markers has been reported in SCZ studies,but with inconsistent results.To evaluate the risk of oxidative stress to schizophrenia,a meta-analysis was conducted,including five markers of oxidative stress [thiobarbituric reactive substances(TBARS),nitric oxide(NO),catalase(CAT),glutathione peroxidase(GP) and superoxide dismutase(SOD)] in SCZ patients versus healthy ... 相似文献
14.
Birth oxidative stress and the development of an antioxidant system in newborn piglets 总被引:1,自引:0,他引:1
《Free radical research》2013,47(12):1027-1035
15.
Liang Zhang Longsen Han Rujun Ma Xiaojing Hou Yang Yu Shaochen Sun Yinxue Xu Tim Schedl Kelle H Moley Qiang Wang 《Cell cycle (Georgetown, Tex.)》2015,14(18):2959-2968
Maternal obese environment has been reported to induce oxidative stress and meiotic defects in oocytes, however the underlying molecular mechanism remains unclear. Here, using mice fed a high fat diet (HFD) as an obesity model, we first detected enhanced reactive oxygen species (ROS) content and reduced Sirt3 expression in HFD oocytes. We further observed that specific depletion of Sirt3 in control oocytes elevates ROS levels while Sirt3 overexpression attenuates ROS production in HFD oocytes, with significant suppression of spindle disorganization and chromosome misalignment phenotypes that have been reported in the obesity model. Candidate screening revealed that the acetylation status of lysine 68 on superoxide dismutase (SOD2K68) is dependent on Sirt3 deacetylase activity in oocytes, and acetylation-mimetic mutant SOD2K68Q results in almost threefold increase in intracellular ROS. Moreover, we found that acetylation levels of SOD2K68 are increased by ∼80% in HFD oocytes and importantly, that the non-acetylatable-mimetic mutant SOD2K68R is capable of partially rescuing their deficient phenotypes. Together, our data identify Sirt3 as an important player in modulating ROS homeostasis during oocyte development, and indicate that Sirt3-dependent deacetylation of SOD2 plays a protective role against oxidative stress and meiotic defects in oocytes under maternal obese conditions. 相似文献
16.
BACKGROUNDChromium hexavalent (CrVI) is known as a toxic contaminant that induced oxidative stress and nephrotoxicity in humans and animals. Rosmarinus officinalis is a perennial herb rich in biologically active constituents that have powerful antioxidant properties. So, the current work evaluated the effectiveness of Rosmarinus officinalis essential oil (REO) against alterations induced by potassium dichromate in the kidney of male rats.METHODSGC-MS analysis, in vitro total phenol contents, and DPPH scavenging activity of REO were estimated. Thirty-five Wistar male rats were categorized into 5 groups. The first group was the control, the second one was orally administered rosemary essential oil (REO; 0.5 mL/kg BW), the third group was injected intraperitoneally with hexavalent chromium (CrVI; 2 mg/kg BW) for 14 days, the fourth group used as the protective group (REO was administrated 30 min before i.p. injection of CrVI) and the fifth group applied as the therapeutic group (rats injected with CrVI 30 min followed by oral administration of REO), respectively.RESULTSTwenty-nine components were detected with high total phenolic contents and high DPPH scavenging activity. Results revealed that CrVI- intoxicated rats showed a valuable increase in oxidative stress profile (TBARS and H2O2) and a notable decline in glutathione (GSH), total protein content, and enzymatic antioxidants (SOD, CAT, GPx, and GST). Furthermore, serum kidney functions biomarkers (urea, creatinine, and uric acid) were increased significantly. Also, the administration of CrVI showed histological and immunohistochemical (PCNA-ir) changes in rat kidney tissue. Otherwise, administration of REO pre or post-treatment with CrVI significantly restored most of the biochemical parameters in addition to improvement in kidney tissue architecture. Moreover, individual intake with REO exhibited an amendment in oxidative stress markers.CONCLUSIONConclusively, REO had a potential antioxidant capacity in ameliorating K2Cr2O7-induced nephrotoxicity, especially in the protection group. 相似文献
17.
《Animal : an international journal of animal bioscience》2012,6(9):1435-1443
The aim of this paper is to evaluate at a histopathological level the effect of the most commonly used copper (Cu) supplementation (15 mg/kg dry matter (DM)) in the liver of intensively reared beef cattle. This was done by a histochemistry evaluation of (i) the antioxidant capacity in the liver – by the determination of metallothioneins (MT) and superoxide dismutase (SOD) expression – as well as (ii) the possible induction of oxidative damage – by the determination of inducible nitric oxide synthase (iNOS), nitrotyrosine (NITT), malondialdehyde (MDA) and 8-oxoguanine (8-oxo) – that (iii) could increase apoptotic cell death – determined by cytochrome-c (cyto-c), caspase 1 (casp1) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). Liver samples from Cu-supplemented (15 mg Cu sulphate/kg DM, n = 5) and non-supplemented calves (n = 5) that form part of other experiments to evaluate Cu status were collected at slaughter and processed for immunohistochemistry and TUNEL. MT expression was diffuse and SOD showed slight changes although without statistical significance. iNOS and NITT positive (+) cells significantly increased, mainly around the central veins in the animals from the Cu-supplemented group, whereas no differences were appreciated for the rest of the oxidative stress and apoptosis markers. Under the conditions of this study, which are the conditions of the cattle raised in intensive systems in NW Spain and also many European countries, routinely Cu supplementation increased the risk of the animals to undergo subclinical Cu toxicity, with no significant changes in the Cu storage capacity and the antioxidant defensive system evaluated by MT and SOD expression, but with a significant and important increase of oxidative damage measured by iNOS and NITT. The results of this study indicated that iNOS and NITT could be used as early markers of initial pathological changes in the liver caused by Cu supplementation in cattle, although more studies in cattle under different levels of Cu supplementation are needed. 相似文献
18.
19.
Liraglutide ameliorated peripheral neuropathy in diabetic rats: Involvement of oxidative stress,inflammation and extracellular matrix remodeling 下载免费PDF全文
Passant E. Moustafa Noha F. Abdelkader Sally A. El Awdan Osama A. El‐Shabrawy Hala F. Zaki 《Journal of neurochemistry》2018,146(2):173-185