首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell surface heparan sulfate proteoglycan and the neoplastic phenotype   总被引:3,自引:0,他引:3  
Cell surface proteoglycans are strategically positioned to regulate interactions between cells and their surrounding environment. Such interactions play key roles in several biological processes, such as cell recognition, adhesion, migration, and growth. These biological functions are in turn necessary for the maintenance of differentiated phenotype and for normal and neoplastic development. There is ample evidence that a special type of proteoglycan bearing heparan sulfate side chains is localized at the cell surface in a variety of epithelial and mesenchymal cells. This molecule exhibits selective patterns of reactivity with various constituents of the extracellular matrix and plasma membrane, and can act as growth modulator or as a receptor. Certainly, during cell division, membrane constituents undergo profound rearrangement, and proteoglycans may be intimately involved in such processes. The present work will focus on recent advances in our understanding of these complex macromolecules and will attempt to elucidate the biosynthesis, the structural diversity, the modes of cell surface association, and the turnover of heparan sulfate proteoglycans in various cell systems. It will then review the multiple proposed roles of this molecule, with particular emphasis on the binding properties and the interactions with various intracellular and extracellular elements. Finally, it will focus on the alterations associated with the neoplastic phenotype and will discuss the possible consequences that heparan sulfate may have on the growth of normal and transformed cells.  相似文献   

2.
Fetal calf serum (FCS) and PMA (phorbol 12-myristate-13-acetate) specifically stimulate the synthesis of heparan sulfate proteoglycan in endothelial cells. Staurosporine and n-butanol, kinase inhibitors, abolish the PMA effect. Forskolin and 8-bromo adenosine 3′:5′-cyclic monophosphate, activators of, respectively, adenylate cyclase and protein kinase A cannot reproduce the PMA effect. The kinetics of cell entry into S phase of the endothelial cells was determined by DNA synthesis ([3H]-thymidine and Br-dU incorporation), and flow cytometry. The mitogenic effect of fetal calf serum is abolished by PMA. Also, PMA pre-treatment inhibits the enhanced synthesis of heparan sulfate proteoglycan after a second PMA exposure. Remarkably, the stimulation of heparan sulfate proteoglycan synthesis by fetal calf serum and PMA seems to be mainly restricted to G1 phase. Therefore fetal calf serum and PMA cause an enhanced synthesis of heparan sulfate proteoglycan, and PMA causes a cell cycle block at G1 phase. J. Cell. Biochem. 70:563–572, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
Aging poses one of the largest risk factors for the development of cardiovascular disease. The increased propensity toward vascular pathology with advancing age maybe explained, in part, by a reduction in the ability of circulating endothelial progenitor cells to contribute to vascular repair and regeneration. Although there is evidence to suggest that colony forming unit‐Hill cells and circulating angiogenic cells are subject to age‐associated changes that impair their function, the impact of aging on human outgrowth endothelial cell (OEC) function has been less studied. We demonstrate that OECs isolated from cord blood or peripheral blood samples from young and old individuals exhibit different characteristics in terms of their migratory capacity. In addition, age‐related structural changes were discovered in OEC heparan sulfate (HS), a glycocalyx component that is essential in many signalling pathways. An age‐associated decline in the migratory response of OECs toward a gradient of VEGF significantly correlated with a reduction in the relative percentage of the trisulfated disaccharide, 2‐O‐sulfated‐uronic acid, N, 6‐O‐sulfated‐glucosamine (UA[2S]‐GlcNS[6S]), within OEC cell surface HS polysaccharide chains. Furthermore, disruption of cell surface HS reduced the migratory response of peripheral blood‐derived OECs isolated from young subjects to levels similar to that observed for OECs from older individuals. Together these findings suggest that aging is associated with alterations in the fine structure of HS on the cell surface of OECs. Such changes may modulate the migration, homing, and engraftment capacity of these repair cells, thereby contributing to the progression of endothelial dysfunction and age‐related vascular pathologies.  相似文献   

4.
The heparan sulfate proteoglycans that bind and activate antithrombin III (aHSPGs) are synthesized by endothelial cells as well as other nonvascular cells. We determined the amounts of cell surface–associated and soluble aHSPGs generated by the rat fat pad endothelial (RFP) cell line and the fibroblast (LTA) cell line. The RFP cells exhibit higher levels of cell surface–associated aHSPGs as compared to LTA cells, whereas LTA cells release larger amounts of soluble aHSPGs as compared to RFP cells. After confluence RFP cells show an increase in both cell surface–associated and soluble aHSPGs. In contrast, postconfluent LTA cells maintain a constant level of cell surface–associated and soluble aHSPGs. These observations indicate that different cells types can preferentially accumulate aHSPGs as cell surface–associated or soluble forms which could reflect alternate biological functions.  相似文献   

5.
Nitric oxide (NO), a reactive nitrogen species, plays an important role in inflammatory lung damage. In the present study, we investigated the role of NO in DNA-binding activity of NF-B in macrophages stimulated with silica or other inflammatory stimulants. Treatment of mouse macrophages (RAW264.7 cells) with a selective inhibitor of inducible nitric oxide synthase (iNOS), L-N6-(1-iminoethyl) lysine (L-NIL), or a nonselective iNOS inhibitor, N-nitro-L-arginine methylester (L-NAME), resulted in inhibition of silica-induced nitric oxide production as well as silica-induced NF-B activation. L-NIL also effectively inhibited NF-B activation induced by other inflammatory stimulants, such as lipopolysaccharide (LPS) or muramyl dipeptide (MDP). These inhibitory effects of L-NIL and L-NAME on silica- or LPS-induced NF-B activation were also observed in primary rat alveolar macrophages. Furthermore, NO generating compounds, such as sodium nitroprusside (SNP) and 3-morpholinosydnonimine (SIN-1), caused a dose-dependent increase in NF-B activation, which was positively correlated with the level of NO production. Specific inhibitors of protein tyrosine kinase, such as genistein and AG494, prevented NF-B activation in SNP- or SIN-1 treated cells, suggesting involvement of tyrosine kinase in the NO signaling pathway leading to NF-B activation. In contrast, inhibitors of protein kinase C or A, such as staurosporine or H89, had no inhibitory effect on SIN-1 induced NF-B activation. Metalloporphyrins, such as tetrakis (N-methyl-4-pyridyl) porphyrinato iron (III) (Fe-TMPyP) and Zn-TMPyP which are known to alter NO-dependent activity, markedly inhibited silica- and LPS-induced NF-B activation. The results suggest that NF-B activation in macrophages can be induced under certain conditions by nitric oxide and that nitric oxide produced by phagocytes exposed to inflammatory agents may up-regulate the activation of NF-B.  相似文献   

6.
Anoikis is a form of programmed cell death induced by loss of contact from neighboring cells or from their extracellular matrix (ECM). Many tumorigenic cells are anoikis resistant, facilitating cancer progression and metastasis. Trastuzumab is a monoclonal antibody used for the treatment of breast and gastric cell cancer, but its mechanism of action is not well elucidated and its target molecules not well defined. Heparan sulfate proteoglycans (HSPGs) and glycosaminoglycans (GAGs) play important roles in tumor development and in response of cancer cells to drugs. This study investigates the effect of trastuzumab on the expression of HSPGs and sulfated glycosaminoglycans (SGAGs) in anoikis-resistant endothelial cells. After trastuzumab treatment, endothelial cells resistant to anoikis show an increase in adhesion to fibronectin followed by a decrease in invasion, proliferation, and angiogenic capacity. In addition, a significant increase in the number of cells in the S phase of the cell cycle was also observed. In relation to HSPGs and SGAGs expression, we observed a decrease in syndecan-4 and perlecan expression, as well as in the heparan sulfate biosynthesis in anoikis-resistant endothelial cells after exposure to trastuzumab. Our results suggest that trastuzumab interacts with GAGs and proteoglycans of the cell surface and ECM and through this interaction controls cellular events in anoikis-resistant endothelial cells.  相似文献   

7.
It has been shown that shear stress plays a critical role in promoting endothelial cell (EC) differentiation from embryonic stem cell (ESC)-derived ECs. However, the underlying mechanisms mediating shear stress effects in this process have yet to be investigated. It has been reported that the glycocalyx component heparan sulfate proteoglycan (HSPG) mediates shear stress mechanotransduction in mature EC. In this study, we investigated whether cell surface HSPG plays a role in shear stress modulation of EC phenotype. ESC-derived EC were subjected to shear stress (5 dyn/cm(2)) for 8 h with or without heparinase III (Hep III) that digests heparan sulfate. Immunostaining showed that ESC-derived EC surfaces contain abundant HSPG, which could be cleaved by Hep III. We observed that shear stress significantly increased the expression of vascular EC-specific marker genes (vWF, VE-cadherin, PECAM-1). The effect of shear stress on expression of tight junction protein genes (ZO-1, OCLD, CLD5) was also evaluated. Shear stress increased the expression of ZO-1 and CLD5, while it did not alter the expression of OCLD. Shear stress increased expression of vasodilatory genes (eNOS, COX-2), while it decreased the expression of the vasoconstrictive gene ET1. After reduction of HSPG with Hep III, the shear stress-induced expression of vWF, VE-cadherin, ZO-1, eNOS, and COX-2, were abolished, suggesting that shear stress-induced expression of these genes depends on HSPG. These findings indicate for the first time that HSPG is a mechanosensor mediating shear stress-induced EC differentiation from ESC-derived EC cells.  相似文献   

8.
Axon guidance is influenced by the presence of heparan sulfate (HS) proteoglycans (HSPGs) on the surface of axons and growth cones (Hu, [2001]: Nat Neurosci 4:695-701; Irie et al. [2002]: Development 129:61-70; Inatani et al. [2003]: Science 302:1044-1046; Johnson et al. [2004]: Curr Biol 14:499-504; Steigemann et al. [2004]: Curr Biol 14:225-230). Multiple HSPGs, including Syndecans, Glypicans and Perlecans, carry the same carbohydrate polymer backbones, raising the question of how these molecules display functional specificity during nervous system development. Here we use the Drosophila central nervous system (CNS) as a model to compare the impact of eliminating Syndecan (Sdc) and/or the Glypican Dally-like (Dlp). We show that Dlp and Sdc share a role in promoting accurate patterns of axon fasciculation in the lateral longitudinal neuropil; however, unlike mutations in sdc, which disrupt the ability of the secreted repellent Slit to prevent inappropriate passage of axons across the midline, mutations in dlp show neither midline defects nor genetic interactions with Slit and its Roundabout (Robo) receptors at the midline. Dlp mutants do show genetic interactions with Slit and Robo in lateral fascicle formation. In addition, simultaneous loss of Dlp and Sdc demonstrates an important role for Dlp in midline repulsion, reminiscent of the functional overlap between Robo receptors. A comparison of HSPG distribution reveals a pattern that leaves midline proximal axons with relatively little Dlp. Finally, the loss of Dlp alters Slit distribution distal but not proximal to the midline, suggesting that distinct yet overlapping pattern of HSPG expression provides a spatial system that regulates axon guidance decisions.  相似文献   

9.
Heparin and heparan sulfate: biosynthesis, structure and function   总被引:7,自引:0,他引:7  
Heparin and heparan sulfate glycosaminoglycans are acidic complex polysaccharides found on the cell surface and in the extracellular matrix. Recent progress has uncovered a virtual explosion of important roles of these biopolymers in fundamental biological processes. Advances in the understanding of biosynthesis and structure and the development of novel analytical methods for composition and sequence analysis have provided remarkable insights into structure/function relationships of these complex and once elusive polysaccharides.  相似文献   

10.
Recent studies from our laboratory have begun to elucidate the role of agrin in zebrafish development. One agrin morphant phenotype that results from agrin knockdown is microphthalmia (reduced eye size). To begin to understand the mechanisms underlying the role of agrin in eye development, we have analyzed retina development in agrin morphants. Retinal differentiation is impaired in agrin morphants, with retinal lamination being disrupted following agrin morpholino treatment. Pax 6.1 and Mbx1 gene expression, markers of eye development, are markedly reduced in agrin morphants. Formation of the optic fiber layer of the zebrafish retina is also impaired, exhibited as both reduced size of the optic fiber layer, and disruption of retinal ganglion cell axon growth to the optic tectum. The retinotectal topographic projection to the optic tectum is perturbed in agrin morphants in association with a marked loss of heparan sulfate expression in the retinotectal pathway, with this phenotype resembling retinotectal phenotypes observed in mutant zebrafish lacking enzymes for heparan sulfate synthesis. Treatment of agrin morphants with a fibroblast growth factor (Fgf) receptor inhibitor, rescue of the retinal lamination phenotype by transplantation of Fgf8-coated beads, and disruption of both the expression of Fgf-dependent genes and activation of ERK in agrin morphants provides evidence that agrin modulation of Fgf function contributes to retina development. Collectively, these agrin morphant phenotypes provide support for a crucial role of agrin in retina development and formation of an ordered retinotectal topographic map in the optic tectum of zebrafish.  相似文献   

11.
Heparan sulfate (HS) proteoglycans are essential components of the cell‐surface and extracellular matrix (ECM) which provide structural integrity and act as storage depots for growth factors and chemokines, through their HS side chains. Heparanase (HPSE) is the only mammalian endoglycosidase known that cleaves HS, thus contributing to matrix degradation and cell invasion. The enzyme acts as an endo‐β‐D ‐glucuronidase resulting in HS fragments of discrete molecular weight size. Cell‐surface HS is known to inhibit or stimulate tumorigenesis depending upon size and composition. We hypothesized that HPSE contributes to melanoma metastasis by generating bioactive HS from the cell‐surface to facilitate biological activities of tumor cells as well as tumor microenvironment. We removed cell‐surface HS from melanoma (B16B15b) by HPSE treatment and resulting fragments were isolated. Purified cell‐surface HS stimulated in vitro B16B15b cell migration but not proliferation, and importantly, enhanced in vivo angiogenesis. Furthermore, melanoma cell‐surface HS did not affect in vitro endothelioma cell (b.End3) migration. Our results provide direct evidence that, in addition to remodeling ECM and releasing growth factors and chemokines, HPSE contributes to aggressive phenotype of melanoma by releasing bioactive cell‐surface HS fragments which can stimulate melanoma cell migration in vitro and angiogenesis in vivo. J. Cell. Biochem. 106: 200–209, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

12.
Heparin is known to bind to cultured endothelial cells. This report documents that addition of heparin to endothelial cells results in an alteration of the heparan sulfate proteoglycan synthetic pattern. Specifically, the addition of saturating amounts of heparin to confluent cultures of porcine aortic endothelial cells results in an increase in the amount of radiolabeled heparan sulfate proteoglycan secreted into the growth medium. The increase is apparent as early as 8 h after heparin administration. Although there is often a decrease in the amount of cell surface heparan sulfate proteoglycan produced, it is not sufficient to account for the increase in the secreted form. Of the other glycosaminoglycans tested, only dextran sulfate and commercial heparan sulfate induce changes in heparan sulfate proteoglycan synthesis and secretion. Chondroitin sulfate glycosaminoglycans do not elicit this synthetic change. These data indicate that endothelial cells can alter the synthesis of heparan sulfate proteoglycans in response to extracellular signals including heparin and related glycosaminoglycans.  相似文献   

13.
Hyperglycemia is an independent risk factor for diabetes-associated cardiovascular disease. One potential mechanism involves hyperglycemia-induced changes in arterial wall extracellular matrix components leading to increased atherosclerosis susceptibility. A decrease in heparan sulfate (HS) glycosaminoglycans (GAG) has been reported in diabetic arteries. The present studies examined the effects of high glucose on in vitro production of proteoglycans (PG) by aortic endothelial cells. Exposure of cells to high glucose (30 vs. 5 mM glucose) resulted in decreased [(35)S] sodium sulfate incorporation specifically into secreted HSPG. Differences were not due to hyperosmolar effects and no changes were observed in CS/DSPG. Enzymatic procedures, immunoprecipitation and Western analyses demonstrated that high glucose induced changes specifically in the HSPG, perlecan. In double-label experiments, lower sulfate incorporation in high-glucose-treated cells was accompanied by lower [(3)H] glucosamine incorporation into GAG but not lower [(3)H] serine incorporation into PG core proteins. Size exclusion chromatography demonstrated that GAG size was unchanged and GAG sulfation was not reduced. These results indicate that the level of regulation of perlecan by high glucose is posttranslational, involving a modification in molecular structure, possibly a decrease in the number of HS GAG chains on the core protein.  相似文献   

14.
Heparan sulfate proteoglycans on the cell surface act as low affinity binding sites for acidic and basic fibroblast growth factor (FGF) [Moscatelli (1887): J Cell Physiol 131:123–130] and play an important role in the interaction of FGF with the FGF receptor (FGFR). In this study, several aspects of the interaction of FGFs with cell surface heparan sulfate proteoglycans were examined. Reciprocal cross blocking studies demonstrated that acidic FGF (aFGF) and basic FGF (bFGF) bind to identical or closely associated heparan sulfate motifs on BALB/c 3T3 cell surface heparan sulfate proteoglycans. However, the binding affinity of the two growth factros for these heparan sulfate proteoglycans differs considerably, competition binding data indicating that aFGF has a 4.7-fold lower affinity than bFGF for 3T3 heparan sulfate proteoglycan. Subsequent studies of dissociation kinetics demonstrated that bFGF dissociates form the FGFR at least 10-fold slower than aFGF, whereas, following removal of cell surface heparan sulfate proteoplycan. Subsequent studies of dissociation kinetic demonstrated that bFGF dissociates from the FGFR at least 10-fold slwer than aFGF, whereas, following removal of cell surface heparan sulfate proteoglycans by heparinase treatment, the dissociation rate of both FGFs is similar and rapid. These results support the concept that cell surface heparan sulfate proteoglycans stabilize the interactio fo FGF with FGFR, possibly by the formatin of a ternary complex. © Wiley-Liss, Inc.  相似文献   

15.
It is widely believed that the differentiation of embryonic stem cells (ESCs) into viable endothelial cells (ECs) for use in vascular tissue engineering can be enhanced by mechanical forces. In our previous work, we reported that shear stress enhanced important EC functional genes on a CD31+/CD45 cell population derived from mouse ESC committed to the EC lineage. In the present study, in contrast to the effects of shear stress on this cell population, we observed that cyclic strain significantly reduced the expression of EC-specific marker genes (vWF, VE-cadherin, and PECAM-1), tight junction protein genes (ZO-1, OCLD, and CLD5), and vasoactive genes (eNOS and ET1), while it did not alter the expression of COX2. Taken together, these studies indicate that only shear stress, not cyclic strain, is a useful mechanical stimulus for enhancing the properties of CD31+/CD45 cells for use as EC in vascular tissue engineering. To begin examining the mechanisms controlling cyclic strain-induced suppression of gene expression in CD31+/CD45 cells, we depleted the heparan sulfate (HS) component of the glycocalyx, blocked integrins, and silenced the HS proteoglycan syndecan-4 in separate experiments. All of these treatments resulted in the reversal of cyclic strain-induced gene suppression. The current study and our previous work provide a deeper understanding of the mechanisms that balance the influence of cyclic strain and shear stress in endothelial cells.  相似文献   

16.
Expression of the basement membrane heparan sulfate proteoglycan (HSPG), perlecan (Pln), mRNA, and protein has been examined during murine development. Both Pln mRNA and protein are highly expressed in cartilaginous regions of developing mouse embryos, but not in areas of membranous bone formation. Initially detected at low levels in precartilaginous areas of d 12.5 embryos, Pln protein accumulates in these regions through d 15.5 at which time high levels are detected in the cartilage primordia. Laminin and collagen type IV, other basal lamina proteins commonly found colocalized with Pln, are absent from the cartilage primordia. Accumulation of Pln mRNA, detected by in situ hybridization, was increased in d 14.5 embryos. Cartilage primordia expression decreased to levels similar to that of the surrounding tissue at d 15.5. Pln accumulation in developing cartilage is preceded by that of collagen type II. To gain insight into Pln function in chondrogenesis, an assay was developed to assess the potential inductive activity of Pln using multipotential 10T1/2 murine embryonic fibroblast cells. Culture on Pln, but not on a variety of other matrices, stimulated extensive formation of dense nodules reminiscent of embryonic cartilaginous condensations. These nodules stained intensely with Alcian blue and collagen type II antibodies. mRNA encoding chondrocyte markers including collagen type II, aggrecan, and Pln was elevated in 10T1/2 cells cultured on Pln. Human chondrocytes that otherwise rapidly dedifferentiate during in vitro culture also formed nodules and expressed high levels of chondrocytic marker proteins when cultured on Pln. Collectively, these studies demonstrate that Pln is not only a marker of chondrogenesis, but also strongly potentiates chondrogenic differentiation in vitro.  相似文献   

17.
Heparin stimulates 2-3-fold, in a concentration-dependent manner, the synthesis of heparan sulfate secreted by cultured endothelial cells. The increase in synthetic rate takes place immediately after exposure of the cells to heparin, affects only heparan sulfate, and is specific for the endothelial cell. No stimulation by other glycosaminoglycans was observed. Analysis of the disaccharide products formed by the action of heparitinases reveals a higher degree of sulfation of the uronic acid residues in the heparan sulfate of cells exposed to heparin.  相似文献   

18.
Heparan sulfate proteoglycans (HSPGs) are critically involved in a variety of biological events. The functions of HSPGs are determined by the nature of the core proteins and modifications of heparan sulfate (HS) glycosaminoglycan (GAG) chains. The distinct O-sulfo- transferases are important for nonrandom modifications at specific positions. Two HS 3-0 sulfotransferase (Hs3st) genes, Hs3st-A and Hs3st-B, were identified in Drosophila. Previous experiments using RNA interference (RNAi) suggested that Hs3st-B was required for Notch signaling. Here, we generated a null mutant of Hs3st-B via ends-out gene targeting and examined its role(s) in development. We found that homozygous Hs3st-B mutants have no neurogenic defects or alterations in the expression of Notch signaling target gene. Thus, our results strongly argue against an essential role for Hs3st-B in Notch signaling. Moreover, we have generated two independent Hs3st-A RNAi lines which worked to deplete Hs3st-A. Importantly, Hs3st-A RNAi combined with Hs3st-B mutant flies did not alter the expression of Notch signaling components, arguing that both Hs3st-A and Hs3st-B were not essential for Notch signaling. The establishment of Hs3st-B mutant and effective Hs3st-A RNAi lines provides essential tools for further studies of the physiological roles of Hs3st-A and Hs3st-B in development and homeostasis.  相似文献   

19.
Muscular dystrophies are characterized by continuous cycles of degeneration and regeneration that result in extensive fibrosis and a progressive diminution of muscle mass. Cell surface heparan sulfate proteoglycans are found almost ubiquitously on the surface and in the extracellular matrix (ECM) of mammalian cells. These macromolecules interact with a great variety of ligands, including ECM constituents, adhesion molecules, and growth factors. In this study, we evaluated the expression and localization of three heparan sulfate proteoglycans in the biopsies of Duchenne muscular dystrophy (DMD) patients. Through SDS-PAGE analyses followed by specific identification of heparitinase-digested proteins with an anti-Delta-heparan sulfate specific monoclonal antibodies, we observed an increase of three forms of heparan sulfate proteoglycans, corresponding to perlecan, syndecan-3, and glypican-1. Immunohistochemistry analyses indicated a differential localization for these proteoglycans: glypican-1 and perlecan were found mainly associated to ECM structures, while syndecan-3 was associated to muscle fibers. These results suggest that the amount of specific heparan sulfate proteoglycans is augmented in skeletal muscle in DMD patients presenting a differential localization.  相似文献   

20.
Heparan sulfate (HS) is a highly sulfated polysaccharide that plays essential physiological and pathophysiological functions. The biosynthesis of HS involves a series of specialised sulfotransferases, an epimerase and glycosyl transferases. The availability of these enzymes offers a promising method to prepare HS polysaccharides and structurally defined oligosaccharides. Given the fact that chemical synthesis of large HS oligosaccharides is extremely difficult, preparation of HS using a chemoenzymatic approach has gained momentum. This review article summarises recent progress on the development of a chemoenzymatic approach to prepare HS and HS oligosaccharides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号