首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Key message

QTL analysis revealed 11 QTL underlying flowering time and fruit size variation in the semi-wild Xishuangbanna cucumber, of which, FT6.2 and FS5.2 played the most important roles in determining photoperiod-dependent flowering time and round-fruit shape, respectively.

Abstract

Flowering time and fruit size are two important traits in domestication and diversifying selection in cucumber, but their genetic basis is not well understood. Here we reported QTL mapping results on flowering time and fruit size with F2 and F2:3 segregating populations derived from the cross between WI7200, a small fruited, early flowering primitive cultivated cucumber and WI7167, a round-fruited, later flowering semi-wild Xishuangbanna (XIS) cucumber. A linkage map with 267 microsatellite marker loci was developed with 138 F2 plants. Phenotypic data of male and female flowering time, fruit length and diameter and three other traits (mature fruit weight and number, and seedling hypocotyl length) were collected in multiple environments. Three flowering time QTL, FT1.1, FT5.1 and FT6.2 were identified, in which FT6.2 played the most important role in conferring less photoperiod sensitive early flowering during domestication whereas FT1.1 seemed more influential in regulating flowering time within the cultivated cucumber. Eight consensus fruit size QTL distributed in 7 chromosomes were detected, each of which contributed to both longitudinal and radial growth in cucumber fruit development. Among them, FS5.2 on chromosome 5 exhibited the largest effect on the determination of round fruit shape that was characteristic of the WI7167 XIS cucumber. Possible roles of these flowering time and fruit size QTL in domestication of cucumber and crop evolution of the semi-wild XIS cucumber, as well as the genetic basis of round fruit shape in cucumber are discussed.
  相似文献   

2.

Key message

QTL analysis revealed two interacting loci, FS1.2 and FS2.1, underlying round fruit shape in WI7239 cucumber; CsSUN , a homolog of tomato fruit shape gene SUN , was a candidate for FS1.2.

Abstract

Fruit size is an important quality and yield trait in cucumber, but its genetic basis remains poorly understood. Here we reported QTL mapping results on fruit size with segregating populations derived from the cross between WI7238 (long fruit) and WI7239 (round fruit) inbred cucumber lines. Phenotypic data of fruit length and diameter were collected at anthesis, immature and mature fruit stages in four environments. Ten major-effect QTL were detected for six traits; synthesis of information from these QTL supported two genes, FS1.2 and FS2.1, underlying fruit size variation in the examined populations. Under the two-gene model, deviation from expected segregation ratio in fruit length and diameter among segregating populations was observed, which could be explained mainly by the interactions between FS1.2 and FS2.1, and segregation distortion in the FS2.1 region. Genome-wide candidate gene search identified CsSUN, a homolog of the tomato fruit shape gene SUN, as the candidate for FS1.2. The round-fruited WI7239 had a 161-bp deletion in the first exon of CsSUN, and its expression in WI7239 was significantly lower than that in WI7238. A marker derived from this deletion was mapped at the peak location of FS1.2 in QTL analysis. Comparative analysis suggested the melon gene CmSUN-14, a homolog of CsSUN as a candidate of the fl2/fd2/fw2 QTL in melon. This study revealed the unique genetic architecture of round fruit shape in WI7239 cucumber. It also highlights the power of QTL analysis for traits with a simple genetic basis but their expression is complicated by other factors.
  相似文献   

3.

Key message

Using newly developed euchromatin-derived genomic SSR markers and a flexible Bayesian mapping method, 13 significant agricultural QTLs were identified in a segregating population derived from a four-way cross of tomato.

Abstract

So far, many QTL mapping studies in tomato have been performed for progeny obtained from crosses between two genetically distant parents, e.g., domesticated tomatoes and wild relatives. However, QTL information of quantitative traits related to yield (e.g., flower or fruit number, and total or average weight of fruits) in such intercross populations would be of limited use for breeding commercial tomato cultivars because individuals in the populations have specific genetic backgrounds underlying extremely different phenotypes between the parents such as large fruit in domesticated tomatoes and small fruit in wild relatives, which may not be reflective of the genetic variation in tomato breeding populations. In this study, we constructed F2 population derived from a cross between two commercial F1 cultivars in tomato to extract QTL information practical for tomato breeding. This cross corresponded to a four-way cross, because the four parental lines of the two F1 cultivars were considered to be the founders. We developed 2510 new expressed sequence tag (EST)-based (euchromatin-derived) genomic SSR markers and selected 262 markers from these new SSR markers and publicly available SSR markers to construct a linkage map. QTL analysis for ten agricultural traits of tomato was performed based on the phenotypes and marker genotypes of F2 plants using a flexible Bayesian method. As results, 13 QTL regions were detected for six traits by the Bayesian method developed in this study.
  相似文献   

4.

Background and Aims

The Asian genus Vigna, to which four cultivated species (rice bean, azuki bean, mung bean and black gram) belong, is suitable for comparative genomics. The aims were to construct a genetic linkage map of rice bean, to identify the genomic regions associated with domestication in rice bean, and to compare these regions with those in azuki bean.

Methods

A genetic linkage map was constructed by using simple sequence repeat and amplified fragment length polymorphism markers in the BC1F1 population derived from a cross between cultivated and wild rice bean. Using this map, 31 domestication-related traits were dissected into quantitative trait loci (QTLs). The genetic linkage map and QTLs of rice bean were compared with those of azuki bean.

Key Results

A total of 326 markers converged into 11 linkage groups (LGs), corresponding to the haploid number of rice bean chromosomes. The domestication-related traits in rice bean associated with a few major QTLs distributed as clusters on LGs 2, 4 and 7. A high level of co-linearity in marker order between the rice bean and azuki bean linkage maps was observed. Major QTLs in rice bean were found on LG4, whereas major QTLs in azuki bean were found on LG9.

Conclusions

This is the first report of a genetic linkage map and QTLs for domestication-related traits in rice bean. The inheritance of domestication-related traits was so simple that a few major QTLs explained the phenotypic variation between cultivated and wild rice bean. The high level of genomic synteny between rice bean and azuki bean facilitates QTL comparison between species. These results provide a genetic foundation for improvement of rice bean; interchange of major QTLs between rice bean and azuki bean might be useful for broadening the genetic variation of both species.  相似文献   

5.

Key message

Simultaneous RNAi silencing of the FAD2 and FAE1 genes in the wild species Lepidium campestre improved the oil quality with 80 % oleic acid content compared to 11 % in wildtype.

Abstract

Field cress (Lepidium campestre) is a wild biennial species within the Brassicaceae family with desirable agronomic traits, thus being a good candidate for domestication into a new oilseed and catch crop. However, it has agronomic traits that need to be improved before it can become an economically viable species. One of such traits is the seed oil composition, which is not desirable either for food use or for industrial applications. In this study, we have, through metabolic engineering, altered the seed oil composition in field cress into a premium oil for food processing, industrial, or chemical industrial applications. Through seed-specific RNAi silencing of the field cress fatty acid desaturase 2 (FAD2) and fatty acid elongase 1 (FAE1) genes, we have obtained transgenic lines with an oleic acid content increased from 11 % in the wildtype to over 80 %. Moreover, the oxidatively unstable linolenic acid was decreased from 40.4 to 2.6 %, and the unhealthy erucic acid was reduced from 20.3 to 0.1 %. The high oleic acid trait has been kept stable for three generations. This shows the possibility to use field cress as a platform for genetic engineering of oil compositions tailor-made for its end uses.
  相似文献   

6.

Key message

Agronomical characterization of a RIL population for fruit mineral contents allowed for the identification of QTL controlling these fruit quality traits, flanked by co-dominant markers useful for marker-assisted breeding.

Abstract

Tomato quality is a multi-variant attribute directly depending on fruit chemical composition, which in turn determines the benefits of tomato consumption for human health. Commercially available tomato varieties possess limited variability in fruit quality traits. Wild species, such as Solanum pimpinellifolium, could provide different nutritional advantages and can be used for tomato breeding to improve overall fruit quality. Determining the genetic basis of the inheritance of all the traits that contribute to tomato fruit quality will increase the efficiency of the breeding program necessary to take advantage of the wild species variability. A high-density linkage map has been constructed from a recombinant inbred line (RIL) population derived from a cross between tomato Solanum lycopersicum and the wild-relative species S. pimpinellifolium. The RIL population was evaluated for fruit mineral contents during three consecutive growing seasons. The data obtained allowed for the identification of main QTL and novel epistatic interaction among QTL controlling fruit mineral contents on the basis of a multiple-environment analysis. Most of the QTL were flanked by candidate genes providing valuable information for both tomato breeding for new varieties with novel nutritional properties and the starting point to identify the genes underlying these QTL, which will help to reveal the genetic basis of tomato fruit nutritional properties.
  相似文献   

7.

Key message

We discovered an unexpected mode of bimodal distribution of stable and plastic traits, which was consistent for homologous traits of 32 varieties of seven species both in well-irrigated fields and dry conditions.

Abstract

We challenged archived genetic mapping data for 36 fruit, seed, flower and yield traits in tomato and found an unexpected bimodal distribution in one measure of trait variability, the mean coefficient of variation, with some traits being consistently more variable than others. To determine the degree of conservation of this distribution among higher plants, we compared 18 homologous phenotypes, including yield and seed production, across different crop species grown in a common ‘crop garden’ experiment. The set included 32 varieties of tomato, eggplant, pepper, melon, watermelon, sunflower and maize. Estimates of canalization were obtained using a ‘canalization replication’ experimental design that generated multiple estimates of the coefficient of variation of traits, as well as their reaction norms in optimal and water-stressed field plots. A common pattern of bimodal distribution of stable and plastic traits was observed for all the varieties and for a wild weed (Solanum nigrum). We propose that canalization profiles of traits in a variety of taxa were ancestrally selected to maximize adaptation and reproductive success.
  相似文献   

8.

Background and Aims

The genetics of domestication of yardlong bean [Vigna unguiculata (L.) Walp. ssp. unguiculata cv.-gr. sesquipedalis] is of particular interest because the genome of this legume has experienced divergent domestication. Initially, cowpea was domesticated from wild cowpea in Africa; in Asia a vegetable form of cowpea, yardlong bean, subsequently evolved from cowpea. Information on the genetics of domestication-related traits would be useful for yardlong bean and cowpea breeding programmes, as well as comparative genome study among members of the genus Vigna. The objectives of this study were to identify quantitative trait loci (QTLs) for domestication-related traits in yardlong bean and compare them with previously reported QTLs in closely related Vigna.

Methods

Two linkage maps were developed from BC1F1 and F2 populations from the cross between yardlong bean (V. unguiculata ssp. unguiculata cv.-gr. sesquipedalis) accession JP81610 and wild cowpea (V. unguiculata ssp. unguiculata var. spontanea) accession TVnu457. Using these linkage maps, QTLs for 24 domestication-related traits were analysed and mapped. QTLs were detected for traits related to seed, pod, stem and leaf.

Key Results

Most traits were controlled by between one and 11 QTLs. QTLs for domestication-related traits show co-location on several narrow genomic regions on almost all linkage groups (LGs), but especially on LGs 3, 7, 8 and 11. Major QTLs for sizes of seed, pod, stem and leaf were principally located on LG7. Pleiotropy or close linkage of genes for the traits is suggested in these chromosome regions.

Conclusions

This is the first report of QTLs for domestication-related traits in yardlong bean. The results provide a foundation for marker-assisted selection of domestication-related QTLs in yardlong bean and enhance understanding of domestication in the genus Vigna.  相似文献   

9.
Awn is one of important traits during rice domestication. To understand the development of rice awn and the roles it played in rice domestication, we preliminary mapped a major QTL An-3 for awn development using chromosome segment substitution line CSSL138 developed by introgressed genomic fragments of long-awned Guangxi common wild rice (GXCWR, Oryza rufipogon Griff.) into genetic background of short-awned indica cultivar 93–11. An-3 was then fine mapped to a 7-kb region of chromosome 8. An epidermal patterning factor-like protein gene was identified as the single candidate gene corresponding to this QTL. An-3 was showed to be an allele of RAE2 and GAD1, and negatively regulated 1000-grains weight, grain length, and length–width ratio. Comparing with the coding sequences of An-3 from CSSL138, a 2- and 4-bp frame-shift deletions in the second exon were identified in 93–11 and Nipponbare, respectively. Taken together, our results provide valuable natural variation in the alleles of An-3 between common wild rice and cultivated rice, which will be helpful in clarifying the mechanism of awn development and promoting the application of an-3 in genetic improvement of rice yield traits.  相似文献   

10.

Key message

A novel QTL cluster for appearance quality on Chr07 was identified using reciprocal introgression populations in different locations in China. Two secondary F 2 populations validated QTL with significant effect on appearance quality.

Abstract

Appearance quality (AQ) is the main determinants of market value of rice. Identification of QTL affecting AQ is the prerequisite for efficient improvement of AQ through marker-assisted selection (MAS). Two sets of reciprocal introgression lines derived from indica Minghui 63 and japonica 02428 were used to dissect the stability of QTL affecting five AQ traits, including grain length, grain width, length to width ratio, percentage of grains with chalkiness, and degree of endosperm chalkiness using 4568 bin genotype produced from 58,000 SNPs across five different environments. A total of 41 and 30 main-effect QTL were identified in MH63 and 02428 backgrounds, respectively. Among them, 9 background-independent QTL (BI-QTL) were found. There were also 13 and 10 stable-expressed QTL (SE-QTL) across at least two environments in MH63 and 02428 backgrounds, respectively. Two important BI- and SE-QTL regions (BISERs) including BISER-I harboring qPGWC5, qDEC5, qGW5.1, and qLWR5 on chromosome 5 and BISER-II harboring qGL7, qLWR7, qPGWC7, and qDEC7 on chromosome 7 were identified. The BISER-II was newly reported and validated by two secondary F2 populations in the reciprocal backgrounds. Among 59 epistatic QTL (E-QTL) detected in this study, there were only four SE- but no BI-E-QTL detected in different environments, indicating that genetic background has stronger effect on AQ traits than the environmental factors, especially for percentage of grains with chalkiness (PGWC) and degree of endosperm chalkiness (DEC) with lower heritability. BISER-I and BISER-II harboring many BI- and SE-QTL with favorable alleles from slender grain rice are much important for improvement of rice AQ by MAS.
  相似文献   

11.
12.

Key message

QTL for tan spot resistance were mapped on wheat chromosomes 1A and 2A. Lines were developed with resistance alleles at these loci and at the tsn1 locus on chromosome 5B. These lines expressed significantly higher resistance than the parent with tsn1 only.

Abstract

Tan spot (syn. yellow spot and yellow leaf spot) caused by Pyrenophora tritici-repentis is an important foliar disease of wheat in Australia. Few resistance genes have been mapped in Australian germplasm and only one, known as tsn1 located on chromosome 5B, is known in Australian breeding programs. This gene confers insensitivity to the fungal effector ToxA. The main aim of this study was to map novel resistance loci in two populations: Calingiri/Wyalkatchem, which is fixed for the ToxA-insensitivity allele tsn1, and IGW2574/Annuello, which is fixed for the ToxA-sensitivity allele Tsn1. A second aim was to combine new loci with tsn1 to develop lines with improved resistance. Tan spot severity was evaluated at various growth stages and in multiple environments. Symptom severity traits exhibited quantitative variation. The most significant quantitative trait loci (QTL) were detected on chromosomes 2A and 1A. The QTL on 2A explained up to 29.2% of the genotypic variation in the Calingiri/Wyalkatchem population with the resistance allele contributed by Wyalkatchem. The QTL on 1A explained up to 28.1% of the genotypic variation in the IGW2574/Annuello population with the resistance allele contributed by Annuello. The resistance alleles at both QTL were successfully combined with tsn1 to develop lines that express significantly better resistance at both seedling and adult plant stages than Calingiri which has tsn1 only.
  相似文献   

13.

Key message

We report the first study on the unique allele from wild barley that can improve waterlogging tolerance in cultivated barley with a substantially higher contribution to aerenchyma formation.

Abstract

Waterlogging is one of the major abiotic stresses that dramatically reduce barley crop yield. Direct selection on waterlogging tolerance in the field is less effective due to its viability to environment. The most effective way of selection is to choose traits that make significant contributions to the overall tolerance and are easy to score. Aerenchyma formation under waterlogging stress is one of the most effective mechanisms to provide adequate oxygen supply and overcome stress-induced hypoxia imposed on plants. In this study, a new allele for aerenchyma formation was identified from a wild barley accession TAM407227 on chromosome 4H. Compared to that identified in cultivated barley, this allele not only produced a greater proportion of aerenchyma but made a greater contribution to the overall waterlogging tolerance. The QTL explained 76.8% of phenotypic variance in aerenchyma formation with a LOD value of 51.4. Markers co-segregating with the trait were identified and can be effectively used in marker assisted selection.
  相似文献   

14.

Key message

QTLs and candidate gene markers associated with leaf morphological and color traits were identified in two immortalized populations of Brassica rapa, which will provide genetic information for marker-assisted breeding.

Abstract

Brassica rapa is an important leafy vegetable consumed worldwide and morphology is a key character for its breeding. To enhance genetic control, quantitative trait loci (QTLs) for leaf color and plant architecture were identified using two immortalized populations with replications of 2 and 4 years. Overall, 158 and 80 QTLs associated with 23 and 14 traits were detected in the DH and RIL populations, respectively. Among them, 23 common robust-QTLs belonging to 12 traits were detected in common loci over the replications. Through comparative analysis, five crucifer genetic blocks corresponding to morphology trait (R, J&U, F and E) and color trait (F, E) were identified in three major linkage groups (A2, A3 and A7). These might be key conserved genomic regions involved with the respective traits. Through synteny analysis with Arabidopsis, 64 candidate genes involved in chlorophyll biosynthesis, cell proliferation and elongation were co-localized within QTL intervals. Among them, SCO3, ABI3, FLU, HCF153, HEMB1, CAB3 were mapped within QTLs for leaf color; and CYCD3;1, CYCB2;4, AN3, ULT1 and ANT were co-localized in QTL regions for leaf size. These robust QTLs and their candidate genes provide useful information for further research into leaf architecture with crop breeding.
  相似文献   

15.

Background and Aims

Elettaria cardamomum, a highly priced spice, is native to the Western Ghats of South India. Wild populations still occur in isolated patches in their natural habitats; however, much of today''s commercial product comes from cultivated sources. There is no information on domestication-related traits of this species; the main objective of this study was to compare wild and cultivated populations of cardamom in terms of vegetative and reproductive features in order to identify domestication syndromes and to examine whether the two populations have developed reproductive barriers.

Methods

Two wild populations and five cultivated plantations were used for the present study. Vegetative and floral traits, flowering phenology, pollination biology and breeding systems of wild and cultivated populations were compared. Effective pollinators amongst floral visitors were identified by confirming pollen transfer as well as by fruit set following their visit to virgin flowers. Manual pollinations were carried out in order to study the breeding systems of the two populations and reproductive barriers, if any, between them.

Key Results

Several productive traits including the number of branches, number of inflorescences, and total number of flowers per clump, number of flowers that open each day, the duration of flowering, the length of the flower and the amount of nectar per flower are significantly greater in cultivated cardamom. The principal pollinators in wild cardamom are solitary bees, Megachile sp. and two species of Amegilla, whereas those in cultivated cardamom are the social bees Apis dorsata, A. cerana and Trigona iridipennis. Both the wild and cultivated populations are self-compatible and there are no reproductive barriers between the two populations.

Conclusions

Domestication in cardamom has brought about significant changes in vegetative and reproductive traits and a shift in effective pollinators from native solitary bees to social bees. The shift in pollinators seems to be due to the availability of a large number of flowers for prolonged periods in cultivated cardamom that can attract and sustain social bees, rather than due to co-evolution of the flower and the pollinator.Key words: Elettaria cardamomum, wild cardamom, domestication, Amegilla sp., Apis cerana, Apis dorsata, Megachile sp., pollination efficiency, solitary bees, social bees  相似文献   

16.

Key message

Genetic diversity in elite rye germplasm as well as F 2:3 testcross design enables fast QTL mapping to approach genes controlling grain yield, grain weight, tiller number and heading date in rye hybrids.

Abstract

Winter rye (Secale cereale L.) is a multipurpose cereal crop closely related to wheat, which offers the opportunity for a sustainable production of food and feed and which continues to emerge as a renewable energy source for the production of bioethanol and biomethane. Rye contributes to increase agricultural crop species diversity particularly in Central and Eastern Europe. In contrast to other small grain cereals, knowledge on the genetic architecture of complex inherited, agronomic important traits is yet limited for the outbreeding rye. We have performed a QTL analysis based on a F2:3 design and testcross performance of 258 experimental hybrids in multi-environmental field trials. A genetic linkage map covering 964.9 cM based on SSR, conserved-orthologous set (COS), and mixed-phase dominant DArT markers allowed to describe 22 QTL with significant effects for grain yield, heading date, tiller number, and thousand grain weight across seven environments. Using rye COS markers, orthologous segments for these traits have been identified in the rice genome, which carry cloned and functionally characterized rice genes. The initial genome scan described here together with the existing knowledge on candidate genes provides the basis for subsequent analyses of the genetic and molecular mechanisms underlying agronomic important traits in rye.
  相似文献   

17.

Key message

A repertoire of the genomic regions involved in quantitative resistance to Leptosphaeria maculans in winter oilseed rape was established from combined linkage-based QTL and genome-wide association (GWA) mapping.

Abstract

Linkage-based mapping of quantitative trait loci (QTL) and genome-wide association studies are complementary approaches for deciphering the genomic architecture of complex agronomical traits. In oilseed rape, quantitative resistance to blackleg disease, caused by L. maculans, is highly polygenic and is greatly influenced by the environment. In this study, we took advantage of multi-year data available on three segregating populations derived from the resistant cv Darmor and multi-year data available on oilseed rape panels to obtain a wide overview of the genomic regions involved in quantitative resistance to this pathogen in oilseed rape. Sixteen QTL regions were common to at least two biparental populations, of which nine were the same as previously detected regions in a multi-parental design derived from different resistant parents. Eight regions were significantly associated with quantitative resistance, of which five on A06, A08, A09, C01 and C04 were located within QTL support intervals. Homoeologous Brassica napus genes were found in eight homoeologous QTL regions, which corresponded to 657 pairs of homoeologous genes. Potential candidate genes underlying this quantitative resistance were identified. Genomic predictions and breeding are also discussed, taking into account the highly polygenic nature of this resistance.
  相似文献   

18.

Key message

A novel QTL for grain number, GN4-1, was identified and fine-mapped to an ~ 190-kb region on the long arm of rice chromosome 4.

Abstract

Rice grain yield is primarily determined by three components: number of panicles per plant, grain number per panicle and grain weight. Among these traits, grain number per panicle is the major contributor to grain yield formation and is a crucial trait for yield improvement. In this study, we identified a major quantitative trait locus (QTL) responsible for rice grain number on chromosome 4, designated GN4-1 (a QTL for Grain Number on chromosome 4), using advanced segregating populations derived from the crosses between an elite indica cultivar ‘Zhonghui 8006’ (ZH8006) and a japonica rice ‘Wuyunjing 8’ (WYJ8). GN4-1 was delimited to an ~ 190-kb region on chromosome 4. The genetic effect of GN4-1 was estimated using a pair of near-isogenic lines. The GN4-1 gene from WYJ8 promoted accumulation of cytokinins in the inflorescence and increased grain number per panicle by ~ 17%. More importantly, introduction of the WYJ8 GN4-1 gene into ZH8006 increased grain yield by ~ 14.3 and ~ 11.5% in the experimental plots in 2014 and 2015, respectively. In addition, GN4-1 promoted thickening of the culm and may enhance resistance to lodging. These results demonstrate that GN4-1 is a potentially valuable gene for improvement of yield and lodging resistance in rice breeding.
  相似文献   

19.

Key message

Seed weight QTL identified in different populations were synthesized into consensus QTL which were shown to harbor candidate genes by in silico mapping. Allelic variation inferred would be useful in breeding B. juncea lines with high seed weight.

Abstract

Seed weight is an important yield influencing trait in oilseed Brassicas and is a multigenic trait. Among the oilseed Brassicas, Brassica juncea harbors the maximum phenotypic variation wherein thousand seed weight varies from around 2.0 g to more than 7.0 g. In this study, we have undertaken quantitative trait locus/quantitative trait loci (QTL) analysis of seed weight in B. juncea using four bi-parental doubled-haploid populations. These four populations were derived from six lines (three Indian and three east European lines) with parental phenotypic values for thousand seed weight ranging from 2.0 to 7.6 g in different environments. Multi-environment QTL analysis of the four populations identified a total of 65 QTL ranging from 10 to 25 in each population. Meta-analysis of these component QTL of the four populations identified six ‘consensus’ QTL (C-QTL) in A3, A7, A10 and B3 by merging 33 of the 65 component Tsw QTL from different bi-parental populations. Allelic diversity analysis of these six C-QTL showed that Indian lines, Pusajaikisan and Varuna, hold the most positive allele in all the six C-QTL. In silico mapping of candidate genes with the consensus QTL localized 11 genes known to influence seed weight in Arabidopsis thaliana and also showed conserved crucifer blocks harboring seed weight QTL between the A subgenomes of B. juncea and B. rapa. These findings pave the way for a better understanding of the genetics of seed weight in the oilseed crop B. juncea and reveal the scope available for improvement of seed weight through marker-assisted breeding.
  相似文献   

20.

Key message

Four QTLs and an epistatic interaction were associated with disease severity in response to inoculation with Fusarium oxysporum f. sp. melonis race 1 in a recombinant inbred line population of melon.

Abstract

The USDA Cucumis melo inbred line, MR-1, harbors a wealth of alleles associated with resistance to several major diseases of melon, including powdery mildew, downy mildew, Alternaria leaf blight, and Fusarium wilt. MR-1 was crossed to an Israeli cultivar, Ananas Yok’neam, which is susceptible to all of these diseases, to generate a recombinant inbred line (RIL) population of 172 lines. In this study, the RIL population was genotyped to construct an ultra-dense genetic linkage map with 5663 binned SNPs anchored to the C. melo genome and exhibits the overall high quality of the assembly. The utility of the densely genotyped population was demonstrated through QTL mapping of a well-studied trait, resistance to Fusarium wilt caused by Fusarium oxysporum f. sp. melonis (Fom) race 1. A major QTL co-located with the previously validated resistance gene Fom-2. In addition, three minor QTLs and an epistatic interaction contributing to Fom race 1 resistance were identified. The MR-1 × AY RIL population provides a valuable resource for future QTL mapping studies and marker-assisted selection of disease resistance in melon.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号