首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using direct difference ir and laser Raman spectroscopy, the sequential hydration of hen egg-white lysozyme was monitored. The ir data allowed us to identify some specific molecular hydration events that occur as water is added, whereas the Raman is interpreted in terms of conformational changes. The largest of these solvent-induced changes occurs below the hydration level at which activity commences.  相似文献   

2.
Fang J  Zhang X  Cai Y  Wei Y 《Biomacromolecules》2011,12(5):1578-1584
Biocompatible hydrogels have great potentials in biomedical and biotechnological applications. In the current study, we reported a new naturally occurring protein motif that formed a transparent hydrogel when heated to 90 °C at a concentration as low as 0.4 mg/mL. The protein motif is the C-terminal soluble domain of an Escherichia coli inner membrane protein YajC (YajC-CT). We investigated the conformational change and self-assembly of the protein that lead to the formation of hydrogels using multiple methods. Atomic force microscopy studies of dilute gel samples revealed the presence of β-sheet-rich fibrils that were 2 to 3 nm in height and micrometers in length, which appeared to originate from homogeneous particles. On the basis of these observations, we proposed a three-step pathway of YajC-CT gelation. Hydrogels formed at different pH contained slightly different fibril structures. To our knowledge, this is the smallest hydrogel-forming globular protein module that has been characterized in detail. It may be useful as a model system in the elucidation of the mechanisms of protein fibrillation and gelation processes.  相似文献   

3.
4.
The dynamics of changes in monolayer (MML) static and kinematic characteristics of some globular proteins (humans' serum, albumin, actin, cytochrome c) was studied. Two series of experiments were carried out: 1) formation of MML at the stable temperature of subphase 12, 23 and 32 degrees C; 2) formation of MML at 12 degrees C and equilibrium warming up and following cooling of subphase with MML in the temperature interval of 12-34 degrees C. In the cooling-warming up cycle the dependence of MML surface pressure change on the temperature was found to have the form of reserved loop hysteresis with the minimum at 21 +/- 2 degrees C on warming up branch. By the following rise of temperature up to reaching the plateau (26 degrees C) the entropy of monolayer takes the negative meaning. On the branch of cooling loop such transition is not seen. These data indicate possibility of trigger conformative changes of protein molecules, which in situ condition can occur during the natural local (metabolic) temperature gradients in living cells and influence the functional specificity of protein molecules and their bioorganic complexes.  相似文献   

5.
A differential method is described for measuring dielectric constants and losses in aqueous protein solutions at millimetrerange wavelengths. Employment of the method allows to improve the accuracy of determining the degree of hydratation. A method has also been suggested for taking into account the contribution of ions to the dielectric constant of solutions. The differential method was used to study hydratation of nine globular proteins. The data obtained are compared with the corresponding values provided by other experimental techniques and with theoretical predictions based on some models of hydratation. Good agreement is obtained with results provided by the isopiestic and NMR techniques. The discrepancy shown for hemoglobin is discussed in the paper. As has been shown, the dielectric method registers a monomolecular surface layer of water only. With pH varying between 4.0 and 3.2, a significant increase is observed in the hydratation of serum albumin. Presumably, this effect is connected with a N--F conformational transition.  相似文献   

6.
7.
8.
9.
The purpose of our research was to investigate a role of systemic mechanisms of regulation of hydration in postural muscles of mammals under conditions of gravitational unloading. It was shown that administration of desmopressin in hindlimb suspended rats led to systemic hyperhydration and amelioration of soleus muscle water loss. However in desmopressin administered and unloaded animals the soleus fiber size and soleus dry weight reduction turned out to be non significant.  相似文献   

10.
J Skolnick  A Kolinski  R Yaris 《Biopolymers》1989,28(6):1059-1095
In the context of dynamic Monte Carlo simulations on a model protein confined to a tetrahedral lattice, the interplay of protein size and tertiary structure, and the requirements for an all-or-none transition to a unique native state, are investigated. Small model proteins having a primary sequence consisting of a central bend neutral region flanked by two tails having an alternating hydrophobic/hydrophilic pattern of residues are seen to undergo a continuous transition to a beta-hairpin collapsed state. On increasing the length of the tails, the beta-hairpin structural motif is found to be in equilibrium with a four-member beta-barrel. Further increase of the tail length results in the shift of the structural equilibrium to the four-member beta-barrel. The random coil to beta-barrel transition is of an all-or-none character, but while the central turn is always the desired native bend, the location of the turns involving the two external strands is variable. That is, beta-barrels having the external stands that are two residues out of register are also observed in the transition region. Introduction into the primary sequence of two additional regions that are at the very least neutral toward turn formation produces an all-or-none transition to the unique, native, four-member beta-barrel. Various factors that can augment the stability of the native conformation are explored. Overall, these folding simulations strongly indicate that the general rules of globular protein folding are rather robust--namely, one requires a general pattern of hydrophobic/hydrophilic residues that allow the protein to have a well-defined interior and exterior and the presence of regions in the amino acid sequence that at the very least are locally indifferent to turn formation. Since no site-specific interactions between hydrophobic and hydrophilic residues are required to produce a unique four-member beta-barrel, these simulations strongly suggest that site specificity is involved in structural fine-tuning.  相似文献   

11.
Trauma during pregnancy especially occurring during car crashes leads to many foetal losses. Numerical modelling is widely used in car occupant safety issue and injury mechanisms analysis and is particularly adapted to the pregnant woman. Material modelling of the gravid uterus tissues is crucial for injury risk evaluation especially for the abruption placentae which is widely assumed as the leading cause of foetal loss. Experimental studies on placenta behaviour in tension are reported in the literature, but none in compression to the authors' knowledge. This lack of data is addressed in this study. To complement the already available experimental literature data on the placenta mechanical behaviour and characterise it in a compression loading condition, 80 indentation tests on fresh placentae are presented. Hyperelastic like mean experimental stress versus strain and corridors are exposed. The results of the experimental placenta indentations compared with the tensile literature results tend to show a quasi-symmetrical behaviour of the tissue. An inverse analysis using simple finite element models has permitted to propose parameters for an Ogden material model for the placenta which exhibits a realistic behaviour in both tension and compression.  相似文献   

12.
B A Fedorov  P U Shmidt 《Biofizika》1991,36(5):749-753
The "cube method" [M. Yu. Pavlov, B. A. Fedorov, Biopolymers, 22, 1507, 1983] has been used to calculate the intensity of the large-angle X-ray scattering from the volumes of several globular proteins. In the logarithmic plots of the scattered intensity curves from three of these proteins, there is a linear region at scattering angles corresponding to Bragg distances of from about 6.3 A to 21 A. This linear region possibly may be due to the fractal properties of the surfaces of these proteins on length scoles from 6.3 A to 21 A, and the fractal dimensions corresponding to the power-law scattering at these scattering angles have been evaluated.  相似文献   

13.
T Arakawa  R Bhat  S N Timasheff 《Biochemistry》1990,29(7):1924-1931
The observed preferential hydration of proteins in aqueous MgCl2 solutions at low pH and low salt concentration (Arakawa et al., 1990) prompted a scrutiny of possible protein stabilization by MgCl2 under the same conditions, in view of earlier observations in aqueous solutions of sugars, amino acids, and a number of salts that preferential hydration is usually accompanied by the stabilization of the native structure of globular proteins. The results of thermal transition experiments on five proteins (ribonuclease A, lysozyme, beta-lactoglobulin, chymotrypsinogen, and bovine serum albumin) revealed neither significant stabilization nor destabilization of the protein structures by MgCl2 both at acid conditions (except for ribonuclease A, which was stabilized, but to a much smaller extent than by MgSO4) and at higher pH at which MgCl2 displayed little preferential hydration. This was in contrast to the great stabilizing action of MgSO4 at the same conditions. 2-Methyl-2,4-pentanediol (MPD), which gives a very large preferential hydration of native ribonuclease A at pH 5.8 [Pittz & Timasheff (1978) Biochemistry 17, 615-623], was found to be a strong destabilizer of that protein at the same conditions. Analysis of the preferentially hydrating solvent systems led to their classification into two categories: those in which the preferential hydration is independent of solution conditions and those in which it varies with conditions. The first always stabilize protein structure, while the second do not. In the first category the predominant interaction is that of cosolvent exclusion, determined by solvent properties, with the protein being essentially inert. In the second category interactions are determined to a major extent by the chemical nature of the protein surface.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
PAN and leukocytolysis were measured in dog blood placed in hypo- and hypertonic solutions of glycerin and glucose (1:10). It was found that leukocytolytic activity of the substances depends on equimolar concentrations of nonelectrolytes. It is more pronounced in hypo- than in hypertonic conditions. Glycerin is 3-5-times more active than glucose. In concentrations 2.0 M for glycerin and 0.5 M for glucose leukocytolysis is less active. Mononuclears are more resistant than neutrophils in strong solutions. PAN increased by 11-16% in hypotonic solutions. Strong glycerin solutions reduce PAN less than glucose which stimulates the digestive activity. The results can be of use in specific leukolysis tests to diagnose drug allergy.  相似文献   

15.
A protein at equilibrium is commonly thought of as a fully relaxed structure, with the intra-molecular interactions showing fluctuations around their energy minimum. In contrast, here we find direct evidence for a protein as a molecular tensegrity structure, comprising a balance of tensed and compressed interactions, a concept that has been put forward for macroscopic structures. We quantified the distribution of inter-residue prestress in ubiquitin and immunoglobulin from all-atom molecular dynamics simulations. The network of highly fluctuating yet significant inter-residue forces in proteins is a consequence of the intrinsic frustration of a protein when sampling its rugged energy landscape. In beta sheets, this balance of forces is found to compress the intra-strand hydrogen bonds. We estimate that the observed magnitude of this pre-compression is enough to induce significant changes in the hydrogen bond lifetimes; thus, prestress, which can be as high as a few 100 pN, can be considered a key factor in determining the unfolding kinetics and pathway of proteins under force. Strong pre-tension in certain salt bridges on the other hand is connected to the thermodynamic stability of ubiquitin. Effective force profiles between some side-chains reveal the signature of multiple, distinct conformational states, and such static disorder could be one factor explaining the growing body of experiments revealing non-exponential unfolding kinetics of proteins. The design of prestress distributions in engineering proteins promises to be a new tool for tailoring the mechanical properties of made-to-order nanomaterials.  相似文献   

16.
17.
The paper reveals the types of amino acid sequences of polypeptide chain regions of globular protein which form a regular (α or β) or irregular conformation in the native globule. The study was made taking into account general “architectural” principles of packing of polypeptide chains in globular proteins and considering the interactions of proteins with water molecules. An a priori theory is developed which permits the identification, in good agreement with experiment, of α-helical and β-structural regions in globular proteins from their primary structure.  相似文献   

18.
19.
20.
The commonly used purification procedures for Transferrin-binding protein B (TbpB) are based on an affinity chromatography step using resins onto which human transferrin had been immobilized. These protocols involve protein elution using denaturing buffer solutions. Here we present an improved protocol which permits protein elution under nondenaturing conditions using chelating agents such as phosphate or compounds containing a pyrophosphate group. Furthermore, isothermal titration calorimetry experiments of the purified protein with holotransferrin have been shown to be a reliable method to assess the purity and activity of the purified material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号