首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.

Key message

Genome-wide association study (GWAS) on 923 maize lines and validation in bi-parental populations identified significant genomic regions for kernel-Zinc and-Iron in maize.

Abstract

Bio-fortification of maize with elevated Zinc (Zn) and Iron (Fe) holds considerable promise for alleviating under-nutrition among the world’s poor. Bio-fortification through molecular breeding could be an economical strategy for developing nutritious maize, and hence in this study, we adopted GWAS to identify markers associated with high kernel-Zn and Fe in maize and subsequently validated marker-trait associations in independent bi-parental populations. For GWAS, we evaluated a diverse maize association mapping panel of 923 inbred lines across three environments and detected trait associations using high-density Single nucleotide polymorphism (SNPs) obtained through genotyping-by-sequencing. Phenotyping trials of the GWAS panel showed high heritability and moderate correlation between kernel-Zn and Fe concentrations. GWAS revealed a total of 46 SNPs (Zn-20 and Fe-26) significantly associated (P?≤?5.03?×?10?05) with kernel-Zn and Fe concentrations with some of these associated SNPs located within previously reported QTL intervals for these traits. Three double-haploid (DH) populations were developed using lines identified from the panel that were contrasting for these micronutrients. The DH populations were phenotyped at two environments and were used for validating significant SNPs (P?≤?1?×?10?03) based on single marker QTL analysis. Based on this analysis, 11 (Zn) and 11 (Fe) SNPs were found to have significant effect on the trait variance (P?≤?0.01, R2?≥?0.05) in at least one bi-parental population. These findings are being pursued in the kernel-Zn and Fe breeding program, and could hold great value in functional analysis and possible cloning of high-value genes for these traits in maize.
  相似文献   

2.
  • Zinc (Zn) is an essential micronutrient for the growth and development of plants. However, Zn deficiency is a common abiotic stress causing yield loss in crop plants. This study elucidates the mechanisms of Zn deficiency tolerance in maize through physiological and molecular techniques.
  • Maize lines tolerant (PAC) and sensitive (DAC) to Zn deficiency were examined physiologically and by atomic absorption spectrometry (AAS). Proteins, H2O2, SOD, POD, membrane permeability and gene expression (using real‐time PCR) of roots and shoots of both maize lines were assessed.
  • Zn deficiency had no significant effect on root parameters compared with control plants in PAC and DAC but showed a substantial reduction in shoot parameters in DAC. AAS showed a significant decrease in Zn concentrations in both roots and shoots of DAC but not PAC under Zn deficiency, implying that Zn deficiency tolerance mechanisms exist in PAC. Consistently, total protein and membrane permeability were significantly reduced in DAC but not PAC in both roots and shoots under Zn deficiency in comparison with Zn‐sufficient plants. Real‐time PCR showed that expression of ZmZIP1, ZmZIP4 and ZmIRT1 transporter genes significantly increased in roots of PAC, but not in DAC due to Zn deficiency compared with controls. The H2O2 concentration dramatically increased in roots of DAC but not PAC. Moreover, tolerant PAC showed a significant increase in POD and SOD activity due to Zn deficiency, suggesting that POD‐ and SOD‐mediated antioxidant defence might provide tolerance, at least in part, under Zn deficiency in PAC.
  • This study provides an essential background for improving Zn biofortification of maize.
  相似文献   

3.

Background

Herbicide tolerance is an important trait that allows effective weed management in wheat crops. Genetic knowledge of metribuzin tolerance in wheat is needed to develop new cultivars for the industry. Here, we evaluated metribuzin tolerance in a recombinant inbred line (RIL) mapping population derived from Synthetic W7984 and Opata 85 over two consecutive years to identify quantitative trait loci (QTL) contributing to the trait. Herbicide tolerance was measured by two chlorophyll traits, SPAD chlorophyll content index (CCI) and visual senescence score (SNS). The markers associated with major QTL from Synthetic W7984, positively contributing to reduced phytotoxic effects under herbicide treatment were validated in two F3/4 recombinant inbred populations developed from crosses of Synthetic W7984?×?Westonia and Synthetic W7984?×?Lang.

Results

Composite interval mapping (CIM) identified four QTL, two on chromosome 4A and one each on chromosomes 2D and 1A. The chromosomal position of the two QTL mapped on 4A within 10 cM intervals was refined and validated by multiple interval mapping (MIM). The major QTL affecting both measures of tolerance jointly explained 42 and 45% of the phenotypic variation by percentage CCI reduction and SNS, respectively. The identified QTL have a pure additive effect. The metribuzin tolerant allele of markers, Xgwm33 and Xbarc343, conferred lower phytotoxicity and explained the maximum phenotypic variation of 28.8 and 24.5%, respectively. The approximate physical localization of the QTL revealed the presence of five candidate genes (ribulose-bisphosphate carboxylase, oxidoreductase (rbcS), glycosyltransferase, serine/threonine-specific protein kinase and phosphotransferase) with a direct role in photosynthesis and/or metabolic detoxification pathways.

Conclusion

Metribuzin causes photo-inhibition by interrupting electron flow in PSII. Consequently, chlorophyll traits enabled the measure of high proportion of genetic variability in the mapping population. The validated molecular markers associated with metribuzin tolerance mediating QTL may be used in marker-assisted breeding to select metribuzin tolerant lines. Alternatively, validated favourable alleles could be introgressed into elite wheat cultivars to enhance metribuzin tolerance and improve grain yield in dryland farming for sustainable wheat production.
  相似文献   

4.

Key message

Differentially expressed antioxidant enzymes, amino acids and proteins in contrasting rice genotypes, and co-location of their genes in the QTLs mapped using bi-parental population, indicated their role in salt tolerance.

Abstract

Soil salinity is a major environmental constraint limiting rice productivity. Salt-tolerant ‘CSR27’, salt-sensitive ‘MI48’and their extreme tolerant and sensitive recombinant inbred line (RIL) progenies were used for the elucidation of salt stress tolerance metabolic pathways. Salt stress-mediated biochemical and molecular changes were analyzed in the two parents along with bulked-tolerant (BT) and bulked-sensitive (BS) extreme RILs. The tolerant parent and BT RILs suffered much lower reduction in the chlorophyll as compared to their sensitive counterparts. Activities of antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD) and non-enzymatic antioxidant ascorbic acid were much higher in salt-stressed CSR27 and BT RILs than MI48 and BS RILs. Further, the tolerant lines showed significant enhancement in the levels of amino acids methionine and proline in response to salt stress in comparison to the sensitive lines. Similarly, the tolerant genotypes showed minimal reduction in cysteine content whereas sensitive genotypes showed a sharp reduction. Real time PCR analysis confirmed the induction of methionine biosynthetic pathway (MBP) enzymes cystathionine-β synthase (CbS), S-adenosyl methionine synthase (SAMS), S-adenosyl methionine decarboxylase (SAMDC) and serine hydroxymethyl transferase (SHMT) genes in tolerant lines, suggesting potential role of the MBP in conferring salt tolerance in rice variety CSR27. Proteome profiling also confirmed higher expression of SOD, POD and plastidic CbS and other proteins in the tolerant lines, whose genes were co-located in the QTL intervals for salt tolerance mapped in the RIL population. The study signifies integrated biochemical-molecular approach for identifying salt tolerance genes for genetic improvement for stress tolerant rice varieties.
  相似文献   

5.
Phosphate (Pi) plays important roles in plant development and architecture. With the goal of identifying genomic regions that influence tolerance to Pi deficiency (TPDE) in hybrid rice (Oryza sativa L.), quantitative trait loci (QTL) were mapped using recombinant inbred lines (RILs) that were derived from a cross between tolerant ‘XieqingzaoB’ (XB) and susceptible ‘Zhonghui9308’. Six TPDE-related traits, including the root length, root dry weight, tillers number, shoot dry weight, total plant dry weight and root-to-shoot ratio, were evaluated for QTL analysis during both the tillering and heading stages. A correlation analysis showed that most of the traits were correlated with each other. Twenty-one additive QTL were detected and jointly explained between 10–49% of the trait variance, tending to cluster on chromosomes 4, 6, 10 and 11. Three QTL, qTPDE4 XB , qTPDE10 XB and qTPDE11.3 XB , were validated by the phenotypic evaluation using near isogenic lines (NILs, BC4F3) during the seedling stage. qTPDE4 XB showed the most stable tolerance against Pi deficiency. These QTL will enrich the genetic resources and accelerate hybrid rice breeding against Pi deficiency.  相似文献   

6.

Background

Zinc (Zn) deficiency is one of the most important micronutrient disorders affecting human health. Wheat is the staple food for 35% of the world’s population and is inherently low in Zn, which increases the incidence of Zn deficiency in humans. Major wheat-based cropping systems viz. rice–wheat, cotton–wheat and maize–wheat are prone to Zn deficiency due to the high Zn demand of these crops.

Methods

This review highlights the role of Zn in plant biology and its effect on wheat-based cropping systems. Agronomic, breeding and molecular approaches to improve Zn nutrition and biofortification of wheat grain are discussed.

Results

Zinc is most often applied to crops through soil and foliar methods. The application of Zn through seed treatments has improved grain yield and grain Zn status in wheat. In cropping systems where legumes are cultivated in rotation with wheat, microorganisms can improve the available Zn pool in soil for the wheat crop. Breeding and molecular approaches have been used to develop wheat genotypes with high grain Zn density.

Conclusions

Options for improving grain yield and grain Zn concentration in wheat include screening wheat genotypes for higher root Zn uptake and grain translocation efficiency, the inclusion of these Zn-efficient genotypes in breeding programs, and Zn fertilization through soil, foliar and seed treatments.
  相似文献   

7.

Background

The coupling of biotic and abiotic stresses leads to high yield losses in rainfed rice (Oryza sativa L.) growing areas. While several studies target these stresses independently, breeding strategies to combat multiple stresses seldom exist. This study reports an integrated strategy that combines QTL mapping and phenotypic selection to develop rice lines with high grain yield (GY) under drought stress and non-stress conditions, and tolerance of rice blast.

Methodology

A blast-tolerant BC2F3-derived population was developed from the cross of tropical japonica cultivar Moroberekan (blast- and drought-tolerant) and high-yielding indica variety Swarna (blast- and drought-susceptible) through phenotypic selection for blast tolerance at the BC2F2 generation. The population was studied for segregation distortion patterns and QTLs for GY under drought were identified along with study of epistatic interactions for the trait.

Results

Segregation distortion, in favour of Moroberekan, was observed at 50 of the 59 loci. Majority of these marker loci co-localized with known QTLs for blast tolerance or NBS-LRR disease resistance genes. Despite the presence of segregation distortion, high variation for DTF, PH and GY was observed and several QTLs were identified under drought stress and non-stress conditions for the three traits. Epistatic interactions were also detected for GY which explained a large proportion of phenotypic variance observed in the population.

Conclusions

This strategy allowed us to identify QTLs for GY along with rapid development of high-yielding purelines tolerant to blast and drought with considerably reduced efforts. Apart from this, it also allowed us to study the effects of the selection cycle for blast tolerance. The developed lines were screened at IRRI and in the target environment, and drought and blast tolerant lines with high yield were identified. With tolerance to two major stresses and high yield potential, these lines may provide yield stability in rainfed rice areas.  相似文献   

8.

Aims

Zinc deficiency is a common micronutrient deficiency in plants growing in many different regions of the world and is associated with disturbances in uptake and accumulation of mineral nutrients. Despite many published data on physiological factors affecting ion accumulation in Zn deficient plants, there is very little information about the genetic factors underlying this. We aim to identify genetic loci involved in mineral accumulation and plant performance under Zn deficiency.

Methods

Genetic loci were identified using the genetically segregating Ler × Cvi recombinant inbred line (RIL) population grown under Zn deficient conditions. Lines were analysed for the concentrations of Zn, Fe, Mn, K, Ca, Mg, P, Cu, S and Al in shoot dry matter. The same was done for the same lines grown under Zn sufficient conditions.

Results

We found considerable heritable variation for most mineral concentrations. In general, there was a positive correlation between mineral concentrations. For Zn only condition-dependent QTLs were identified, while for most other mineral concentrations both condition-dependent and -independent QTLs were identified. Several QTLs co-localize, including co-localization to loci controlling shoot biomass and to mineral concentration loci found previously in this and other RIL populations.

Conclusions

There are different genetic loci controlling Zn accumulation under deficient and sufficient Zn supply. Only for few minerals, their accumulation is controlled by Zn-supply-specific loci.  相似文献   

9.
Cadmium (Cd) is a non-essential toxic metal that is primarily released into the environment from artificial sources in recent decades. To investigate the genetics of Cd toxicity tolerance at the seedling stage in rice, a QTL analysis was carried out under cadmium stress conditions with two toxicity-linked traits—leaf rolling (LR) and the green leaf ratio (GLR). Using 127 rice lines of doubled haploid (DH) population derived from a cross between a japonica JX17 and indica ZYQ8, two QTLs for LR (qLR-1 and qLR-9) and one QTL for GLR (qGLR-3) were detected. Among them, the phenotypic variation of qLR-1 and qGLR-3 were 19.27 and 16.09, values which are useful for marker-assistant selection in breeding elite rice cultivars that have the capacity to tolerate Cd. The results further demonstrate that visual measurements of both LR and GLR in seedlings are effective methods for screening tolerant rice germplasm in cadmium stress scenarios.  相似文献   

10.

Key message

Novel QTL for salinity tolerance traits have been detected using non-destructive and destructive phenotyping in bread wheat and were shown to be linked to improvements in yield in saline fields.

Abstract

Soil salinity is a major limitation to cereal production. Breeding new salt-tolerant cultivars has the potential to improve cereal crop yields. In this study, a doubled haploid bread wheat mapping population, derived from the bi-parental cross of Excalibur?×?Kukri, was grown in a glasshouse under control and salinity treatments and evaluated using high-throughput non-destructive imaging technology. Quantitative trait locus (QTL) analysis of this population detected multiple QTL under salt and control treatments. Of these, six QTL were detected in the salt treatment including one for maintenance of shoot growth under salinity (QG(15).asl-7A), one for leaf Na+ exclusion (QNa.asl-7A) and four for leaf K+ accumulation (QK.asl-2B.1, QK.asl-2B.2, QK.asl-5A and QK:Na.asl-6A). The beneficial allele for QG(15).asl-7A (the maintenance of shoot growth under salinity) was present in six out of 44 mainly Australian bread and durum wheat cultivars. The effect of each QTL allele on grain yield was tested in a range of salinity concentrations at three field sites across 2 years. In six out of nine field trials with different levels of salinity stress, lines with alleles for Na+ exclusion and/or K+ maintenance at three QTL (QNa.asl-7A, QK.asl-2B.2 and QK:Na.asl-6A) excluded more Na+ or accumulated more K+ compared to lines without these alleles. Importantly, the QK.asl-2B.2 allele for higher K+ accumulation was found to be associated with higher grain yield at all field sites. Several alleles at other QTL were associated with higher grain yields at selected field sites.
  相似文献   

11.

Key message

Rye genetic resources provide a valuable source of new alleles for the improvement of frost tolerance in rye breeding programs.

Abstract

Frost tolerance is a must-have trait for winter cereal production in northern and continental cropping areas. Genetic resources should harbor promising alleles for the improvement of frost tolerance of winter rye elite lines. For frost tolerance breeding, the identification of quantitative trait loci (QTL) and the choice of optimum genome-based selection methods are essential. We identified genomic regions involved in frost tolerance of winter rye by QTL mapping in a biparental population derived from a highly frost tolerant selection from the Canadian cultivar Puma and the European elite line Lo157. Lines per se and their testcrosses were phenotyped in a controlled freeze test and in multi-location field trials in Russia and Canada. Three QTL on chromosomes 4R, 5R, and 7R were consistently detected across environments. The QTL on 5R is congruent with the genomic region harboring the Frost resistance locus 2 (Fr2) in Triticeae. The Puma allele at the FrR2 locus was found to significantly increase frost tolerance. A comparison of predictive ability obtained from the QTL-based model with different whole-genome prediction models revealed that besides a few large, also small QTL effects contribute to the genomic variance of frost tolerance in rye. Genomic prediction models assigning a high weight to the FrR2 locus allow increasing the selection intensity for frost tolerance by genome-based pre-selection of promising candidates.
  相似文献   

12.

Background

Spermatogonia are highly tolerant to reactive oxygen species (ROS) attack while advanced-stage germ cells such as spermatozoa are much more susceptible, but the precise reason for this variation in ROS tolerance remains unknown.

Methodology/Principal Findings

Using the Japanese eel testicular culture system that enables a complete spermatogenesis in vitro, we report that advanced-stage germ cells undergo intense apoptosis and exhibit strong signal for 8-hydroxy-2′-deoxyguanosine, an oxidative DNA damage marker, upon exposure to hypoxanthine-generated ROS while spermatogonia remain unaltered. Activity assay of antioxidant enzyme, superoxide dismutase (SOD) and Western blot analysis using an anti-Copper/Zinc (Cu/Zn) SOD antibody showed a high SOD activity and Cu/Zn SOD protein concentration during early spermatogenesis. Immunohistochemistry showed a strong expression for Cu/Zn SOD in spermatogonia but weak expression in advanced-stage germ cells. Zn deficiency reduced activity of the recombinant eel Cu/Zn SOD protein. Cu/Zn SOD siRNA decreased Cu/Zn SOD expression in spermatogonia and led to increased oxidative damage.

Conclusions/Significance

These data indicate that the presence of high levels of Cu/Zn SOD and Zn render spermatogonia resistant to ROS, and consequently protected from oxidative stress. These findings provide the biochemical basis for the high tolerance of spermatogonia to oxidative stress.  相似文献   

13.

Key message

Seed weight QTL identified in different populations were synthesized into consensus QTL which were shown to harbor candidate genes by in silico mapping. Allelic variation inferred would be useful in breeding B. juncea lines with high seed weight.

Abstract

Seed weight is an important yield influencing trait in oilseed Brassicas and is a multigenic trait. Among the oilseed Brassicas, Brassica juncea harbors the maximum phenotypic variation wherein thousand seed weight varies from around 2.0 g to more than 7.0 g. In this study, we have undertaken quantitative trait locus/quantitative trait loci (QTL) analysis of seed weight in B. juncea using four bi-parental doubled-haploid populations. These four populations were derived from six lines (three Indian and three east European lines) with parental phenotypic values for thousand seed weight ranging from 2.0 to 7.6 g in different environments. Multi-environment QTL analysis of the four populations identified a total of 65 QTL ranging from 10 to 25 in each population. Meta-analysis of these component QTL of the four populations identified six ‘consensus’ QTL (C-QTL) in A3, A7, A10 and B3 by merging 33 of the 65 component Tsw QTL from different bi-parental populations. Allelic diversity analysis of these six C-QTL showed that Indian lines, Pusajaikisan and Varuna, hold the most positive allele in all the six C-QTL. In silico mapping of candidate genes with the consensus QTL localized 11 genes known to influence seed weight in Arabidopsis thaliana and also showed conserved crucifer blocks harboring seed weight QTL between the A subgenomes of B. juncea and B. rapa. These findings pave the way for a better understanding of the genetics of seed weight in the oilseed crop B. juncea and reveal the scope available for improvement of seed weight through marker-assisted breeding.
  相似文献   

14.

Background

Zinc deficiency has been recognized as an important factor affecting both human health and crop production. Rice (Oryza sativa) is relevant to both concerns, as it is susceptible to soil Zn deficiency and is a staple food for some of the Zn-deficient human population. Improving the processes by which Zn moves from the soil into the plant and eventually into the edible part of the grain has the potential to mitigate problems associated with Zn deficiency in crops and humans. This review article focuses on soil- and plant-related processes affecting Zn chemistry in rice-grown soils and Zn uptake and transport in a rice plant.

Scope

This review covers advances in soil chemistry regarding the reasons for inconsistent Zn deficiency in rice soils and the limitations of soil test methods for predicting Zn response for rice. We then review advances in plant physiology related to root Zn uptake and internal Zn distribution mechanisms in rice and explore interactions between specific root processes and the soil chemistry of particular environments. We aim to provide an overview of the soil science research for plant scientists and vice versa, in order to promote and facilitate future interdisciplinary collaborations.

Conclusions

Priority research areas to fill in knowledge gaps are: 1) improving our ability to predict Zn deficiency in rice soils, 2) understanding the relationship between Zn-deficiency tolerance mechanisms and grain Zn accumulation, 3) exploring the effectiveness of root Zn uptake mechanisms in contrasting soil environments.  相似文献   

15.

Key message

Using combined linkage and association mapping, 26 stable QTL and six stable SNPs were detected across multiple environments for eight ear and grain morphological traits in maize. One QTL, PKS2, might play an important role in maize yield improvement.

Abstract

In the present study, one bi-parental population and an association panel were used to identify quantitative trait loci (QTL) for eight ear and grain morphological traits. A total of 108 QTL related to these traits were detected across four environments using an ultra-high density bin map constructed using recombinant inbred lines (RILs) derived from a cross between Ye478 and Qi319, and 26 QTL were identified in more than two environments. Furthermore, 64 single nucleotide polymorphisms (SNPs) were found to be significantly associated with the eight ear and grain morphological traits (?log10(P)?>?4) in an association panel of 240 maize inbred lines. Combining the two mapping populations, a total of 17 pleiotropic QTL/SNPs (pQTL/SNPs) were associated with various traits across multiple environments. PKS2, a stable locus influencing kernel shape identified on chromosome 2 in a genome-wide association study (GWAS), was within the QTL confidence interval defined by the RILs. The candidate region harbored a short 13-Kb LD block encompassing four SNPs (SYN11386, PHM14783.16, SYN11392, and SYN11378). In the association panel, 13 lines derived from the hybrid PI78599 possessed the same allele as Qi319 at the PHM14783.16 (GG) locus, with an average value of 0.21 for KS, significantly lower than that of the 34 lines derived from Ye478 that carried a different allele (0.25, P?<?0.05). Therefore, further fine mapping of PKS2 will provide valuable information for understanding the genetic components of grain yield and improving molecular marker-assisted selection (MAS) in maize.
  相似文献   

16.
17.

Key message

We report malt quality QTLs relevant to breeding with greater precision than previous mapping studies. The distribution of favorable alleles suggests strategies for marker-assisted breeding and germplasm exchange.

Abstract

This study leverages the breeding data of 1,862 barley breeding lines evaluated in 97 field trials for genome-wide association study of malting quality traits in barley. The mapping panel consisted of six-row and two-row advanced breeding lines from eight breeding populations established at six public breeding programs across the United States. A total of 4,976 grain samples were subjected to micro-malting analysis and mapping of nine quality traits was conducted with 3,072 SNP markers distributed throughout the genome. Association mapping was performed for individual breeding populations and for combined six-row and two-row populations. Only 16 % of the QTL we report here had been detected in prior bi-parental mapping studies. Comparison of the analyses of the combined two-row and six-row panels identified only two QTL regions that were common to both. In total, 108 and 107 significant marker-trait associations were identified in all six-row and all two-row breeding programs, respectively. A total of 102 and 65 marker-trait associations were specific to individual six-row and two-row breeding programs, respectively indicating that most marker-trait associations were breeding population specific. Combining datasets from different breeding program resulted in both the loss of some QTL that were apparent in the analyses of individual programs and the discovery of new QTL not identified in individual programs. This suggests that simply increasing sample size by pooling samples with different breeding history does not necessarily increase the power to detect associations. The genetic architecture of malting quality and the distribution of favorable alleles suggest strategies for marker-assisted selection and germplasm exchange.
  相似文献   

18.

Key message

Association mapping of drought-related traits in barley was used to increase the density of existing QTL maps without recreating mapping populations.

Abstract

We used 109 spring barley genotypes exhibiting high or low drought tolerance to elucidate the associations between diversity array technology sequencing (DArTseq) and single nucleotide polymorphism (SNP) markers and various physiological parameters related to plant responses to drought conditions. The study was performed in controlled conditions (growth chambers), drought tolerance was phenotyped in the four-leaf seedlings. We identified 58 associations including 34 new markers (i.e., 16 DArTseq and 18 SNP markers). The results for three markers were consistent with the data obtained in an earlier traditional biparental QTL mapping study. The regions neighboring markers on linkage group 2H contained the highest number of significant marker–trait associations. Five markers related to the photosynthetic activity of photosystem II were detected on chromosome 4H. The lowest number of associations were observed for the sequences neighboring DArT markers on linkage group 6H. A chromosome 3H region related to water use efficiency and net photosynthesis rate in both biparental QTL, and association study, may be particularly valuable, as these parameters correspond to the ability of plants to remain highly productive under water deficit stress. Our findings confirm that association mapping can increase the density of existing QTL maps without recreating mapping populations.
  相似文献   

19.

Key message

QTL mapping in F 2 population [ V. luteola × V. marina subsp. oblonga ] revealed that the salt tolerance in V. marina subsp. oblonga is controlled by a single major QTL.

Abstract

The habitats of beach cowpea (Vigna marina) are sandy beaches in tropical and subtropical regions. As a species that grows closest to the sea, it has potential to be a gene source for breeding salt-tolerant crops. We reported here for the first time, quantitative trait loci (QTLs) mapping for salt tolerance in V. marina. A genetic linkage map was constructed from an F2 population of 120 plants derived from an interspecific cross between V. luteola and V. marina subsp. oblonga. The map comprised 150 SSR markers. The markers were clustered into 11 linkage groups spanning 777.6 cM in length with a mean distance between the adjacent markers of 5.59 cM. The F2:3 population was evaluated for salt tolerance under hydroponic conditions at the seedling and developmental stages. Segregation analysis indicated that salt tolerance in V. marina is controlled by a few genes. Multiple interval mapping consistently identified one major QTL which can explain about 50 % of phenotypic variance. The flanking markers may facilitate transfer of the salt tolerance allele from V. marina subsp. oblonga into related Vigna crops. The QTL for domestication-related traits from V. marina are also discussed.  相似文献   

20.

Background

Zinc (Zn) biofortification through foliar Zn application is an attractive strategy to reduce human Zn deficiency. However, little is known about the biofortification efficiency and bioavailability of rice grain from different forms of foliar Zn fertilizers.

Methodology/Principal Findings

Four different Zn forms were applied as a foliar treatment among three rice cultivars under field trial. Zinc bioavailability was assessed by in vitro digestion/Caco-2 cell model. Foliar Zn fertilization was an effective agronomic practice to promote grain Zn concentration and Zn bioavailability among three rice cultivars, especially, in case of Zn-amino acid and ZnSO4. On average, Zn-amino acid and ZnSO4 increased Zn concentration in polished rice up to 24.04% and 22.47%, respectively. On average, Zn-amino acid and ZnSO4 increased Zn bioavailability in polished rice up to 68.37% and 64.43%, respectively. The effectiveness of foliar applied Zn-amino acid and ZnSO4 were higher than Zn-EDTA and Zn-Citrate on improvement of Zn concentration, and reduction of phytic acid, as a results higher accumulation of bioavailable Zn in polished rice. Moreover, foliar Zn application could maintain grain yield, the protein and minerals (Fe and Ca) quality of the polished rice.

Conclusions

Foliar application of Zn in rice offers a practical and useful approach to improve bioavailable Zn in polished rice. According to current study, Zn-amino acid and ZnSO4 are recommended as excellent foliar Zn forms to ongoing agronomic biofortification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号