首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein I, a specific neuronal phosphoprotein, has previously been shown, using rat brain synaptosome preparations, to contain multiple sites of phosphorylation which were differentially regulated by cAMP and calcium. In the present study, Protein I was purified to homogeneity from rat brain and its phosphorylation was investigated using homogeneous cAMP-dependent protein kinase and a partially purified calcium-calmodulin-dependent protein kinase from rat brain. Employing various peptide mapping techniques, a minimum of three phosphorylation sites could be distinguished in Protein I; the phosphorylated amino acid of each site was serine. One phosphorylation site was located in the collagenase-resistant portion of Protein I and was the principal target for phosphorylation by the catalytic subunit of cAMP-dependent protein kinase. This site was also phosphorylated by calcium-calmodulin-dependent protein kinase. The other two phosphorylation sites were located in the collagenase-sensitive portion of Protein I. These latter sites were markedly phosphorylated by calcium-calmodulin-dependent protein kinase, but not by cAMP-dependent protein kinase in concentrations sufficient to phosphorylate maximally the site in the collagenase-resistant portion. Thus, the phosphorylation of purified Protein I by purified cAMP-dependent and calcium-calmodulin-dependent protein kinases provides an enzymological explanation for the regulation of phosphorylation of endogenous Protein I in synaptosome preparations by cAMP and by calcium observed previously. The studies suggest that certain of the synaptic actions of two distinct second messengers, cAMP and calcium, are expressed through the distinct specificities of cAMP- and calcium-dependent protein kinases for the multiple phosphorylation sites in one neuron-specific protein, Protein I.  相似文献   

2.
C M O'Callahan  M M Hosey 《Biochemistry》1988,27(16):6071-6077
Evidence from electrophysiological and ion flux studies has established that dihydropyridine-sensitive calcium channels are subject to regulation by neurotransmitter-mediated phosphorylation and dephosphorylation reactions. In the present study, we have further characterized the phosphorylation by cAMP-dependent protein kinase and a multifunctional Ca/calmodulin-dependent protein kinase of the membrane-associated form of the 165-kDa polypeptide identified as the skeletal muscle dihydropyridine receptor. The initial rates of phosphorylation of the 165-kDa peptide by both protein kinases were found to be relatively good compared to the rates of phosphorylation of established substrates of the enzymes. Phosphorylation of the 165-kDa peptide by both protein kinases was additive. Prior phosphorylation by either one of the kinases alone did not preclude phosphorylation by the second kinase. The cAMP-dependent protein kinase phosphorylated the 165-kDa peptide preferentially at serine residues, although a small amount of phosphothreonine was also formed. In contrast, after phosphorylation of the 165-kDa peptide by the Ca/calmodulin-dependent protein kinase, slightly more phosphothreonine than phosphoserine was recovered. Phosphopeptide mapping indicated that the two kinases phosphorylated the peptide at distinct as well as similar sites. Notably, one major site phosphorylated by the cAMP-dependent protein kinase was not phosphorylated by the Ca/calmodulin-dependent protein kinase, while other sites were phosphorylated to a high degree by the Ca/calmodulin-dependent protein kinase, but to a much lesser degree by the cAMP-dependent protein kinase. The results show that the 165-kDa dihydropyridine receptor from skeletal muscle can be multiply phosphorylated at distinct sites by the cAMP- and Ca/calmodulin-dependent protein kinases. As the 165-kDa peptide may be the major functional unit of the dihydropyridine-sensitive Ca channel, the results suggest that the phosphorylation-dependent modulation of Ca channel activity by neurotransmitters may involve phosphorylation of the 165-kDa peptide at multiple sites.  相似文献   

3.
Mitogen-activated protein kinase (MAP kinase) is a 42 kd serine/threonine protein kinase whose enzymatic activity requires phosphorylation of both tyrosyl and threonyl residues. As a step in elucidating the mechanism(s) for activation of this enzyme, we have determined the sites of regulatory phosphorylation. Following proteolytic digestion of 32P-labeled pp42/MAP kinase with trypsin, only a single phosphopeptide was detected by two-dimensional peptide mapping, and this peptide contained both phosphotyrosine and phosphothreonine. The amino acid sequence of the peptide, including the phosphorylation sites, was determined using a combination of Fourier transform mass spectrometry and collision-activated dissociation tandem mass spectrometry with electrospray ionization. The sequence for the pp42/MAP kinase tryptic phosphopeptide is similar (but not identical) to a sequence present in the ERK1- and KSS1-encoded kinases. The two phosphorylation sites are separated by only a single residue. The regulation of activity by dual phosphorylations at closely spaced threonyl and tyrosyl residues has a functional correlate in p34cdc2, and may be characteristic of a family of protein kinases regulating cell cycle transitions.  相似文献   

4.
Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C) is able to catalyze the phosphorylation of phospholamban in a canine cardiac sarcoplasmic reticulum preparation. This phosphorylation is associated with a 2-fold stimulation of Ca2+ uptake by cardiac sarcoplasmic reticulum similar to that seen following phosphorylation of phospholamban by an endogenous calmodulin-dependent protein kinase or by the catalytic subunit of cAMP-dependent protein kinase. Two-dimensional peptide maps of the tryptic fragments of phospholamban indicate that the three protein kinases differ in their selectivity for sites of phosphorylation. However, one common peptide appears to be phosphorylated by all three protein kinases. These findings suggest that protein kinase C may play a role similar to those played by cAMP- and calmodulin-dependent protein kinases in the regulation of Ca2+ uptake by cardiac sarcoplasmic reticulum, and raise the possibility that the effects of all three protein kinases are mediated through phosphorylation of a common peptide in phospholamban.  相似文献   

5.
Li T  Li F  Zhang X 《Proteins》2008,70(2):404-414
Protein phosphorylation plays important roles in a variety of cellular processes. Detecting possible phosphorylation sites and their corresponding protein kinases is crucial for studying the function of many proteins. This article presents a new prediction system, called PhoScan, to predict phosphorylation sites in a kinase-family-specific way. Common phosphorylation features and kinase-specific features are extracted from substrate sequences of different protein kinases based on the analysis of published experiments, and a scoring system is developed for evaluating the possibility that a peptide can be phosphorylated by the protein kinase at the specific site in its sequence context. PhoScan can achieve a specificity of above 90% with sensitivity around 90% at kinase-family level on the data experimented. The system is applied on a set of human proteins collected from Swiss-Prot and sets of putative phosphorylation sites are predicted for protein kinase A, cyclin-dependent kinase, and casein kinase 2 families. PhoScan is available at http://bioinfo.au.tsinghua.edu.cn/phoscan/.  相似文献   

6.
This study characterizes the insulin-activated serine/threonine protein kinases in H4 hepatoma cells active on a 37-residue synthetic peptide (called the SKAIPS peptide) corresponding to a putative autoinhibitory domain in the carboxyl-terminal tail of the p70 S6 kinase as well as on recombinant p70 S6 kinase. Three peaks of insulin-stimulated protein kinase active on both these substrates are identified as two (possibly three) isoforms of the 40-45-kDa erk/microtubule-associated protein (MAP)-2 kinase family and a 150-kDa form of cdc2. Although distinguishable in their substrate specificity, these protein kinases together with the p54 MAP-2 kinase share a major common specificity determinant reflected in the SKAIPS peptide: the requirement for a proline residue immediately carboxyl-terminal to the site of Ser/Thr phosphorylation. In addition, however, at least one peak of insulin-stimulated protein kinase active on recombinant p70, but not on the SKAIPS peptide, is present although not yet identified. MFP/cdc2 phosphorylates both rat liver p70 S6 kinase and recombinant p70 S6 kinase exclusively at a set of Ser/Thr residues within the putative autoinhibitory (SKAIPS peptide) domain. erk/MAP kinase does not phosphorylate rat liver p70 S6 kinase, but readily phosphorylates recombinant p70 S6 kinase at sites both within and in addition to those encompassed by the SKAIPS peptide sequences. Although the tryptic 32P-peptides bearing the cdc2 and erk/MAP kinase phosphorylation sites co-migrate with a subset of the sites phosphorylated in situ in insulin-stimulated cells, phosphorylation of the p70 S6 kinase by these proline-directed protein kinases in vitro does not reproducibly activate p70 S6 kinase activity. Thus, one or more erk/MAP kinases and cdc2 are likely to participate in the insulin-induced phosphorylation of the p70 S6 kinase. In addition to these kinases, however, phosphorylation of the p70 S6 kinase by other as yet unidentified protein kinases is necessary to recapitulate the multisite phosphorylation required for activation of the p70 S6 kinase.  相似文献   

7.
The synthetic peptide AKRRRLSSLRASTSKSESSQK (S6-21) which corresponds to the carboxyl-terminal 21 amino acids of human ribosomal protein S6 was synthesized and tested as a substrate for S6/H4 kinase purified from human placenta. The specific activity of the enzyme with the synthetic peptide and 40 S ribosomes was 45 and 23 nmol/min/mg, respectively. The S6/H4 kinase activity with S6-21 was greater than the enzyme activity with any other substrate tested, including histones, protamine, and casein and several other synthetic peptides. The phosphorylation of the peptide was not inhibited by inhibitors of several other proteins kinases. S6/H4 kinase catalyzed the phosphorylation of three major sites in the synthetic peptide and the 40 S ribosomes. A fourth site in S6-21 was phosphorylated more slowly. The principal phosphorylation sites were serines in the acidic carboxyl-terminal domain of the peptide. A serine (Ser-7 or -8) in the amino-terminal domain was phosphorylated at approximately 25% the rate of the carboxyl-terminal domain serines. The data suggest that multiple S6 kinases may be required to phosphorylate S6 at all five sites which are modified in vivo.  相似文献   

8.
The phosphorylation sites in the myristoylated alanine-rich C kinase substrate or MARCKS protein consist of four serines contained within a conserved, basic region of 25 amino acids, termed the phosphorylation site domain. A synthetic peptide comprising this domain was phosphorylated by both protein kinase C and its catalytic fragment with high affinity and apparent positive cooperativity. Tryptic phosphopeptides derived from the peptide appeared similar to phosphopeptides derived from the phosphorylated intact protein. The peptide was phosphorylated by cAMP- and cGMP-dependent protein kinases with markedly lower affinities. In peptides containing only one of the four serines, with the other three serines replaced by alanine, the affinities for protein kinase C ranged from 25 to 60 nM with Hill constants between 1.8 and 3.0. The potential pseudosubstrate peptide, in which all four serines were replaced by alanines, inhibited protein kinase C phosphorylation of histone or a peptide substrate with an IC50 of 100-200 nM with apparently non-competitive kinetics; it also inhibited the catalytic fragment of protein kinase C with a Ki of 20 nM, with kinetics of the mixed type. The peptide did not significantly inhibit the cAMP- and cGMP-dependent protein kinases. It inhibited Ca2+/calmodulin-dependent protein kinases I, II, and III by competing with the kinases for calmodulin. In addition, the peptide inhibited the Ca2+/calmodulin-independent activity of a proteolytic fragment of Ca2+/calmodulin protein kinase II, with an IC50 approximately 5 microM. Thus, the phosphorylation site domain peptide of the MARCKS protein is a high affinity substrate for protein kinase C in vitro; the cognate peptide containing no serines is a potent but not completely specific inhibitor of both protein kinase C and its catalytic fragment.  相似文献   

9.
Rat liver glycogen synthase was purified to homogeneity by an improved procedure that yielded enzyme almost exclusively as a polypeptide of Mr 85,000. The phosphorylation of this enzyme by eight protein kinases was analyzed by cleavage of the enzyme subunit followed by mapping of the phosphopeptides using polyacrylamide gel electrophoresis in the presence of SDS, reverse-phase high-performance liquid chromatography and thin-layer electrophoresis. Cyclic AMP-dependent protein kinase, phosphorylase kinase, protein kinase C and the calmodulin-dependent protein kinase all phosphorylated the same small peptide (approx. 20 amino acids) located in a 14 kDa CNBr-fragment (CB-1). Calmodulin-dependent protein kinase and protein kinase C also modified second sites in CB-1. A larger CNBr-fragment (CB-2) of approx. 28 kDa was the dominant site of action for casein kinases I and II, FA/GSK-3 and the heparin-activated protein kinase. The sites modified were all localized in a 14 kDa species generated by trypsin digestion. Further proteolysis with V8 proteinase indicated that FA/GSK-3 and the heparin-activated enzyme recognized the same smaller peptide within CB-2, which may also be phosphorylated by casein kinase 1. Casein kinase 1 also modified a distinct peptide, as did casein kinase II. The results lead us to suggest homology to the muscle enzyme with regard to CB-1 phosphorylation and the region recognized by FA/GSK-3, which in rabbit muscle is characterized by a high density of proline and serine residues. A striking difference with the muscle isozyme is the apparent lack of phosphorylations corresponding to the muscle sites 1a and 1b. These results provide further evidence for the presence of liver- and muscle-specific glycogen synthase isozymes in the rat. That the isozymes differ subtly as to phosphorylation sites may provide a clue to the functional differences between the isozymes.  相似文献   

10.
Selection of target substrates by protein kinases is strongly influenced by the amino acid sequence surrounding the phosphoacceptor site. Identification of the preferred peptide phosphorylation motif for a given kinase permits the production of efficient peptide substrates and greatly simplifies the mapping of phosphorylation sites in protein substrates. Here we describe a combinatorial peptide library method that allows rapid generation of phosphorylation motifs for serine/threonine kinases.  相似文献   

11.
Vinculin, a cytoskeletal substrate of protein kinase C   总被引:22,自引:0,他引:22  
Vinculin, a cytoskeletal protein localized at adhesion plaques, is a phosphoprotein containing phosphoserine, phosphothreonine, and phosphotyrosine. Vinculin has been previously shown to be a substrate for pp60src, a phosphotyrosine protein kinase, but the kinase(s) responsible for phosphorylation of the other amino acid residues is unknown. The present report examines the phosphorylation of vinculin by various serine- and threonine-specific protein kinases. Only protein kinase C, the calcium-activated phospholipid-dependent protein kinase, phosphorylates vinculin at a significant rate (24 nmol/min/mg) and displays marked specificity for vinculin. Both calcium and phosphatidylserine were required for vinculin phosphorylation by protein kinase C. In addition, both phorbol 12,13-dibutyrate (10 nM) and phorbol 12-myristate 13-acetate (10 nM) stimulated vinculin phosphorylation by protein kinase C at a limiting calcium concentration (10(-6) M). Tryptic peptide analysis revealed two major sites of phosphorylation. One site contained phosphoserine and the other contained phosphothreonine. When compared with tryptic maps of vinculin phosphorylated by src kinase, no overlapping phosphorylated peptides were found. The present findings coupled with the plasma membrane location of both these proteins suggest that vinculin may be a physiologic substrate for protein kinase C.  相似文献   

12.
Murine T cell differentiation antigen CD8 alpha (Lyt-2) is phosphorylated in vivo after phorbol 12-myristate 13-acetate (PMA) treatment of cells. Concanavalin A,dibutyryl cAMP and calcium ionophore are unable to stimulate phosphate incorporation into CD8 alpha. Depletion of cellular protein kinase C (PKC) by prolonged PMA treatment abolished this phosphorylation, suggesting that PKC is required for this effect. Using the amino acid sequence derived from cloning CD8 alpha, peptides encompassing both possible intracellular phosphorylation sites were made and used to test the ability of various kinases to phosphorylate CD8 alpha sequences. Only the proximal serine peptide was a kinase substrate, and of PKC, cAMP-dependent kinase and the multifunctional calcium/calmodulin-dependent kinase, only PKC was able to phosphorylate this peptide. These studies provide the first definitive evidence that CD8 alpha is a direct substrate of PKC.  相似文献   

13.
To precisely regulate critical signaling pathways, two kinases that phosphorylate distinct sites on the same protein substrate must have mutually exclusive specificity. Evolution could assure this by designing families of kinase such as basophilic kinases and proline-directed kinase with distinct peptide specificity; their reciprocal peptide specificity would have to be very complete, since recruitment of substrate allows phosphorylation of even rather poor phosphorylation sites in a protein. Here we report a powerful evolutionary strategy that assures distinct substrates for basophilic kinases (PKA, PKG and PKC (AGC) and calmodulin-dependent protein kinase (CAMK)) and proline-directed kinase, namely by the presence or absence of proline at the P + 1 position in substrates. Analysis of degenerate and non-degenerate peptides by in vitro kinase assays reveals that proline at the P + 1 position in substrates functions as a "veto" residue in substrate recognition by AGC and CAMK kinases. Furthermore, analysis of reported substrates of two typical basophilic kinases, protein kinase C and protein kinase A, shows the lowest occurrence of proline at the P + 1 position. Analysis of crystal structures and sequence conservation provides a molecular basis for this disfavor and illustrate its generality.  相似文献   

14.
1-Amino-cyclopropane-1-carboxylate synthase (ACS) catalyzes the rate-determining step in the biosynthesis of the plant hormone ethylene, and there is evidence for regulation of stability of the protein by reversible protein phosphorylation. The site of phosphorylation of the tomato enzyme, LeACS2, was recently reported to be Ser460, but the requisite protein kinase has not been identified. In the present study, a synthetic peptide based on the known regulatory phosphorylation site (KKNNLRLS460FSKRMY) in LeACS2 was found to be readily phosphorylated in vitro by several calcium-dependent protein kinases (CDPKs), but not a plant SNF1-related protein kinase or the kinase domain of the receptor-like kinase, BRI1, involved in brassinosteroid signaling. Studies with variants of the LeACS2-Ser460 peptide establish a fundamentally new phosphorylation motif that is broadly targeted by CDPKs: phi -1-[ST]0- phi +1-X-Basic+3-Basic+4, where phi is a hydrophobic residue. Database analysis using the new motif predicts a number of novel phosphorylation sites in plant proteins. Finally, we also demonstrate that CDPKs and SnRK1s do not recognize motifs presented in the reverse order, indicating that side chain interactions alone are not sufficient for substrate recognition.  相似文献   

15.
Synthetic beta-turn peptides as substrates for a tyrosine protein kinase   总被引:2,自引:0,他引:2  
An attempt has been made at defining the secondary structural requirement for phosphorylation of substrates of a protein tyrosine kinase from the leukemia virus-transformed LSTRA cell line. An examination of the sites of phosphorylation of substrates of protein tyrosine kinases indicated a relatively high probability of the beta-turn as the secondary structural feature at these sites. We have, therefore, synthesized three tyrosine peptides: Ala-Pro-Tyr-Gly-NHCH3, Leu-Pro-Tyr-Ala-NHCH3, and Pro-Gly-Ala-Tyr-NH2, of which the first two peptides, but not the third, would be expected to contain the tyrosine residue in a beta-turn. Circular dichroism and infrared spectral data on the peptides confirmed this expectation. Phosphorylation data on the peptides by the tyrosine kinase showed that the two beta-turn peptides were phosphorylated with Vmax and Km values comparable to those of the 13-residue-long arginine-containing synthetic peptide substrate having a sequence homologous to the autophosphorylation site of the LSTRA kinase. The peptides used here contain the shortest sequence length among the reported synthetic peptide substrates for protein tyrosine kinases. Their preference for the beta-turn indicated that this conformation may serve as the recognition site for tyrosine phosphorylation.  相似文献   

16.
The insulin receptor purified from human placenta by sequential affinity chromatography on wheat germ agglutinin- and insulin-Sepharose to near homogeneity retained tyrosine-specific protein kinase activity. This purified insulin receptor kinase specifically catalyzed the incorporation of 32P from [gamma-32P]ATP into not only the beta-subunit of the insulin receptor but also histone H2B, a synthetic peptide which is sequentially similar to the site of tyrosine phosphorylation in pp60src (a gene product of the Rous sarcoma virus) and antibodies to pp60src present in the sera obtained from three rabbits bearing tumors induced by the Rous sarcoma virus. In each case, phosphorylation occurred exclusively on tyrosine residues. Insulin stimulated phosphorylation of these substrates 3- to 5-fold. Kinetic analysis using the synthetic peptide indicated that insulin acted by increasing the Vmax of peptide phosphorylation from about 3.1 to 9.5 nmol X mg-1 of protein X min-1, whereas the value of the Km for the peptide, about 1.5 mM, was not significantly changed. This kinase acted weakly on casein, alpha-S-casein, actin, and a tyrosine-containing peptide analogue of a serine-containing peptide used commonly as a substrate for the cyclic AMP-dependent protein kinases. These data show that the insulin receptor kinase displays specificity toward exogenous substrates similar to the substrate specificity observed for pp60src and the protein kinase activity associated with the receptor for epidermal growth factor. The data suggest that the catalytic sites of these three tyrosine kinases are similar and that insulin activates its receptor kinase by increasing the Vmax.  相似文献   

17.
We have analyzed the in vitro phosphorylation of tau protein by Ca2+/calmodulin-dependent protein kinase, casein kinase II, and proline-directed serine/threonine protein kinase. These kinases phosphorylate tau protein in sites localized in different regions of the molecule, as determined by peptide mapping analyses. Focusing on the phosphorylation of tau by protein kinase C, it was calculated as an incorporation of 4 mol of phosphate/mol of tau. Limited proteolysis assays suggest that the phosphorylation sites could be located within the tubulin-binding domain. Direct phosphorylation of synthetic peptides corresponding to the cysteine-containing tubulin-binding region present in both fetal and adult tau isoforms demonstrates that serine 313 is modified by protein kinase C. Phosphorylation of the synthetic peptide by protein kinase C diminishes its binding to tubulin, as compared with the unphosphorylated peptide.  相似文献   

18.
We developed a peptide microarray based on surface plasmon resonance (SPR) imaging for monitoring protein kinase activities in cell lysates. The substrate peptides of kinases were tethered to the microarray surface modified with a self-assembled monolayer of an alkanethiol with triethylene glycol terminus to create a low nonspecific binding surface. The phosphorylation of the substrate peptides immobilized on the surface was detected with the following phosphate specific binders by amplifying SPR signals: anti-phosphotyrosine antibody for tyrosine kinases and Phos-tag biotin (a phosphate-specific ligand with biotin tag) for serine/threonine kinases. Using the microarray, 9 kinds of protein kinases were evaluated as a pattern of phosphorylation of 26 kinds of substrate peptides. The pattern was unique for each protein kinase. The microarray could be used to evaluate the inhibitory activities of kinase inhibitors. The microarray was applied successfully for kinase activity monitoring of cell lysates. The chemical stimuli responsive activity changes of protein kinases in cell lysates could also be monitored by the peptide microarray. Thus, the peptide microarray based on SPR imaging would be applicable to cell-based drug discovery, diagnosis using tissue lysates, and biochemical studies to reveal signal transduction pathways.  相似文献   

19.
A combination of in vivo and in vitro approaches were used to characterize phosphorylation sites on the 70,000-kilodalton (kDa) subunit of neurofilaments (NF-L) and to identify the protein kinases that are likely to mediate these modifications in vivo. Neurofilament proteins in a single class of neurons, the retinal ganglion cells, were pulse-labeled in vivo by injecting mice intravitreously with [32P]orthophosphate. Radiolabeled neurofilaments were isolated after they had advanced along optic axons, and the individual subunits were separated on sodium dodecyl sulfate-polyacrylamide gels. Two-dimensional alpha-chymotryptic phosphopeptide map analysis of NF-L revealed three phosphorylation sites: an intensely labeled peptide (L-1) and two less intensely labeled peptides (L-2 and L-3). The alpha-chymotryptic peptide L-1 was identified as the 11-kDa segment containing the C terminus of NF-L. The ability of these peptides to serve as substrates for specific protein kinases were examined by incubating neurofilament preparations with [gamma-32P]ATP in the presence of purified cAMP-dependent protein kinase or appropriate activators and/or inhibitors of endogenous cytoskeleton-associated protein kinases. The heparin-sensitive, calcium- and cyclic nucleotide-independent kinase associated with the cytoskeleton selectively phosphorylated L-1 and L-3 but had little, if any, activity toward L-2. When this kinase was inhibited with heparin, cAMP addition to the neurofilament preparation stimulated the phosphorylation of L-2, and addition of the purified catalytic subunit of cAMP-dependent protein kinase induced intense labeling of L-2. At higher labeling efficiencies, the exogenous kinase also phosphorylated L-3 and several sites at which labeling was not detected in vivo; however, L-1 was not a substrate. Calcium and calmodulin added to neurofilament preparations in the presence of heparin modestly stimulated the phosphorylation of L-1 and L-3, but not L-2, and the stimulation was reversed by trifluoperazine. The selective phosphorylation of different polypeptide domains on NF-L by second messenger-dependent and -independent kinases suggests multiple functions for phosphate groups on this protein.  相似文献   

20.
Role of protein kinase C in the regulation of rat liver glycogen synthase   总被引:1,自引:0,他引:1  
Rat liver glycogen synthase was phosphorylated by purified protein kinase C in a Ca2+- and phospholipid-dependent fashion to 1-1.4 mol PO4/subunit. Analysis of the 32P-labeled tryptic peptides derived from the phosphorylated synthase by isoelectric focusing and two-dimensional peptide mapping revealed the presence of a major radioactive peptide. The sites in liver synthase phosphorylated by protein kinase C appears to be different from those phosphorylated by other kinases. Prior phosphorylation of the synthase by protein kinase C has no significant effect on the subsequent phosphorylation by glycogen synthase (casein) kinase-1 or kinase Fa, but prevents the synthase from further phosphorylation by cAMP-dependent protein kinase, Ca2+/calmodulin-dependent protein kinase, phosphorylase kinase, or casein kinase-2. Additive phosphorylation of liver glycogen synthase can be observed by the combination of protein kinase C with the former set of kinases but not with the latter. Phosphorylation of liver synthase by protein kinase C alone did not cause an inactivation nor did the combination of this kinase with glycogen synthase (casein) kinase-1 or kinase Fa produce a synergistic effect on the inactivation of the synthase. Based on these findings we conclude that the phorbol ester-induced inactivation of glycogen synthase previously observed in hepatocytes cannot be accounted for entirely by the activation of protein kinase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号