首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
V F Zolin  L G Koreneva 《Biofizika》1975,20(2):198-201
The luminescence spectra and solubility of several europium complexes are investigated. The conditions put upon the complex structure for its successful use as a shift reagent are discussed. Some water-soluble europium complexes with pyridoxaliden amino acids are shown to be fit as possible shift reagents.  相似文献   

2.
Zheng Y  Wang Q  Tan C 《Luminescence》2012,27(4):302-306
The imidazole ring unit in both 2‐(2′‐hydroxyphenyl)‐benzimidazole (ligand a) and a europium(III) complex exhibited specific luminescent responses in the presence of fluoride anions. UV‐visible and 1H‐nuclear magnetic resonance spectra showed that the NH bond of the imidazole ring can form a hydrogen bond with added fluoride anions. The detection limits are 5 × 10?6 m for organic ligand and 1.0 × 10?6 m for the europium complex respectively. The response times are less than 3 s. The europium complex exhibits a linear response in a concentration range lower than 1.0 × 10?6 m (Y = ?666.86X + 730.1). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
A new class of antenna chromophores so called ‘tetrazolates’ have not been explored much for lanthanide luminescencent complexes. However, we have already published several articles considering pyridineoxide tetrazolates as sensitizer with lanthanide ions. Although this class of antenna attracted much less attention because of its poor photoluminescence quantum yields (tris‐pyridineoxide tetrazolate europium complex = 13% in solution) we tried and successfully achieved to improve the photoluminescence quantum yields for this particular antenna molecule by replacing coordinated water from the inner coordination sphere of europium ion by introducing phosphine oxides as additional chromophore. In the present article the two bis‐phosphine oxides attach two molecules of tris‐pyridineoxide tetrazolate europium(III) complex which leads to the improvement of the overall molar absorption coefficients as well as photo‐physical properties of the complexes. We found more than two‐fold increase (31% in solution) in photoluminescence quantum yield with one of the coordinated phosphine oxides comparing with that of tris‐pyridineoxide tetrazolate europium(III) complex.  相似文献   

4.
A nonisotopic immunoassay has been developed based on a sensitive detection of europium (III) in water solution using time-resolved fluorometry. The europium label is bound to the antibody with EDTA derivatives, either diazophenyl-EDTA-Eu or isothiocyanatophenyl-EDTA-Eu. After the immunometric assay has been completed the europium is preferably dissociated from the antibody at low pH and measured by time-resolved fluorescence in a micellar solution containing Triton X-100, β-diketone, and a Lewis base. The detergent solubilizes the chelating compounds in the solution and excludes water from the fluorescent ligand-europium complex. Europium concentrations as low as 5·10?14m were measured using a 1-s counting time. The sensitivity of the immunoassay of rabbit IgG used as a model system was 25 pg/ml (6 pg/assay).  相似文献   

5.
We describe complexes of ruthenium and europium with rigid, 5′-6-locked 1,10-phenanthroline-containing nucleosides. Both nucleosides were synthesized from condensation of 5-amino-2′-deoxycytidine with the corresponding diketone. The ruthenium nucleoside displayed fluorescence characteristic of polypyridine ruthenium complexes with a maximum at 616 nm and a quantum yield of 0.011. Binding of europium to the 1,10-phenanthroline-2,9-diacid moiety of the lanthanide binding nucleoside showed formation of a 1:1 complex with emission at 570–630 nm, whose emission was enhanced by addition of two phenanthroline ligands. The lanthanide-binding nucleoside was incorporated into DNA oligonucleotides and shown to selectively bind one equivalent of europium ions.  相似文献   

6.
Improvements and extended applications of time-resolved delayed luminescence imaging microscopy (TR-DLIM) in cell biology are described. The emission properties of europium ion complexed to a fluorescent chelating group capable of labeling proteins are exploited to provide high contrast images of biotin labeled ligands through detection of the delayed emission. The streptavidin-based macromolecular complex (SBMC) employs streptavidin cross-linked to thyroglobulin multiply labeled with the europium-fluorescent chelate. The fluorescent chelate is efficiently excited with 340-nm light, after which it sensitizes europium ion emission at 612 nm hundreds of microseconds later. The SBMC complex has a high quantum yield orders of magnitude higher than that of eosin, a commonly used delayed luminescent probe, and can be readily seen by the naked eye, even in specimens double-labeled with prompt fluorescent probes. Unlike triplet-state phosphorescent probes, sensitized europium ion emission is insensitive to photobleaching and quenching by molecular oxygen; these properties have been exploited to obtain delayed luminescence images of living cells in aerated medium thus complementing imaging studies using prompt fluorescent probes. Since TR-DLIM has the unique property of rejecting enormous signals that originate from scattered light, autofluorescence, and prompt fluorescence it has been possible to resolve double emission images of living amoeba cells containing an intensely stained lucifer yellow in pinocytosed vesicles and membrane surface-bound SBMC-labeled biotinylated concanavalin A. Images of fixed cells represented in terms of the time decay of the sensitized emission show the lifetime of the europium ion emission is sensitive to the environment in which it is found.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Apparent composite stability constants have been determined at pH 7.0 and 8.0 for the interaction of Eu(III) with ADP and ATP in 0.1 M N-ethylmorpholine buffer at 20°C. The values were obtained using a competitive spectrophotometric technique with 8-hydroxyquinoline as the competing ligand and experiments were performed in the presence of relatively low concentration of europium so as to avoid precipitation of hydrolysed species of the metal ion. The data have been used, together with an assumed hydrolysis constant for europium of 10?8 M, to calculate that the stability constant for the Eu-ADP0 complex is about 106 M?1. The results were not sufficiently accurate to determine the stability constant of the Eu(OH)-ADP? complex.Values are also reported for the stability constants and molar extinction coefficients of the complexes formed by the reaction of europium and magnesium with 8-hydroxyquinoline.  相似文献   

8.
Zhang H  Yu H  Ren J  Qu X 《FEBS letters》2006,580(15):3726-3730
Different DNA selectivity was found for the newly synthesized europium-l-valine complex. Unexpected DNA and RNA selection results showed that europium-l-valine complex can cause single-stranded polydA and polyrA to self-structure. The sigmoidal melting curve profiles indicate the transition is cooperative, similar to the cooperative melting of a duplex DNA. This is different from another europium amino acid complex, europium-l-aspartic acid complex which can induce B-Z transition under the low salt condition. To our knowledge, there is no report to show that a metal-amino acid complex can cause the self-structuring of single-stranded DNA and RNA.  相似文献   

9.
We synthesized a new europium complex [Eu(ecbpd)3(Phen)] with bis(β‐diketone) ligand containing a carbazole group, in which ecbpd and Phen are dehydro‐3,3′‐(9‐ethyl‐9H‐carbazole‐3,6‐diyl)bis(1‐phenylpropane‐1,3‐dione) and 1,10‐phenanthroline, respectively. Its UV/vis and photoluminescent spectra, quantum yield, luminescence lifetime, electrochemistry, thermal stability and electroluminescent performances were studied. This europium complex showed low efficiency luminescence, which is probably due to the mismatching energy levels of its ligand and Eu3+, as well as the double Eu3+ core resonance.  相似文献   

10.
New bis(acridine-9-carboxylate)-nitro-europium(III) dihydrate complex was synthesized and characterized. In vivo anti-angiogenic activities of bis(acridine-9-carboxylate)-nitro-europium(III) dihydrate complex against Ehrlich ascites carcinoma (EAC) cells are described. The newly synthesized complex resulted in inhibition of proliferation of EAC cells and ascites formation. The anti-tumor effect was found to be through anti-angiogenic activity as evident by the reduction of microvessel density in EAC solid tumors. The anti-angiogenic effect is mediated through down-regulation of VEGF receptor type-2 (Flk-1). The complex was also found to significantly increase the level of caspase-3 in laboratory animals compared to the acridine ligand and to the control group. This was also consistent with the DNA fragmentation detected by capillary electrophoresis that proved the apoptotic effect of the new complex. Our complex exhibited anti-angiogenic and apoptotic activity in vivo, a thing that makes it a potential effective chemotherapeutic agent. The interaction of calf thymus DNA (ct-DNA) with bis(acridine-9-carboxylate)-nitro-europium(III) dihydrate complex has been investigated using fluorescence technique. A competitive experiment of the europium(III)-acridine complex with ethidium bromide (EB) to bind DNA revealed that interaction between the europium(III)-acridine and DNA was via intercalation. The interaction of the synthesized complex with tyrosine kinases was also studied using molecular docking simulation to further substantiate its mode of action.  相似文献   

11.
Labeling proteins with long-lifetime emitting lanthanide (III) chelate reporters enables sensitive, time-resolved luminescence bioaffinity assays. Heterodimers of trimethoprim (TMP) covalently linked to various cs124-sensitized, polyaminocarboxylate chelates stably retain lanthanide ions and exhibit quantum yields of europium emission up to 20% in water. A time-resolved, luminescence resonance energy transfer (LRET) assay showed that TMP-polyaminocarboxylates bind to Escherichia coli dihydrofolate reductase (eDHFR) fusion proteins with nanomolar affinity in purified solutions and in bacterial lysates. The ability to selectively impart terbium or europium luminescence to fusion proteins in complex physiological mixtures bypasses the need for specific antibodies and simplifies sample preparation.  相似文献   

12.
Low‐density lipoprotein (LDL) is known as ‘bad’ cholesterol. If too much LDL circulates in the blood it can be retained in the walls of the arteries, causing atherosclerosis. In this paper we showed an alternative method to quantify LDL using the europium tetracycline (EuTc) indicator. The optical properties of the EuTc complex were investigated in aqueous solutions containing LDL. An enhancement was observed of the europium luminescence in the solutions with LDL compared those without the lipoprotein. A method to quantify the amount of LDL in a sample, based on EuTc enhanced luminescence, is proposed. The enhancement mechanism is also discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Investigating the action of the fluorinated europium complex Eu(fod)3 on lipid membranes we found that the complex facilitates the ion transfer through the membrane. Electric measurements on planar lipid membranes showed that the membrane conductivity increases considerably by insertion of the complex into the membrane. The increase in the conductivity was only obtained if both layers of the membrane were modified with the complex. 1H NMR spectroscopic studies using DOPC liposomes gave information about the location of the modifier complex in the lipid membrane. From chemical shift effects we concluded that the complex resides in the choline head group region of the membrane and also in the membrane interior near the -C =C- lipid double bond, but not in the center of the bilayer. For understanding of the mentioned conductivity effect we assume that the europium complex induces defects of yet unknown structure in the lipid matrix which provide paths for the ion transfer through the membrane. As appropriate measurements revealed, these paths seem to conduct cations predominantly. Investigating the current voltage behavior of the modified lipid membranes in dependence on the ion concentration we obtained different shaped current-voltage curves. Calculation showed that a model with only one energy barrier inside the membrane is unable to describe these curves kinetically. However, by assuming two energy barriers--one barrier in each membrane lipid layer--the observed curve can be described satisfactorily.  相似文献   

14.
In this protocol, the authors report a time-resolved fluorescence biosensor based on home-made europium complexes for highly sensitive detection of small molecules using adenosine as a model analyte. The fluorophore that used is europium complexes. Its signal can be measured in a time-resolved manner that eliminates most of the unspecific fluorescent background. The amino modified aptamer probe, which is designed to specifically recognize adenosine, is combined to the aldehyde-group modified glass slide by covalent bond. Europium complex-labeled a short ssDNA, designed to segment hybridize with aptamer probe is immobilized on the glass slide by hybridization reaction. In the presence of adenosine, the aptamer part is more inclined to bounds with adenosine and triggers structure-switching of the aptamer from aptamer/ssDNA duplex to aptamer/target complex. As a result, europium complexes-labeled ssDNA is forced to dissociate from the sensor interface, resulting in time-resolved fluorescence intensity decrease. The decrement intensity is proportional to the amount of adenosine. Under optimized assay conditions, a linear range (1.0×10(-8)M to 1.0×10(-7)M) is got with low detection limit of 5.61nM. The biosensor exhibits excellent selectivity and can provide a promising potential for aptamer-based adenosine detection.  相似文献   

15.
The coordination sphere and the deexcitation mechanism of the Eu(III) benzo-15-crown-5 complex, Eu(B15C5), were studied with references of the Eu(III) complexes with a similar coordination sphere; the dibenzo-18-crown-6 complex, Eu3(B218C6)2, and the cryptand[2.2.1] complex, Eu([2.2.1]). NMR spectroscopy reveals that the Eu(B15C5) complex is quite stable in acetonitrile solution whereas only 40% of the Eu(III) ion forms the complex in the equimolar Eu(NO3)3 and B218C6 acetonitrile solution. The coordination sphere of the Eu(III) complexes in acetonitrile solutions were also discussed by the degenerate 7F05D0 transition energy levels. The Eu(B15C5) have a negative shift compared with the europium(III) nitrate in acetonitrile and it is explained by the coordination of both nitrate ions and the crown ether ligand. Energy transfer from the n–π* excited state located in the catechol structure to the central europium ion was first observed as the sensitized luminescence of 5D07FJ. The excited state lifetime of the Eu(B15C5) complex was first determined as 201 μs in the present study.  相似文献   

16.
A mixed-phase immunoassay based on simultaneous binding of an antibody to its fluorescently tagged peptide epitope and a PNA conjugate of the same peptide has been developed. As a fluorescent marker, a europium(III) chelate allowing time-resolved measurement from a single particle has been employed. The ternary complex formed in solution is immobilized by Watson-Crick base-pairing to a microparticle bearing a PNA sequence complementary to that present in the complex. The concentration of the antibody in the sample may then be determined by a single particle measurement. Accordingly, different antibodies may in principle be addressed by sequence-specific hybridization to different categorized microparticles.  相似文献   

17.
The 9-hydroxy-1,3-diazaphenoxazine-2-one unit was conjugated with the Eu3+-cyclen complex through a linker. This diazaphenoxazine group was expected as an antenna unit for the excitation of europium ion, and a selective recognition site for 8-oxo-dGTP base. Among the synthesized three derivatives, the highest fluorescence emission was obtained by the complex constructed of an ethylene linker and the cyclen unit with three N,N-dimethylacetamide groups. The Eu3+-cyclen complex exhibited a selective response to the 8-oxo-dGTP in aqueous media by a time-resolved fluorescence assay.  相似文献   

18.
The bioinorganic complexes of europium with N-acetyl-DL-alanine, N-acetyl-DL-valine, and DL-alanyl-DL-alanine have been synthesized and the M?ssbauer spectra at room temperature have been measured for these solid state complexes. The M?ssbauer parameters indicate that the water molecules in these complexes are not directly linked to the central europium ion and are outside the coordination sphere of europium and biological ligands, and that the chemical bond between the europium ion and the ligands may be predominantly ionic in character, with the possibility of partial covalent contribution.  相似文献   

19.
Single doses of europium (III) chloride hexahydrate were orally administered to several groups of rats. Cumulative urine samples were taken at 0–24 h, and blood samples were drawn after 24-h administration. The europium concentration was determined in these samples by inductively coupled plasma atomic emission spectroscopy. The volume, creatinine, ß-2-microglobulin, and N-acetyl-ß-d-glucosaminidase were measured in the urine samples to evaluate possible europium-induced renal effects. The blood samples showed low europium distribution, with an average of 77.5 μg/L for all groups. Although the urinary concentration and excretion showed dose-dependent increases, the percentage of europium excreted showed a dose-dependent decrease, with an average of 0.31% in all groups. The administration of europium resulted in a significant decrease of creatinine and a significant increase of urinary volume, N-acetyl-ß-d-glucosaminidase, and ß-2-microglobulin. Rare earth elements, including europium, are believed to form colloidal conjugates that deposit in the reticuloendothelial system and glomeruli. This specific reaction may contribute to low europium bioavailability and renal function disturbances. Despite low bioavailability, the high performance of the analytical method for determination of europium makes the blood and urine sampling suitable tools for monitoring of exposure to this element. The results presented in this study will be of great importance in future studies on the health impacts of rare earth elements.  相似文献   

20.
Europium (152,154Eu) was intravenously injected into rats as: (i) the chloride salt at pH 7.4, (ii) the chloride salt at pH 3, (iii) the albumin complex and (iv) the DTPA complex, and tissue uptake was determined 24 h later. For the chlorides, the target organ for uptake was liver (about 60% of dose) whilst europium complexes were rapidly excreted in urine and were predominantly taken up into the kidney (about 0.5% of dose) and bone. Liver uptake of EuCl3, pH 7.4, corresponded to that of a colloidal material with most 152Eu present in the non-hepatocyte population; however, EuCl3, pH 3, was handled in a different manner, with significant uptake by hepatocytes. The differing tissue distributions of EuCl3 and Eu-albumin suggest that plasma albumin does not readily bind injected EuCl3. Renal uptake of europium, although a relatively low proportion of the injected dose, was associated with many subcellular fractions, including lysosomes, suggesting significant intracellular uptake and thus possible retention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号