共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
4.
Mutant AraC proteins were selected for their ability to induce but not to repress, or their ability to repress but not to induce the araBAD operon. One such unusual mutant is able to bind to the araI site with an affinity only two to three-fold weaker than the wild type AraC protein, but the mutant protein was shown, both in crude extracts and when purified, to contact only two of the three major groove regions of the DNA that are contacted by the wild type protein. 相似文献
5.
AraC proteins with altered DNA sequence specificity which activate a mutant promoter in Escherichia coli 总被引:5,自引:0,他引:5
We examined the recognition of the araBAD promoter by the AraC protein in the Escherichia coli arabinose operon. A mutant promoter, with base substitutions at positions contacted by AraC, was used to isolate suppressor mutations in araC by direct selection. Two hydroxylamine-induced araC mutations were isolated repeatedly; each contained a single amino acid substitution. When tested against a set of base substitution promoter mutants, one revertant, an Arg to His substitution at residue 250, displayed altered base specificity for a single position within the araBAD promoter. The other revertant, a Cys to Tyr substitution at residue 204, did not show consistent base-specific suppression. Neither demonstrated a higher affinity than the wild type protein for the mutant promoter in vitro. Both proteins suppress mutant sequences by a mechanism that does not appear to involve the formation of new net favorable contacts with the mutant base pairs of the promoter. 相似文献
6.
7.
The Ntr regulon in Escherichia coli has previously been engineered to control the expression of a heterologous metabolic pathway. In this study, we reengineered the same system for protein production. In the absence of NRII (glnL gene product), we showed that glnAp2 can be an effective promoter for protein production that is inducible by exogenous acetate, but both the induction ratio and the range of modulation are low. To deal with this issue, we inactivated phosphotransacetylase (pta gene product), which disrupts the acetate pathway and denies the cell the ability to synthesize acetate. With this additional modification, gene expression from glnAp2 can be controlled by directly adding acetate into the growth medium. Using a lacZ reporter fusion, we found that glnAp2 induction was modulatable over a range of potassium acetate concentrations, and the induction/noninduction ratio increased to 77 in the absence of pta. The extracellular acetate required for maximal induction is lower than the concentration that causes toxicity, and thus growth inhibition by acetate addition was not a matter of concern. Furthermore, compared to the P(tac) promoter, overexpression of a model protein using the modified glnAp2 promoter system did not cause significant growth inhibition, although a higher level of protein expression was achieved. 相似文献
8.
9.
10.
11.
We report that membrane vesicles of Escherichia coli contain protein-binding sites for acyl carrier protein. Scatchard analysis of the binding indicates a dissociation constant around 0.35 micrometers and a maximum number of protein-binding sites around 50 pmol per mg of membrane protein. Binding is on the inner membrane while the outer membrane is devoid of binding sites. These results are consistent with the fact that some acyl carrier protein-dependent enzymes implicated in phospholipid- and membrane-derived oligosaccharide biosynthesis are localized in the cytoplasmic membrane. 相似文献
12.
13.
Summary
E. coli [32P]-labelled 5S RNA was complexed with E. coli and B. stearothermophilus 50S ribosomal proteins. Limited T1 RNase digestion of each complex yielded three major fragments which were analysed for their sequences and rebinding of proteins. The primary binding sites for the E. coli binding proteins were determined to be sequences 18 to 57 for E-L5, 58 to 100 for E-L18 and 101 to 116 for E-L25. Rebinding experiments of purified E. coli proteins to the 5S RNA fragments led to the conclusion that E-L5 and E-L25 have secondary binding sites in the section 58 to 100, the primary binding site for E-L18. Since B. stearothermophilus proteins B-L5 and BL22 were found to interact with sequences 18 to 57 and 58 to 100 it was established that the thermophile proteins recognize and interact with RNA sequences similar to those of E. coli. Comparison of the E. coli 5S RNA sequence with those of other prokaryotic 5S RNAs reveals that the ribosomal proteins interact with the most conserved sections of the RNA.Paper number 12 on structure and function of 5S RNA.Preceding paper: Wrede, P. and Erdmann, V.A. Proc. Natl. Acad. Sci. USA 74, 2706–2709 (1977) 相似文献
14.
15.
16.
Escherichia coli cyclic AMP receptor protein mutants provide evidence for ligand contacts important in activation. 下载免费PDF全文
The three-dimensional model of the Escherichia coli cyclic AMP (cAMP) receptor protein (CRP) shows that several amino acids are involved as chemical contacts for binding cAMP. We have constructed and characterized mutants at four of these positions, E72, R82, S83, and R123. The mutations were made in wild-type crp as well as a cAMP-independent crp, crp*. The activities of the mutant proteins were characterized in vivo for their ability to activate the lac operon. These results provide genetic evidence to support that E72 and R82 are essential and S83 and R123 are important in the activation of CRP by cAMP. 相似文献
17.
18.
Mutations in the araC regulatory gene of Escherichia coli B/r that affect repressor and activator functions of AraC protein. 总被引:2,自引:3,他引:2 下载免费PDF全文
Mutations in the araC gene of Escherichia coli B/r were isolated which alter both activation of the araBAD operon expression and autoregulation. The mutations were isolated on an araC-containing plasmid by hydroxylamine mutagenesis of plasmid DNA. The mutant phenotype selected was the inability to autoregulate. The DNA sequence of 16 mutants was determined and found to consist of seven different missense mutations located within the distal third of the araC gene. Enzyme activities revealed that each araC mutation had altered both autoregulatory and activator functions of AraC protein. The mutational analysis presented in this paper suggests that both autoregulatory and activator functions are localized to the same determinants of the AraC protein and that the amino acid sequence within the carboxy-terminal region of AraC protein is important for site-specific DNA binding. 相似文献
19.
As a component of bacteriophage Qbeta replicase, S1 is required both for initiation of Qbeta minus strand RNA synthesis and for translational repression, which has been traced to the ability of the enzyme to bind to an internal site in the Qbeta RNA molecule. Previously, Senear and Steitz (Senear, A. W., and Steitz, J. A. (1976) J. Biol. Chem. 251, 1902-1912) found that isolated S1 protein binds specifically to an oligonucleotide spanning residues -38 to -63 from the 3' terminus of Qbeta RNA. Here we report that S1 also interacts strongly with a second oligonucleotide in Qbeta RNA, which is derived from the region recognized by replicase just 5' to the Qbeta coat protein cistron. Both sequences exhibit pyrimidine-rich regions. 相似文献