首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Perfusion cultures of recombinant Chinese hamster ovary cells, producing recombinant antibody against the S surface antigen of Hepatitis B virus, were carried out in continuous and intermittent mode using a Centritech Lab II Centrifuge. In the continuous perfusion process, despite the absence of shear stress from the pump head, long-term operation was not possible because of continuously repeated exposure to oxygen limitation and low temperature, as well as shear stress from centrifugal force. In the intermittent perfusion processes, the frequency of cell-passage through the centrifuge was substantially reduced, compared with the continuous perfusion mode; however, the degree of reduction could not guarantee stable long-term operation. Although various operating parameters were applied in the intermittent perfusion cultures, high cell densities could not be maintained stably. In a single bioreactor culture system, a specific cell that is returned from the centrifuge to the bioreactor could be transferred from the bioreactor to the centrifuge again in the next cycle. These repetitive damages, caused by shear stress from the pump head and centrifugal force, as well as exposure to suboptimal conditions such as oxygen limitation and low temperature below 37 degrees C, were more serious at higher perfusion rates. Subsequently, damaged cells and dead cells were continuously accumulated in the bioreactor. Culture temperature shift from 37 to 33 degrees C increased antibody concentrations but showed inhibitory effects on cell growth. The negative effects of lowering culture temperature on cell growth overwhelmed the positive effects on antibody production. To protect cells from shear stress, Pluronic F-68 was 2-fold concentrated in the culture medium; nevertheless, a significantly higher concentration of Pluronic F-68 (2 g/L) may have inhibitory effects on cell growth.  相似文献   

2.
Clostridium thermocellum is an anaerobic thermophilic bacterium that produces enthanol from cellulosic substrates. When the organism was grown in continuous culture at dilution rates ranging from 0.04 to 0.25 h-1, growth yields on cellobiose were higher than on glucose, and even higher yields were observed on cellotetraose. However, differences in bacterial yield were much greater at slow growth rates, and it appeared that glucose-grown cells had a fourfold higher (0.41 g substrate/g protein/h) maintenance energy requirement than cellobiose-grown cultures. Cellobiose and glucose were co-utilized in dual substrate continuous culture, and this was in contrast to batch culture experiments which indicated that the organism preferred the disaccharide. These experiments demonstrate that carbohydrate utilization patterns in continuous culture are different from those in batch culture and that submaximal growth rates affect substrate preference and bioenergetic parameters. The mechanisms regulating carbohydrate use may be different in batch versus continuous culture.Published with the approval of the Director of the Kentucky Agricultural Experiment Station as journal article no. 95-07-064.  相似文献   

3.
Pseudomonas fluorescens (ATCC 11150) was grown in batch and continuous culture in minimal media with sodium maleate as growth-limiting sole organic carbon source. Growth was followed by turbidity and dry weight measurements. Gross composition of washed cells (relative amounts of protein, lipid, RNA, and DNA) and the distribution of amino acids in protein hydrolyses of the cells were determined for cells grown in continuous culture at various dilution rates. Extracellular concentrations of the original carbon source and a number of metabolites were monitored by a total carbon analysis, ion exchange chromatography, and ultraviolet-visible scans of cell-free supernatants and chromatographic fractions, thereof. Substrate inhibition by maleate was a major factor in the growth kinetics of both batch and continuous cultures. Excessive maleate concentration caused instability in continuous cultures. By appropriate operation, much higher specific growth rates (0.305/hr) could ultimately be achieved in continuous culture compared to batch culture (0.174/hr). Adaptation was responsible for only part of the differences between batch and continuous cultures; the differing distribution of metabolites were also major factors.  相似文献   

4.
利用发酵罐加装外置环形光源构建藻类连续培养系统, 以产毒微囊藻PCC 7806及其无毒突变株PCC 7806 mcyB–为培养材料, 通过对补料时间、接种密度和稀释率参数的优化, 获得最优培养条件, 并应用于产毒与无毒微囊藻的竞争实验中。通过优化得到连续培养的最优培养条件: 补料时间为第4天, 起始接种密度为4×106 cells/mL, 稀释率为0.15/d。在连续培养下, 光照为35 μmol/(m2·s)时, 以1﹕1的起始比例接种产毒与无毒微囊藻, 二者间的竞争会达到平衡, 并以无毒微囊藻占据优势, 且两者以不同的优势度长时间维持不变。在此基础上, 开展了不同光强对产毒与无毒微囊藻竞争影响的实验, 结果表明, 光强为35和80 μmol/(m2·s)时, 无毒株在连续培养中占据优势; 而光强为5和15 μmol/(m2·s)时, 无毒和产毒微囊藻维持起始接种比例不变。研究通过优化连续培养条件为室内藻类竞争实验提供了更为适宜的培养模式。  相似文献   

5.
We use a branching process approach to estimate the substitution rate, the rate at which beneficial mutations occur and fix, in populations of lytic viruses whose growth is controlled by periodic population bottlenecks. Our model predicts that substitution rates, and by extension adaptation rates, are profoundly affected by the survival of infected host cells at the bottleneck. In particular, we find that direct transfer (or environmental) bottlenecks, in which some fraction of both free virus and host cells are preserved, are associated with relatively slow adaptation rates for the virus. In contrast, viruses can adapt much more quickly when only free virus is transferred to a new host population, as is typical in an epidemiological setting. Finally, when premature lysis of the host‐cell population is induced at the bottleneck, we predict that adaptation rates for the virus will, in general, be faster still. These results hold irrespective of the life‐history trait affected by the beneficial mutation. The substitution rates in the presence of environmental bottlenecks are predicted to be as much as an order of magnitude lower than in the other two cases.  相似文献   

6.
Abstract The cyanobacterium Oscillatoria agardhii was grown in turbidostat cultures with the light energy supply in either the continuous mode or in the pulsed mode (8/16 h light/dark (L/D) cycle). The light irradiance value used was sufficient to allow the maximal growth rate to be attained, when supplied continuously. Adaptation of O. agardhii to the L/D cycle was characterized by an increase in pigment content and photosynthetic performance, accompanied by a decrease in growth rate. This mode of adaptation resembled the adaptation of O. agardhii to continuous low light intensities. It is suggested that in this case the L/D cycle provokes this adaptation in order to allow the cells to accumulate carbohydrate rapidly during the light period. This was attributed to the storage of polyglucose, which served as a carbon and energy source for growth in the dark. The utilization of polyglucose in the dark was able to sustain the synthesis of all other cell components at the same rate as when cells were growing in the light. The growth yield in the dark, whilst metabolizing internally stored polyglucose, was 0.52 g cell C/g polyglucose C, or 0.62 g cell dry weight/g polyglucose. Although in the pulsed mode there is a 66% loss in light irradiance per 24 h when compared with a continuous light regime, the growth rate of the cyanobacteria grown in the pulsed mode was only 35% lower than the growth rate of a culture grown in continuous light. This can be explained by a high growth yield in the dark and by increased CO2 fixation rates in the light of cells grown in the pulsed mode.  相似文献   

7.
A major variable to consider in the production of biologicals from mammalian cell cultures is the mode of operation, be it a batch, continuous, perfusion, fed-batch or other production method. The final choice must consider a number of fundamental and economic issues. Here we present some antibody production data from different cell lines using different modes of production and discuss the important factors for consideration in choosing a production strategy. It was found that the productivity of batch cultures was lower than that obtained in continuous and perfused cultures, but that productivity could be improved by implementing suitable feeding strategies. The antibody productivity of one cell line, MCL1, during exponential phase was not affected by media type or glucose level. The maximum productivity of two cell lines in continuous culture was found to occur at dilution rates below the maximum, from 0.019 to 0.030 hr–1.  相似文献   

8.
Chinese hamster ovary (CHO) cells are the most widely used mammalian cell line for biopharmaceutical production, with a total global market approaching $100 billion per year. In the pharmaceutical industry CHO cells are grown in fed-batch culture, where cellular metabolism is characterized by high glucose and glutamine uptake rates combined with high rates of ammonium and lactate secretion. The metabolism of CHO cells changes dramatically during a fed-batch culture as the cells adapt to a changing environment and transition from exponential growth phase to stationary phase. Thus far, it has been challenging to study metabolic flux dynamics in CHO cell cultures using conventional metabolic flux analysis techniques that were developed for systems at metabolic steady state. In this paper we review progress on flux analysis in CHO cells and techniques for dynamic metabolic flux analysis. Application of these new tools may allow identification of intracellular metabolic bottlenecks at specific stages in CHO cell cultures and eventually lead to novel strategies for improving CHO cell metabolism and optimizing biopharmaceutical process performance.  相似文献   

9.
lt is often assumed that continuous processes are more difficult and less productive than a suite of batch processes for the production of a particular biomolecule. This paper cites two papers which have appeared in the literature which propound this view and examines in detaü the justification for the support of this contention. After reviewing those features where it is alleged that continuous processes are at a disadvantage, the authors of this paper conclude that the opposite is the case and that for suitable processes the most effective way of generating product is by the use of fully continuous processes. The choice of a particular process dependends on a variety of fixed and variable factors which are unique to the process. These factors are discussed and two decision trees are presented which are designed to facilitate the choice of the appropriate process technology. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The direct microbial conversion (DMC) process for the production of ethanol from lignocellulosic biomass is limited by low volumetric ethanol production rates due to the low cell densities of Clostridium thermosaccharolyticum which is a key organism for ethanol production in this process. Hence, this study focuses on the use of a continuous- culture cell recycle system to improve the volumetric ethanol productivity and yield of the fermentation of xylose by C. thermosaccharolyticum. Early experiments with the continuous-culture cell recycle system showed a two-fold improvement in volumetric ethanol productivity. However, the ethanol yield at the higher dilution rates suffered because of the large amount of lactate produced. The manipulation of two environmental parameters-iron concentration in the nutrient medium and the N(2) purge rate of the fermentor headspace-allowed a dramatic reduction in the lactate production and a simultaneous improvement in the ethanol titer and yield. Under the improved conditions of increased iron concentration (12.5 mg/L FeSO(4) . 7H(2)O) and decreased N(2) purge rate (0.1 L/min), a continuous culture of C. thermosaccharolyticum operating at a dilution rate of 0.24 h(-1) and 50% cell recycle produced 8.6 g/L ethanol and less than 1 g/L each of acetate and lactate. The volumetric ethanol productivity was 2.2 g/L/h, which is 8 times larger than obtained for a continuous culture operated with no cell recycle and the same specific growth rate.  相似文献   

11.
The pink yeast Rhodotorula rubra of marine origin was found to be capable of extended growth at very low phosphate concentrations (K(0.5) = 10.8 nm). Average intracellular phosphate concentrations, based on isotope exchange techniques, were 15 to 200 nm, giving concentration gradients across the cell envelope of about 10(6). Sensitivity to metabolic inhibitors occurred at micromolar concentrations. Inability of the phosphate transport system, K(s) = 0.5 to 2.8 mum, V(max) = 55 mumoles per g of cells per min, to discriminate against arsenate transport led to arsenate toxicity at 1 to 10 nm, whereas environmental arsenate levels are reportedly much higher. Phosphate competitively prevented arsenate toxicity. The K(i) for phosphate inhibition of arsenate uptake was 0.7 to 1.2 mum. Phosphate uptake experiments showed that maximal growth rates could be achieved with approximately 4% of the total phosphate-arsenate transport system. Organisms adapted to a range both of concentration of NaCl and of pH. Maximal affinity for phosphate occurred at pH 4 and at low concentrations of NaCl; however, V(max) for phosphate transport was little affected. Maximal specific growth rates on minimal medium were consistent in batch culture but gradually increased to the much higher rates found with yeast extract media when the population was subjected to long-term continuous culture with gradually increasing dilution rates. Phosphate initial uptake rates that were in agreement with the steady-state flux in continuous culture were obtained by using organisms and medium directly from continuous culture. This procedure resulted in rates about 500 times greater than one in which harvested batch-grown cells were used. Discrepancies between values found and those reported in the literature for other organisms were even larger. Growth could not be sustained below a threshold phosphate concentration of 3.4 nm. Such thresholds are explained in terms of a system where growth rate is set by intracellular nutrient concentrations. Threshold concentrations occur in response to nutrient sinks not related to growth, such as efflux and endogenous metabolism. Equations are presented for evaluation of growth rate-limiting substrate concentrations in the presence of background substrate and for evaluating low inhibitor concentration inhibition mechanisms by substrate prevention of inhibitor flux.  相似文献   

12.
Clostridium cellulolyticum sporulation was investigated during growth on cellulose fibers in a mineral-salt based medium which corresponds to conditions linked to its natural ecological niche. At steady state of the continuous cultures under limitation and with an excess of cellulose and/or ammonium, bacterial cells mainly sporulated at low dilution rates (D), at least 10% sporulation being observed at the lowest D tested. Increasing the cellulose concentration in the feed-medium reservoir increased the percentage of spores in the bioreactor. It appeared that the remaining undigested cellulose could serve as an exogenous carbon source supply at a continuous but limited rate throughout the sporulation process. In addition to the proportion of carbon and nitrogen, the influence of the environmental pH on spore formation was studied. In cellulose-fed continuous cultures at a constant D and a pH decreasing from 7.2 to 6.4, the percentage of spores increased to 14% at the lowest pH tested. When C. cellulolyticum was grown in batch culture, the level of sporulation was dramatically higher in unregulated-pH fermentation compared to pH-controlled growth conditions at pH 7.2 since in the former it reached 45% within 5 days of cultivation. It then appeared that a low specific growth rate and a low environmental pH in the presence of an insoluble carbon substrate were the major factors inducing sporulation in C. cellulolyticum. Furthermore, since the spores adhere to the carbon substrate (the cellulose) the bacteria gain advantages when the environment allows germination thanks to the recovery of suitable growth conditions. By allowing the maintenance and the integrity of the bacteria in the microbiota, spore formation could then explain the successful survival of C. cellulolyticum in cellulosic anaerobic habitats where low environmental pH conditions are often found.  相似文献   

13.
Diarrhetic shellfish poisoning (DSP) toxins constitute a severe economic threat to shellfish industries and a major food safety issue for shellfish consumers. The prime producers of the DSP toxins that end up in filter feeding shellfish are species of the marine mixotrophic dinoflagellate genus Dinophysis. Intraspecific toxin contents of Dinophysis spp. vary a lot, but the regulating factors of toxin content are still poorly understood. Dinophysis spp. have been shown to sequester and use chloroplasts from their ciliate prey, and with this rare mode of nutrition, irradiance and food availability could play a key role in the regulation of toxins contents and production. We investigated toxin contents, production and excretion of a Dinophysis acuta culture under different irradiances, food availabilities and growth phases. The newly isolated strain of D. acuta contained okadaic acid (OA), pectenotoxins-2 (PTX-2) and a novel dinophysistoxin (DTX) that we tentatively describe as DTX-1b isomer. We found that all three toxins were excreted to the surrounding seawater, and for OA and DTX-1b as much as 90% could be found in extracellular toxin pools. For PTX-2 somewhat less was excreted, but often >50% was found extracellularly. This was the case both in steady-state exponential growth and in food limited, stationary growth, and we emphasize the need to include extracellular toxins in future studies of DSP toxins. Cellular toxin contents were largely unaffected by irradiance, but toxins accumulated both intra- and extracellularly when starvation reduced growth rates of D. acuta. Toxin production rates were highest during exponential growth, but continued at decreased rates when cell division ceased, indicating that toxin production is not directly associated with ingestion of prey. Finally, we explore the potential of these new discoveries to shed light on the ecological role of DSP toxins.  相似文献   

14.
An alternative to estimation of cell growth kinetics via continuous culture experiments is proposed in this article. The method employed is based on batch culture experiments with very small inocula (initial cell concentrations being typically less than 5000 cells/mL). Such low initial cell concentrations result in extended exponential cell growth phase during which culture conditions remain unchanged, thereby permitting precise estimation of specific cell growth rates from batch experiments especially for fast-growing microorganisms such as Bacillus species. The effectiveness and utility of this approach are demonstrated via several experiments conducted with a wild-type strain (Bacillus subtilis TN106) and a recombinant strain (B. subtilis TN106[pAT5]). True establishment of exponential growth phase requires insignificant variance of most of the culture conditions during the initial growth phase. Satisfaction of this requirement is demonstrated for microbial systems investigated here. This approach is especially well suited for recombinant microorganisms containing segregationally unstable plasmids, since estimation of growth kinetics of these from continuous cultures is very difficult and highly unreliable due to continual reversion of recombinant ceils to plasmid-free host cells unless some selection pressure is applied at levels sufficient to keep the presence of plasmid-free cells minimal.  相似文献   

15.
Five rumen bacteria, Selenomonas ruminantium, Bacteroides ruminicola, Megasphaera elsdenii, Streptococcus bovis, and Butyrivibrio fibrisolvens were grown in continuous culture. Estimates of substrate affinities were derived from Lineweaver-Burk plots of dilution rate versus substrate concentration. Each bacterium was grown on at least four of the six substrates: glucose, maltose, sucrose, cellobiose, xylose, and lactate. Wide variations in substrate affinities were seen among the substrates utilized by a species and among species for the same substrate. These wide differences indicate that substrate affinity may be a significant determinant of bacterial competition in the rumen where soluble substrate concentrations are often low. Growth of these bacteria in continuous culture did not always follow typical Michaelis-Menten kinetics. Inflated theoretical maximum growth rates and non-linear Lineweaver-Burk plots were sometimes seen. Maintenance energy expenditures and limitation of growth rate by factors other than substrate concentration (i.e., protein synthesis) are discussed as possible determinants of these deviations.  相似文献   

16.
Early appropriate treatment of bacteremia is important in minimizing morbidity and mortality. Standard blood culture methods are not optimal since several days are often required for recovery and identification of organisms which may be present in the blood. The use of a membrane filter technique allows one to grow any organisms present in blood much more rapidly than by broth or pour plate culture. Furthermore, growth is in the form of typical colonies on the surface of solid media, and a series of rapid diagnostic tests may be used to provide speedy identification. Use of membrane filters also facilitates removal by washing of normal antibacterial factors and antimicrobial drugs which may be present in blood. Although the filter technique yielded the most rapid growth, broth culture and whole blood pour plates yielded more positive cultures and use of all three systems was necessary for maximal recovery of organisms in blood cultures. Data on quantitative aspects of bacteremia in the antimicrobial era are also presented. The number of low level bacteremias (10 colonies/ml or less) is surprisingly high. This is particularly true for gram-negative bacilli; antimicrobial therapy at the time of culture undoubtedly influenced these results greatly. Finally, suggestions are given for a much simpler and more efficient membrance filter blood culture technique.  相似文献   

17.
Predation can play an important role in the evolution and maintenance of prey colour polymorphisms. Several factors are known to affect predator choice, including the prey's relative abundance and conspicuousness. In polymorphic prey species, predators often target the most common or most visible morphs. To test if predator choice can explain why in Midas cichlid fish the more visible (gold) morph is also more rare than the inconspicuous dark morph, we conducted predation experiments using two differently coloured wax models in Nicaraguan crater lakes. Contrary to expectations, we observed an overall higher attack rate on the much more abundant, yet less conspicuous dark models, and propose frequency‐dependent predation as a potential explanation for this result. Interestingly, the attack rate differed between different types of predators. While avian predators were biased towards the abundant and less colourful dark morphs, fish predators did not show a strong bias. However, the relative attack rate of fish predators seemed to vary with the clarity of the water, as attack rates on gold models went up as water clarity decreased. The relative differential predation rates on different morphs might impact the relative abundance of both colour morphs and thus explain the maintenance of the colour polymorphism. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112 , 123–131.  相似文献   

18.
Rapid Diagnosis of Bacteremia   总被引:28,自引:4,他引:24       下载免费PDF全文
Early appropriate treatment of bacteremia is important in minimizing morbidity and mortality. Standard blood culture methods are not optimal since several days are often required for recovery and identification of organisms which may be present in the blood. The use of a membrane filter technique allows one to grow any organisms present in blood much more rapidly than by broth or pour plate culture. Furthermore, growth is in the form of typical colonies on the surface of solid media, and a series of rapid diagnostic tests may be used to provide speedy identification. Use of membrane filters also facilitates removal by washing of normal antibacterial factors and antimicrobial drugs which may be present in blood. Although the filter technique yielded the most rapid growth, broth culture and whole blood pour plates yielded more positive cultures and use of all three systems was necessary for maximal recovery of organisms in blood cultures. Data on quantitative aspects of bacteremia in the antimicrobial era are also presented. The number of low level bacteremias (10 colonies/ml or less) is surprisingly high. This is particularly true for gram-negative bacilli; antimicrobial therapy at the time of culture undoubtedly influenced these results greatly. Finally, suggestions are given for a much simpler and more efficient membrance filter blood culture technique.  相似文献   

19.
The rates of bacterial growth in nature are often restricted by low concentrations of oxygen or carbon substrates. In the present study the metabolic properties of 24 isolates that had been isolated using various concentrations of 3-chlorobenzoate, benzoate and oxygen as well as using continuous culture at high and low growth rates were determined to investigate the effects of these parameters on the metabolism of monoaromatic compounds. Bacteria were enriched from different sampling sites and subsequently isolated. In batch culture this was done both under low oxygen (2% O(2)) and air-saturated concentrations. Chemostat enrichments were performed under either oxygen or 3-chlorobenzoate limiting conditions. Bacteria metabolizing aromatics with gentisate or protocatechuate as intermediates (gp bacteria) as well as bacteria metabolizing aromatic compounds via catechols (cat bacteria) were isolated from batch cultures when either benzoate or 3CBA were used as C sources, regardless of the enrichment conditions applied. In contrast, enrichments performed in chemostats at low dilution rates resulted in gp-type organisms only, whereas at high dilution rates cat-type organisms were enriched, irrespective of the oxygen and 3-chlorobenzoate concentration used during enrichment. It is noteworthy that the gp-type of bacteria possessed relatively low μ(max) values on 3CBA and benzoate along with relatively high substrate and oxygen affinities for these compounds. This is in contrast with cat-type of bacteria, which seemed to be characterized by high maximum specific growth rates on the aromatic substrates and relatively high apparent half saturation constants. In contrast, bacteria degrading chlorobenzoate via gentisate or protocatechuate may possibly be better adapted to conditions leading to growth at reduced rates such as low oxygen and low substrate concentrations.  相似文献   

20.
Microbial pathogens and viruses can often maintain sufficient population diversity to evade a wide range of host immune responses. However, when populations experience bottlenecks, as occurs frequently during initiation of new infections, pathogens require specialized mechanisms to regenerate diversity. We address the evolution of such mechanisms, known as stochastic phenotype switches, which are prevalent in pathogenic bacteria. We analyze a model of pathogen diversification in a changing host environment that accounts for selective bottlenecks, wherein different phenotypes have distinct transmission probabilities between hosts. We show that under stringent bottlenecks, such that only one phenotype can initiate new infections, there exists a threshold stochastic switching rate below which all pathogen lineages go extinct, and above which survival is a near certainty. We determine how quickly stochastic switching rates can evolve by computing a fitness landscape for the evolutionary dynamics of switching rates, and analyzing its dependence on both the stringency of bottlenecks and the duration of within‐host growth periods. We show that increasing the stringency of bottlenecks or decreasing the period of growth results in faster adaptation of switching rates. Our model provides strong theoretical evidence that bottlenecks play a critical role in accelerating the evolutionary dynamics of pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号