首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoinhibition in Lemna gibba L. was studied by interpreting chlorophyll fluorescence characteristics at 77 K on the basis of the bipartite model of Butler and co-workers (Butler 1978). Application of this analysis to chloroplasts (isolated from plants before and after exposure to a photosynthetic photon flux density of 1 750 μmol m−2 s−1 at 3°C for 2 h) revealed that photoinhibition had the following effect on primary events in photosynthesis. Firstly, the fluorescence of PS II increased (44%) in the state of open traps (Fo) and decreased (32%) in the state of closed traps (Fm). It is suggested, that the Fo-decrease reflects increased quenching by radiationless decay, both effects occurring at PS II reaction centers. Secondly, the rate constant for transfer of excitation energy from PS II to PS I (kT(μ→J)) increased by 34%. However, in the state of closed traps, the flux of excitation energy via this transfer process decreased, most likely because of increased quenching by radiationless decay at PS II reaction centers. Thirdly, the probability for fluorescence from PS I decreased (19%). This indicates increased quenching by radiationless decay.  相似文献   

2.
By analysis of gas exchange and chlorophyll fluorescence, the effects of NaCl treatment and supplemental CaCl2 on photosynthesis, photosystem II (PSII) photochemistry and photoinhibition were investigated in Rumex leaves. Photosynthesis in Rumex leaves was strongly inhibited by 200 m M NaCl treatment. Such inhibition of photosynthesis was ameliorated by CaCl2 supplement. Neither NaCl treatment nor CaCl2 supplement had any significant effects on the PSII primary photochemical reaction in dark-adapted leaves. In light-adapted leaves, however, 200 m M NaCl treatment significantly decreased photochemical quenching (qp), efficiency of excitation energy capture by open PSII reaction centers (FV'/FM') and quantum yield of PSII electron transport (ΦPSII). These decreases in qp, FV'/FM' and ΦPSII were mitigated by CaCl2 supplement with the maximum of its effect appearing at a concentration of 8 m M CaCl2. A similar mitigating effect was shown in 200 m M NaCl-treated Rumex leaves when susceptibility of PSII to photoinhibition was determined under high irradiance. It is suggested that the mitigation of photoinhibition in NaCl-treated leaves is because of the amelioration of inhibition of photosynthesis.  相似文献   

3.
The role of high light stress in a natural environment was studied on spinach plants ( Spinacia oleracea L. cv. Wolter) grown in the field during the winter season. Fluorescence induction (at 293 K and 77 K) of leaves was used to characterize the stress effects. Night frost with minimum temperatures between – 1.5°C and –7.5°C (i.e. above the'frost killing point'at ca. –11.5°C) led to impaired photosynthesis. This was seen as increased initial fluorescence (Fo), decreased ratio of variable to maximum fluorescence (FV/FM) and lowered rates of O2 evolution. The freezing injury was reversible within several frostless days. Exposure to high light (about 900 mol m–2 s–1) at chilling temperatures in the field caused photoinhibition, manifested as decreased variable fluorescence (FV) and FV/FM ratio without changes in FO. The photoinhibitory fluorescence quenching was not stronger after frost than after frostless nights; synergism between light stress and preceding freezing stress was not observed. Fluorescence induction signals at 77 K showed that FV of photosystems I and II decreased to the same extent, indicating increased thermal deactivation of excited chlorophyll. Photoinhibition was fully reversible at +4°C within 1 h in low light, but only partially in moderate light. Preceding night frosts did not affect the recovery. The photoinhibition observed here is regarded as a protective system of thermal dissipation of excess light energy.  相似文献   

4.
When willow leaves were transferred from 270 to 650 μmol m-2 s-1 photosynthetic photon flux density (PPFD), partial photoinhibition developed over the next hours. This was manifested as roughly parallel inhibitions of the ratio of variable over maximal chlorophyll fluorescence (Fv/FM), and of the maximal quantum yield and the capacity of photosynthesis. This occurred even though photosynthesis was operating well below its capacity and only about one fourth of the reaction centres of photosystem (PS) II were in the closed state. When the air temperature was lowered from 25 to 15°C (18°C leaf temperature) photoinhibition was markedly accelerated. This temperature effect is suggested to be mediated largely by a decrease in the rate of energy dissipation through photosynthesis and indicated by a 50% increase in the number of closed PSII reaction centres. The pool size of the carotcnoid zeaxanthin and the extent of inhibition of the Fv/FM ratio were positively correlated during the treatment. However, the relaxation following imposition of darkness was much faster for zeaxanthin than for the Fv/FM ratio, ruling out the possibility of a direct causal relationship. The energy distribution between PSII and PSI was unaltered upon photoinhibition. However, the functioning of the PSII reaction centres was altered, as indicated by a rise in the minimal fluorescence, Fa.  相似文献   

5.
The mechanistic basis for differential sensitivities to chilling-induced photoinhibition among two rice ( Oryza sativa L.) cultivars (an Indica and a Japonica type) and one barley cultivar ( Hordeum vulgare L. cv. Albori) was examined. When leaf segments were exposed to moderate illumination at 4°C, a sustained decrease in the photochemical efficiency of photosystem (PS) II measured as the ratio of variable to maximal fluorescence (Fv/Fm) was observed for several hours. An analysis of fluorescence quenching revealed a sudden drop in PSII-driven electron transport rate (ETR) and a rapid rise in the reduction state of the primary electron acceptor QA upon exposure to chilling in moderate light. There was no appreciable difference in the level of non-photochemical quenching (NPQ) nor in the xanthophyll cycle activity between Japonica rice and barley. However, barley was capable of sustaining a higher ETR, thereby keeping a lower reduction state of QA throughout the chilling for 6 h. The Indica rice was characterized by the lowest ability to develop the xanthophyll cycle-associated NPQ, particularly the fast relaxing NPQ component (qf), accompanied by the highest reduction state of QA and photoinhibitory quenching (qI). It is concluded that the lower susceptibility of barley to chilling-induced photoinhibition than Japonica rice is attributable to its higher potential to dissipate excess light energy via a photochemical mechanism, whereas Indica rice is more sensitive to photoinhibition at a chilling temperature than Japonica rice, due primarily to its lower capacity to develop an efficient NPQ pathway.  相似文献   

6.
The function of photosystem II (PSII) during desiccation was investigated via analysis of Chl a fluorescence emission in thalli from Parmelia quercina (Willd.) Vainio, Parmelia acetabulum (Necker) Duby, Ramalina farinacea (L.) Ach., Pseudevernia furfuracea (L.) Zopf., and Evernia prunastri (L.) Ach. Water loss followed the same exponential pattern in all these species, the half time being dependent on species. Desiccation affected the fluorescence parameters. Dark-adapted maximum fluorescence (Fm), instantaneous fluorescence (Fo) and the ratio of variable (Fm–Fo) to Fm were dependent on water content and decreased in two distinct phases: a slow and apparently linear phase, followed by a more steep decline at low water content. Actual PSII photochemical yield (φPSII), non-photochemical quenching (NPQ), efficiency of photon capture (φexc), and photochemical quenching (qp) remained nearly constant until 30% relative water content (RWC), decreasing rapidly thereafter. In contrast, increased NPQ appeared to occur only at water content values lower than 20%. Treatment of thalli with dithiothreitol (DTT) effectively reduced NPQ during desiccation and increased susceptibility to photoinhibition caused by exposure to high light as measured by dark recovery of the FvFm ratio. HPLC analysis showed that the level of the de-epoxidized xanthophyll cycle pigments antheraxanthin (Anth) and zeaxanthin (Zea) increased during lichen desiccation. The results point towards the existence of a photoprotective mechanism with the involvement of Zea and Anth in non-radiative dissipation of the desiccation-induced excess of energy.  相似文献   

7.
The relationship between susceptibility to photoinhibition, zeaxanthin formation and chlorophyll fluorescence quenching at suboptimal temperatures was studied in chilling-sensitive maize and in non-acclimated and cold-acclimated Oxyria digyna , a chilling-tolerant plant of arctic and alpine habitats. In maize, zeaxanthin formation was strongly suppressed by chilling. Zeaxanthin formed during preillumination at 20°C did not protect maize leaves from photoinhibition during a subsequent high-light, low-temperature treatment, as judged from the ratios of variable to maximal fluorescence, Fv/Fm. However, such preillumination significantly increased non-photochemical quenching (qN) at low temperatures, mainly due to an enhancement of the fast-relaxing qN component (i.e., of energy-dependent quenching. qE). In O. digyna , cold-acclimation resulted in an increased zeaxanthin formation in the temperature range of 2.5–20°C. Cold-acclimation substantially decreased the susceptibility towards photoinhibition at 4°C, but qN remained nearly unchanged between 2 and 38°C, as compared to control plants. Effects of cold acclimation on photosynthesis, photochemical quenching and quantum efficiency of photosystem II were small and indicated a slight amelioration only of the function of the photosynthetic apparatus at suboptimal temperatures (2–20°Ct. I) is concluded, that the xanthophyll cycle is strongly influenced by cold acclimation, while effects on the photosynthetic carbon assimilation only play a minor role in O. digyna.  相似文献   

8.
Changes in photosystem II function during senescence of wheat leaves   总被引:6,自引:0,他引:6  
Analyses of chlorophyll fluorescence were undertaken to investigate the alterations in photosystem II (PSII) function during senescence of wheat ( Triticum aestivum L. cv. Shannong 229) leaves. Senescence resulted in a decrease in the apparent quantum yield of photosynthesis and the maximal CO2 assimilation capacity. Analyses of fluorescence quenching under steady‐state photosynthesis showed that senescence also resulted in a significant decrease in the efficiency of excitation energy capture by open PSII reaction centers (F'v/F'm) but only a slight decrease in the maximum efficiency of PSII photochemistry (F'v/F'm). At the same time, a significant increase in non‐photochemical quenching (qN) and a considerable decrease in photochemical quenching (qP) were observed in senescing leaves. Rapid fluorescence induction kinetics indicated a decrease in the rate of QA reduction and an increase in the proportion of QB‐non‐reducing PSII reaction during senescence. The decrease in both F'v/F'm and qP explained the decrease in the actual quantum yield of PSII electron transport ((φPSII). We suggest that the modifications in PSII function, which led to the down‐regulation of photosynthetic electron transport, would be in concert with the lower demand for ATP and NADPH in the Calvin cycle which is often inhibited in senescing leaves.  相似文献   

9.
Intact isolated spinach chloroplasts were subjected to photoinhibitory conditions (high light and lack of CO2). Photoinhibition of the electron transport system was considerably diminished when the chloroplasts were in a low-fluorescent state related to a high proton gradient across the thylakoid membranes, as compared to a high-fluorescent state in which ΔpH-dependent fluorescence quenching was abolished by addition of uncouplers. The hypothesis is discussed that in chloroplasts exposed to excess light, photoinhibition is partly prevented by increased thermal dissipation of excitation energy, as expressed by ΔpH-dependent (‘energy-dependent’) chlorophyll a fluorescence quenching.  相似文献   

10.
Gametophytes of Acrostichum aureum were cultured in 0.0 to 1.0% NaCl solutions or in NaCl‐free solution and then transferred to 1.0% NaCl solution. Photosynthetic light‐response curves, efficiency of the primary photochemical reaction, relative electron transport rate, and photochemical and non‐photochemical quenching at steady state were determined by photosynthetic O2 evolution and in vivo chlorophyll fluorescence. Results obtained showed that the chlorophyll fluorescence parameters, Fv/Fm and F'v/F'm and αO2 (the initial linear slope of the photosynthetic light‐response curve) increased in gametophytes grown in NaCl. Linear electron transport rate was stimulated by NaCl. Based on the chlorophyll content, light‐saturated photosynthesis in gametophytes grown in 0.2 to 0.7% NaCl increased slightly; it decreased in gametophytes grown in 1.0% NaCl. Photochemical quenching decreased in NaCl‐grown gametophytes at all photosynthetic photon flux density (PPFD) levels measured, but there was no increase in non‐photochemical quenching. The chlorophyll a/b ratio increased with increasing NaCl concentration in culture solutions. These results indicated that NaCl enhanced photochemical efficiency of photosystem II (PSII) and photosynthetic linear electron transport, thus resulting in the development of an excitation pressure in PSII. Such excitation pressure might act as a signal for photosynthetic acclimation to salt stress, thus allowing the gametophytes to grow in their natural habitats.  相似文献   

11.
Photosynthesis, respiration and chlorophyll fluorescence parameters were determined in peach ( Prunus persica L. cv. Dixired) leaves naturally infected by Taphrina deformans (Berk.) Tul. and in healthy leaves (controls), in two successive springs. A drastic decrease in net photosynthesis and an evident increase in respiration in curled leaves were noted. The instantaneous PSII fluorescence yield, with no (F0) and with (F0) quenching component, and steady state fluorescence yield (under actinic light, Fs) were essentially unchanged. Maximal fluorescence in dark-adapted (Fm) and illuminated (F'm) leaves and the corresponding variable fluorescence (Fv and Fv) clearly decreased. The indicators of PSII quantum yield (Fv/Fm) in dark-adapted leaves, and the potential PSII excitation capture efficiency (F'v/F'm) and the quantum yield of PSII (qp [F'v/F'm]) in the light were also significantly lower in curled leaves. Decreasing tendencies were also noted for the PSII photochemical yield (photochemical quenching, qp) and in the energy status of the chloroplast (non-photochemical quenching, qN, and Stern-Vollmer value, NPQ) although the differences were not always significant. In curled leaves the main alteration documented is the imbalance between the drastic inhibition of CO2 fixation and the moderate decrease in photochemical reactions (i.e. Fv/Fm and ΔF/F'm), indicating changes in the energy flux.  相似文献   

12.
渗透胁迫对小麦幼苗叶绿素荧光参数的影响   总被引:57,自引:4,他引:57  
用叶绿素荧光诱导动力学技术,研究模拟干旱条件对小麦幼苗叶片叶绿素荧光参数,即原初光能转化效率(Fv/Fm)、光合电子传递量子效率(φPSⅡ)、qP(光化学猝灭)、qNP(非光化学猝灭)、ETR(表观光合量子传递效率)的影响.结果表明,渗透胁迫对小麦幼苗叶绿素荧光参数影响较大.随着渗透胁迫的加剧,Fv/FmFv/Fo都表现出现降低-增加-降低的趋势,在渗透胁迫2 h以前,小麦叶片内部没有发生光抑制,但随着胁迫的加剧,Fv/Fm值增加,使得小麦幼苗叶内发生光抑,导致ΦPSⅡ和ETR的下降;在渗透胁迫过程中,小麦叶片吸收光能的光化学猝灭(qP)的下降和光化学猝灭(qNP)呈现先降低后增加的趋势,说明小麦在受到干旱胁迫前期,PSⅡ反应中心的开放比例降低;在胁迫2h后,随着胁迫的加剧,qP和qNP增加有利于提高PSⅡ反应中心开放部分的比例,将更多的光能用于推动光合电子传递,提高了光合电子传递能力,同时非光化学能量耗散的提高,有助于耗散过剩的激发能,以保护光合机构,缓解环境胁迫对光合作用的影响,体现了小麦叶片的自我保护机制.两个品种相比,长武13的叶绿素荧光参数的变化幅度比陕253小,具有更强的抵御干旱胁迫的能力.  相似文献   

13.
Unicellular green alga Chlorella minutissima , grown under extreme carbon dioxide concentrations (0.036–100%), natural temperature and light intensities (Mediterranean conditions), strongly increase the microalgal biomass through photochemical and non-photochemical changes in the photosynthetic apparatus. Especially, CO2 concentrations up to 10% enhance the density of active reaction centers (RC/CSo), decrease the antenna size per active reaction center (ABS/RC), decrease the dissipation energy (DIo/RC) and enhance the quantum yield of primary photochemistry (Fv/Fm). Higher CO2 concentrations (20–25%) combine the above-mentioned photochemical changes with enhanced non-photochemical quenching of surplus energy, which leads to an enhanced steady-state fraction of 'open' (oxidized) PSII reaction centers (qp), and minimize the excitation pressure of PSII (1 − qp) under very high light intensities (approximately 1700 μmol m−2 s1 maximal value), avoiding the photoinhibition and leading to an enormous biomass production (approximately 2500%). In conclusion, these extreme CO2 concentrations – about 1000 times higher than the ambient one – can be easily metabolized from the unicellular green alga to biomass and can be used, on a local scale at least, for the future development of microalgal photobioreactors for the mitigation of the factory-produced carbon dioxide.  相似文献   

14.
Abstract. The effect of photoinhibition on the activity of photosystem II (PSII) in spinach chloroplasts was investigated. Direct light-induced absorbance change measurements at 320 nm (Δ A 320) provided a measure of the PSII charge separation reaction and revealed that photoinhibition prevented the stable photoreduction of the primary quinone acceptor QA. Sensitivity to photoinhibition was substantially enhanced by treatment of thylakoids with NH2OH which extracts manganese from the H2O-splitting enzyme and prevents electron donation to the reaction centre. Incubation with 3-(3,4,-dichlorophenyl)-1,1-dimethylurea (DCMU) during light exposure did not affect the extent of photoinhibitory damage. The chlorophyll (Chl) b -less chlorina (2 mutant of barley displayed a significantly smaller light-harvesting antenna size of PSII (about 20% of that in wild type chloroplasts) and, simultaneously, a lower sensitivity to photoinhibition. These observations suggest that photoinhibition depends on the amount of light absorbed by PSII and that the process of photoinhibition is accelerated when electron donation to the reaction centre is prevented. It is postulated that the probability of photoinhibition is greater when excitation energy is trapped by P680+, the oxidized form of the PSII reaction centre. The results are discussed in terms of the D1/D2 heterodimer which contains the functional PSII components P680, pheophytin, QA and QB.  相似文献   

15.
Photosynthesis-related proteins and PSII functions of Jatropha curcas seedlings under cold stress were studied using proteomic and chlorophyll fluorescence approaches. The results of chlorophyll fluorescence measurement indicated that electron transport flux per reaction center (ETo/RC) and performance index (PIABS) were relatively sensitive to low temperature, especially at early stage of cold stress. The increase in O–J phase and decrease in J–I phase of chlorophyll fluorescence transient indicated a protection mechanism of J.   curcas to photoinhibition at early stage of cold stress. Eight photosynthesis-related proteins significantly changed during cold stress were identified using liquid chromatography MS/MS. Results of correlation analyses between photosynthesis-related proteins and chlorophyll fluorescence parameters indicated that (1) ATP synthase and Rieske FeS protein were significantly correlated with electron transport of reaction center in PSII; (2) precursor for 33-kDa protein was positively correlated with fluorescence quenching of the O–J and J–I phases and PIABS during cold stress, which implies that it might be related to multiple process in PSII; (3) contrary correlations were found between FJ − Fo and two enzymes in the Calvin cycle, and the relations between these proteins and PSII function were unclear. The combined study using proteomic approaches and chlorophyll fluorescence measurements indicated that the early-stage (0–12 h) acclimation of PSII and the late-stage (after 24 h) H2O2 scavenging might be involved in the cold response mechanisms of J.   curcas seedlings.  相似文献   

16.
Parameters for the evaluation of the effects of photoinhibition on photosynthetic carbon gain were studied in Chenopodium album leaves. The light-response curve of photosynthetic rate was determined at 36 Pa CO2 partial pressure and fitted by a non-rectangular hyperbola. Both the initial slope of the curve and the light-saturated rate decreased in photoinhibited leaves, although the decrease in the latter was small. The convexity of the curve was also smaller in photoinhibited leaves. The capacities of ribulose-1,5-bisphosphate carboxylation ( V cmax) and electron transport ( J max) were estimated from the CO2-response curves. V cmax and J max decreased similarly with increasing photoinhibition. Energy partitioning in photosystem II (PSII) was estimated using chlorophyll fluorescence parameters. The fraction of energy that was consumed by photochemistry decreased with increasing photoinhibition. However, an increase in inactive PSII, decreasing energy partitioning to active PSII, relaxed the excitation pressure in PSII, and led to a reduction in the fraction of excess energy that was neither consumed by photochemistry nor dissipated as heat.  相似文献   

17.
Atrazine-resistant (AR) weeds have a modified D1 protein structure, with a Ser264→Gly mutation on the D1 protein, near the plastoquinone binding niche. The photosynthetic performance, the light response of the xanthophyll cycle and chlorophyll fluorescence quenching-related parameters were compared in attached leaves of susceptible (S) and AR biotypes of the C3 dicot Chenopodium album L., Epilobium adenocaulon Hausskn., Erigeron canadensis L., Senecio vulgaris L. and Solanum nigrum L. and the C4 dicot Amaranthus retroflexus L. grown under natural high-light conditions. No significant difference in CO2 assimilation rate per leaf area unit was found between the S and AR biotypes of the investigated C3 plants, whereas the AR biotype of A. retroflexus exhibited a relatively poor photosynthetic performance. The D1 protein mutant plants expressed a reduced activity of light-stimulated zeaxanthin formation. Neither the lower violaxanthin de-epoxidase activity nor the depletion of ascorbate seems to be the cause of the lower in vivo zeaxanthin formation in the AR plants. All the D1 mutant weeds had limited light-induced non-photochemical (NPQ) and photochemical (qP) quenching capacities, and displayed a higher photosensitivity, as characterized by the ratio (1-qP)/NPQ and a higher susceptibility to photoinhibition. Analysis of the chlorophyll fluorescence parameters showed that a lower proportion of excitation energy was allocated to PSII photochemistry, while a higher excess of excitation remained in the AR weeds relative to the S plants.  相似文献   

18.
Chilling in the light imposes a considerable level of stress on the photosynthetic apparatus, resulting in a decrease of photosystem II activity and the quenching of maximum and variable fluorescence. We selected in a fah - 1 mutagenized population of Arabidopsis thaliana , which permits a direct visible evaluation of the intensity of chlorophyll (Chl) fluorescence, a monogenic recessive nuclear mutant hypersensitive to photoinhibition induced by light and cold. The major phenotypic trait of the mutant is the appearance of chlorotic areas on developed leaves. Photochemical analyses indicate that the mutant is hypersensitive to photoinhibition in excess light in the cold but also at room temperature. The susceptibility to photoinhibition is a consequence of perturbations in photochemistry already present in unstressed plants. Such perturbations result in a greater fraction of the primary acceptor QA remaining in the reduced state even at low light fluxes. From estimates of the number of total and functional PSII units and measurements of PSII quantum yield and QA reoxidation kinetics, the basic lesion of the mutant seems restricted to PSII photochemistry likely affecting the rate of electron transport from QA to QB.  相似文献   

19.
The relative roles of assimilatory and photorespiratory electron flows on one side and of the Mehler‐peroxidase pathway on the other side in sustaining electron transport and providing protection against photoinhibition were investigated in leaves of spinach ( Spinacia oleracea L.) and sunflower ( Helianthus annuus L.). After inhibiting photosynthesis and photorespiration of intact leaves by either HCN or glycolaldehyde, light‐dependent linear electron transport was decreased by more than 90% at a photon flux density of 800 µmol m−2 s−1. Remaining electron transport exhibited characteristics of the Mehler reaction. Nonphotochemical quenching of chlorophyll fluorescence increased after inhibition of CO2 assimilation and photorespiration indicating effective dissipation of excess excitation energy. Nevertheless, appreciable photoinactivation was observed under these conditions not only of photosystem II but also of photosystem I. This damage was oxygen‐dependent. It was much reduced or absent when the oxygen concentration of the atmosphere was reduced from 21 to 1%.  相似文献   

20.
The saturating pulse fluorescence technique was applied to study photoinhibition of photosynthesis in outdoor cultures of the cyanobacterium Spirulina platensis (Nordstedt) Geitler strain M2 grown under high oxygen and low temperature stress. Diurnal changes in maximum photochemical yield (Fv/Fm), photon yield of PSII (ΔF/F 'm), and nonphotochemical quenching (qN) were measured using a portable, pulse-amplitude–modulated fluorometer. When solar irradiance reached the maximum value, the F v/Fm and ΔF/F 'm ratios of the Spirulina cultures grown under high oxygen stress decreased by 35% and 60%, respectively, as compared with morning values. The depression of the Fv/Fm and ΔF/F 'm ratios reached 55% and 84%, respectively, when high oxygen stress was combined with low temperature (i.e. 10° C below the optimal value for growth). Photoinhibition reduced the daily productivity of the culture grown under high oxygen stress by 33% and that of the culture grown under high oxygen–low temperature stress by 60%. Changes in the biomass yield of the cultures correlated well with changes in the daily integrated value of the estimated electron transport rate through the PSII (ΔF/F 'm × photon flux density). The results indicate that on-line chlorophyll fluorescence measurement is a powerful tool for assessing the photosynthetic performance of outdoor Spirulina cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号