首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T lymphocytes recognize peptides presented in the context of major histocompatibility complex (MHC) molecules on the surface of antigen presenting cells. Recognition specificity is determined by the alphabeta T cell receptor (TCR). The T lymphocyte surface glycoproteins CD8 and CD4 enhance T cell antigen recognition by binding to MHC class I and class II molecules, respectively. Biophysical measurements have determined that equilibrium binding of the TCR with natural agonist peptide-MHC (pMHC) complexes occurs with KD values of 1-50 microm. The pMHCI/CD8 and pMHCII/CD4 interactions are significantly weaker than this (KD >100 microm), and the relative roles of TCR/pMHC and pMHC/coreceptor affinity in T cell activation remain controversial. Here, we engineer mutations in the MHCI heavy chain and beta2-microglobulin that further reduce or abolish the pMHCI/CD8 interaction to probe the significance of pMHC/coreceptor affinity in T cell activation. We demonstrate that the pMHCI/CD8 coreceptor interaction retains the vast majority of its biological activity at affinities that are reduced by over 15-fold (KD > 2 mm). In contrast to previous reports, we observe that the weak interaction between HLA A68 and CD8, which falls within this spectrum of reduced affinities, retains substantial functional activity. These findings are discussed in the context of current concepts of coreceptor dependence and the mechanism by which TCR coreceptors facilitate T cell activation.  相似文献   

2.
Cytotoxic T lymphocytes recognize short peptides presented in association with MHC class I (MHCI) molecules on the surface of target cells. The Ag specificity of T lymphocytes is conferred by the TCR, but invariable regions of the peptide-MHCI (pMHCI) molecule also interact with the cell surface glycoprotein CD8. The distinct binding sites for CD8 and the TCR allow pMHCI to be bound simultaneously by both molecules. Even before it was established that the TCR recognized pMHCI, it was shown that CTL exhibit clonal heterogeneity in their ability to activate in the presence of anti-CD8 Abs. These Ab-based studies have since been interpreted in the context of the interaction between pMHCI and CD8 and have recently been extended to show that anti-CD8 Ab can affect the cell surface binding of multimerized pMHCI Ags. In this study, we examine the role of CD8 further using point-mutated pMHCI Ag and show that anti-CD8 Abs can either enhance or inhibit the activation of CTL and the stable cell surface binding of multimerized pMHCI, regardless of whether there is a pMHCI/CD8 interaction. We further demonstrate that multimerized pMHCI Ag can recruit CD8 in the absence of a pMHCI/CD8 interaction and that anti-CD8 Abs can generate an intracellular activation signal resulting in CTL effector function. These results question many previous assumptions as to how anti-CD8 Abs must function and indicate that CD8 has multiple roles in CTL activation that are not necessarily dependent on an interaction with pMHCI.  相似文献   

3.
CD8 engagement is believed to be a critical event in the activation of naive T cells. In this communication, we address the effects of peptide-MHC (pMHC)/TCR affinity on the necessity of CD8 engagement in T cell activation of primary naive cells. Using two peptides with different measured avidities for the same pMHC-TCR complex, we compared biochemical affinity of pMHC/TCR and the cell surface binding avidity of pMHC/TCR with and without CD8 engagement. We compared early signaling events and later functional activity of naive T cells in the same manner. Although early signaling events are altered, we find that high-affinity pMHC/TCR interactions can overcome the need for CD8 engagement for proliferation and CTL function. An integrated signal over time allows T cell activation with a high-affinity ligand in the absence of CD8 engagement.  相似文献   

4.
Recognition of antigen by cytotoxic T lymphocytes (CTL) is determined by interaction of both the T cell receptor and its CD8 coreceptor with peptide-major histocompatibility complex (pMHC) class I molecules. We examine the relative roles of these receptors in the activation of human CTL using mutations in MHC class I designed to diminish or abrogate the CD8/pMHC interaction. We use surface plasmon resonance to determine that point mutation of the alpha3 loop of HLA A2 abrogates the CD8/pMHC interaction without affecting the affinity of the T cell receptor/pMHC interaction. Antigen-presenting cells expressing HLA A2 which does not bind to CD8 fail to activate CTL at any peptide concentration. Comparison of CTL activation by targets expressing HLA A2 with normal, abrogated, or diminished CD8/pMHC interaction show that the CD8/pMHC interaction enhances sensitivity to antigen. We determine that the biochemical basis for coreceptor dependence is the activation of the 23-kDa phosphoform of the CD3zeta chain. In addition, we produce mutant MHC class I multimers that specifically stain but do not activate CTL. These reagents may prove useful in circumventing undesirable activation-related perturbation of intracellular processes when pMHC multimers are used to phenotype antigen-specific CD8+ lymphocytes.  相似文献   

5.
The off-rate (k(off)) of the T cell receptor (TCR)/peptide-major histocompatibility complex class I (pMHCI) interaction, and hence its half-life, is the principal kinetic feature that determines the biological outcome of TCR ligation. However, it is unclear whether the CD8 coreceptor, which binds pMHCI at a distinct site, influences this parameter. Although biophysical studies with soluble proteins show that TCR and CD8 do not bind cooperatively to pMHCI, accumulating evidence suggests that TCR associates with CD8 on the T cell surface. Here, we titrated and quantified the contribution of CD8 to TCR/pMHCI dissociation in membrane-constrained interactions using a panel of engineered pMHCI mutants that retain faithful TCR interactions but exhibit a spectrum of affinities for CD8 of >1,000-fold. Data modeling generates a "stabilization factor" that preferentially increases the predicted TCR triggering rate for low affinity pMHCI ligands, thereby suggesting an important role for CD8 in the phenomenon of T cell cross-reactivity.  相似文献   

6.
CD8(+) T cells recognize immunogenic peptides presented at the cell surface bound to MHCI molecules. Ag recognition involves the binding of both TCR and CD8 coreceptor to the same peptide-MHCI (pMHCI) ligand. Specificity is determined by the TCR, whereas CD8 mediates effects on Ag sensitivity. Anti-CD8 Abs have been used extensively to examine the role of CD8 in CD8(+) T cell activation. However, as previous studies have yielded conflicting results, it is unclear from the literature whether anti-CD8 Abs per se are capable of inducing effector function. In this article, we report on the ability of seven monoclonal anti-human CD8 Abs to activate six human CD8(+) T cell clones with a total of five different specificities. Six of seven anti-human CD8 Abs tested did not activate CD8(+) T cells. In contrast, one anti-human CD8 Ab, OKT8, induced effector function in all CD8(+) T cells examined. Moreover, OKT8 was found to enhance TCR/pMHCI on-rates and, as a consequence, could be used to improve pMHCI tetramer staining and the visualization of Ag-specific CD8(+) T cells. The anti-mouse CD8 Abs, CT-CD8a and CT-CD8b, also activated CD8(+) T cells despite opposing effects on pMHCI tetramer staining. The observed heterogeneity in the ability of anti-CD8 Abs to trigger T cell effector function provides an explanation for the apparent incongruity observed in previous studies and should be taken into consideration when interpreting results generated with these reagents. Furthermore, the ability of Ab-mediated CD8 engagement to deliver an activation signal underscores the importance of CD8 in CD8(+) T cell signaling.  相似文献   

7.
The CD8 coreceptor plays a crucial role in both T cell development in the thymus and in the activation of mature T cells in response to Ag-specific stimulation. In this study we used soluble peptides-MHC class I (pMHC) multimeric complexes bearing mutations in the CD8 binding site that impair their binding to the MHC, together with altered peptide ligands, to assess the impact of CD8 on pMHC binding to the TCR. Our data support a model in which CD8 promotes the binding of TCR to pMHC. However, once the pMHC/TCR complex is formed, the TCR dominates the pMHC/TCR dissociation rates. As a consequence of these molecular interactions, under physiologic conditions CD8 plays a key role in complex formation, resulting in the enhancement of CD8 T cell functions whose specificity, however, is determined by the TCR.  相似文献   

8.
In experiments where T cells interact with antigen-presenting-cells or supported bilayers bearing specific peptide-major-histocompatibility-complex (pMHC) molecules, T cell receptors (TCR) have been shown to form stable micrometer-scale clusters that travel from the periphery to the center of the contact region. pMHC molecules bind TCR on the opposing surface but the pMHC-TCR bond is weak and therefore pMHC can be expected to serially bind and unbind from TCR within the contact region. Using a novel mathematical analysis, we examine serial engagement of mobile clustered TCR by a single pMHC molecule. We determine the time a pMHC can be expected to remain within a TCR cluster. This also allows us to estimate the number of clustered TCR that are serially bound, and the distance a pMHC is transported by the clustered TCR. We find that TCR-pMHC binding alone does not allow substantial serial engagement of TCR and that the pMHC molecules are usually not transported to the center of the contact region by a single TCR cluster. We show that the presence of TCR coreceptors such as CD4 and CD8, or pMHC dimerization on the antigen-presenting cells, can substantially increase serial engagement and directed transport of pMHC. Finally, we analyze the effects of multiple TCR microclusters, showing that the size of individual clusters only weakly affects our prediction of TCR serial engagement by pMHC. Throughout, we draw parameter estimates from published data.  相似文献   

9.
Coreceptor CD8-driven modulation of T cell antigen receptor specificity   总被引:1,自引:0,他引:1  
The CD8 coreceptor modulates the interaction between the T cell antigen receptor (TCR) and peptide-major histocompatibility class I (pMHCI). We present evidence that CD8 not only modifies the affinity of cognate TCR/pMHCI binding by altering both the association rate and the dissociation rate of the TCR/pMHCI interaction, but modulates the sensitivity (triggering threshold) of the TCR as well, by recruiting TCR/pMHCI complexes to membrane microdomains at a rate which depends on the affinity of MHCI/CD8 binding. Mathematical analysis of these modulatory effects indicates that a T cell can alter its functional avidity for its agonists by regulating CD8 expression, and can rearrange the relative potencies of each of its potential agonists. Thus we propose that a T cell can specifically increase its functional avidity for one agonist, while decreasing its functional avidity for other potential ligands. This focussing mechanism means that TCR degeneracy is inherently dynamic, allowing each TCR clonotype to have a wide range of agonists while avoiding autorecognition. The functional diversity of the TCR repertoire would therefore be greatly augmented by coreceptor-mediated ligand focussing.  相似文献   

10.
TCR engagement by peptide-MHC class I (pMHC) ligands induces a conformational change (Deltac) in CD3 (CD3Deltac) that contributes to T cell signaling. We found that when this interaction took place between primary T lineage cells and APCs, the CD8 coreceptor was required to generate CD3Deltac. Interestingly, neither enhancement of Ag binding strength nor Src kinase signaling explained this coreceptor activity. Furthermore, Ag-induced CD3Deltac was developmentally attenuated by the increase in sialylation that accompanies T cell maturation and limits CD8 activity. Thus, both weak and strong ligands induced CD3Deltac in preselection thymocytes, but only strong ligands were effective in mature T cells. We propose that CD8 participation in the TCR/pMHC interaction can physically regulate CD3Deltac induction by "translating" productive Ag encounter from the TCR to the CD3 complex. This suggests one mechanism by which the developmentally regulated variation in CD8 sialylation may contribute to the developmental tuning of T cell sensitivity.  相似文献   

11.
《Journal of molecular biology》2019,431(24):4941-4958
The coreceptor CD8αβ can greatly promote activation of T cells by strengthening T-cell receptor (TCR) binding to cognate peptide-MHC complexes (pMHC) on antigen presenting cells and by bringing p56Lck to TCR/CD3. Here, we demonstrate that CD8 can also bind to pMHC on the T cell (in cis) and that this inhibits their activation. Using molecular modeling, fluorescence resonance energy transfer experiments on living cells, biochemical and mutational analysis, we show that CD8 binding to pMHC in cis involves a different docking mode and is regulated by posttranslational modifications including a membrane-distal interchain disulfide bond and negatively charged O-linked glycans near positively charged sequences on the CD8β stalk. These modifications distort the stalk, thus favoring CD8 binding to pMHC in cis. Differential binding of CD8 to pMHC in cis or trans is a means to regulate CD8+ T-cell responses and provides new translational opportunities.  相似文献   

12.
The CD8 coreceptor contributes to the recognition of peptide-MHC (pMHC) ligands by stabilizing the TCR-pMHC interaction and enabling efficient signaling initiation. It is unclear though, which structural elements of the TCR ensure a productive association of the coreceptor. The alpha-chain connecting peptide motif (alpha-CPM) is a highly conserved sequence of eight amino acids in the membrane proximal region of the TCR alpha-chain. TCRs lacking the alpha-CPM respond poorly to low-affinity pMHC ligands and are unable to induce positive thymic selection. In this study we show that CD8 participation in ligand binding is compromised in T lineage cells expressing mutant alpha-CPM TCRs, leading to a slight reduction in apparent affinity; however, this by itself does not explain the thymic selection defect. By fluorescence resonance energy transfer microscopy, we found that TCR-CD8 association was compromised for TCRs lacking the alpha-CPM. Although high-affinity (negative-selecting) pMHC ligands showed reduced TCR-CD8 interaction, low-affinity (positive-selecting) ligands completely failed to induce molecular approximation of the TCR and its coreceptor. Therefore, the alpha-CPM of a TCR is an important element in mediating CD8 approximation and signal initiation.  相似文献   

13.
The CD8αβ heterodimer interacts with class I pMHC on antigen-presenting cells as a co-receptor for TCR-mediated activation of cytotoxic T cells. To characterize this immunologically important interaction, we used monoclonal antibodies (mAbs) specific to either CD8α or CD8β to probe the mechanism of CD8αβ binding to pMHCI. The YTS156.7 mAb inhibits this interaction and blocks T cell activation. To elucidate the molecular basis for this inhibition, the crystal structure of the CD8αβ immunoglobulin-like ectodomains were determined in complex with mAb YTS156.7 Fab at 2.7 Å resolution. The YTS156.7 epitope on CD8β was identified and implies that residues in the CDR1 and CDR2-equivalent loops of CD8β are occluded upon binding to class I pMHC. To further characterize the pMHCI/CD8αβ interaction, binding of class I tetramers to CD8αβ on the surface of T cells was assessed in the presence of anti-CD8 mAbs. In contrast to YTS156.7, mAb YTS105.18, which is specific for CD8α, does not inhibit binding of CD8αβ to class I tetramers, indicating the YTS105.18 epitope is not occluded in the pMHCI/CD8αβ complex. Together, these data indicate a model for the pMHCI/CD8αβ interaction similar to that observed for CD8αα in the CD8αα/pMHCI complex, but in which CD8α occupies the lower orientation (membrane proximal to the antigen presenting cell), and CD8β occupies the upper position (membrane distal). The implication of this molecular assembly for the function of CD8αβ in T cell activation is discussed.  相似文献   

14.
αβ T cell receptor (TCR) recognition of foreign peptides bound to major histocompatibility complex (pMHC) molecules on the surface of antigen presenting cells is a key event in the initiation of adaptive cellular immunity. In vitro, high-affinity binding and/or long-lived interactions between TCRs and pMHC correlate with high-potency T cell activation. However, less is known about the influence of TCR/pMHC interaction parameters on T cell responses in vivo. We studied the influence of TCR/pMHC binding characteristics on in vivo T cell immunity by tracking CD4+ T cell activation, effector, and memory responses to immunization with peptides exhibiting a range of TCR/pMHC half-lives and in vitro T cell activation potencies. Contrary to predictions from in vitro studies, we found that optimal in vivo T cell responses occur to ligands with intermediate TCR/pMHC half-lives. The diminished in vivo responses we observed to the ligand exhibiting the longest TCR/pMHC half-life were associated with attenuation of intracellular signaling, expansion, and function over a broad range of time points. Our results reveal a level of control over T cell activation in vivo not recapitulated in in vitro assays and highlight the importance of considering in vivo efficacy of TCR ligands as part of vaccine design.  相似文献   

15.
Soluble MHC-peptide (pMHC) complexes, commonly referred to as tetramers, are widely used to enumerate and to isolate Ag-specific CD8(+) CTL. It has been noted that such complexes, as well as microsphere- or cell-associated pMHC molecules compromise the functional integrity of CTL, e.g., by inducing apoptosis of CTL, which limits their usefulness for T cell sorting or cloning. By testing well-defined soluble pMHC complexes containing linkers of different length and valence, we find that complexes comprising short linkers (i.e., short pMHC-pMHC distances), but not those containing long linkers, induce rapid death of CTL. This cell death relies on CTL activation, the coreceptor CD8 and cytoskeleton integrity, but is not dependent on death receptors (i.e., Fas, TNFR1, and TRAILR2) or caspases. Within minutes of CTL exposure to pMHC complexes, reactive oxygen species emerged and mitochondrial membrane depolarized, which is reminiscent of caspase-independent T cell death. The morphological changes induced during this rapid CTL death are characteristic of programmed necrosis and not apoptosis. Thus, soluble pMHC complexes containing long linkers are recommended to prevent T cell death, whereas those containing short linkers can be used to eliminate Ag-specific CTL.  相似文献   

16.
Although both MHC class II/CD8α double-knockout and CD8β null mice show a defect in the development of MHC class I-restricted CD8(+) T cells in the thymus, they possess low numbers of high-avidity peripheral CTL with limited clonality and are able to contain acute and chronic infections. These in vivo data suggest that the CD8 coreceptor is not absolutely necessary for the generation of Ag-specific CTL. Lack of CD8 association causes partial TCR signaling because of the absence of CD8/Lck recruitment to the proximity of the MHC/TCR complex, resulting in suboptimal MAPK activation. Therefore, there should exist a signaling mechanism that can supplement partial TCR activation caused by the lack of CD8 association. In this human study, we have shown that CD8-independent stimulation of Ag-specific CTL previously primed in the presence of CD8 coligation, either in vivo or in vitro, induced severely impaired in vitro proliferation. When naive CD8(+) T cells were primed in the absence of CD8 binding and subsequently restimulated in the presence of CD8 coligation, the proliferation of Ag-specific CTL was also severely hampered. However, when CD8-independent T cell priming and restimulation were supplemented with IL-21, Ag-specific CD8(+) CTL expanded in two of six individuals tested. We found that IL-21 rescued partial MAPK activation in a STAT3- but not STAT1-dependent manner. These results suggest that CD8 coligation is critical for the expansion of postthymic peripheral Ag-specific CTL in humans. However, STAT3-mediated IL-21 signaling can supplement partial TCR signaling caused by the lack of CD8 association.  相似文献   

17.
High-avidity interactions between TCRs and peptide + class I MHC (pMHCI) epitopes drive CTL activation and expansion. Intriguing questions remain concerning the constraints determining optimal TCR/pMHCI binding. The present analysis uses the TCR transgenic OT-I model to assess how varying profiles of TCR/pMHCI avidity influence naive CTL proliferation and the acquisition of effector function following exposure to the cognate H-2K(b)/OVA(257-264) (SIINFEKL) epitope and to mutants provided as peptide or in engineered influenza A viruses. Stimulating naive OT-I CD8(+) T cells in vitro with SIINFEKL induced full CTL proliferation and differentiation that was largely independent of any need for costimulation. By contrast, in vitro activation with the low-affinity EIINFEKL or SIIGFEKL ligands depended on the provision of IL-2 and other costimulatory signals. Importantly, although they did generate potent endogenous responses, infection of mice with influenza A viruses expressing these same OVA(257) variants failed to induce the activation of adoptively transferred naive OT-I CTLps, an effect that was only partially overcome by priming with a lipopeptide vaccine. Subsequent structural and biophysical analysis of H2-K(b)OVA(257), H2-K(b)E1, and H2-K(b)G4 established that these variations introduce small changes at the pMHCI interface and decrease epitope stability in ways that would likely impact cell surface presentation and recognition. Overall, it seems that there is an activation threshold for naive CTLps, that minimal alterations in peptide sequence can have profound effects, and that the antigenic requirements for the in vitro and in vivo induction of CTL proliferation and effector function differ substantially.  相似文献   

18.
Immune recognition of pMHCII ligands by a helper T lymphocyte involves its antigen-specific T cell receptor (TCR) and CD4 coreceptor. We have characterized the binding of both molecules to the same pMHCII. The D10 alphabeta TCR heterodimer binds to conalbumin/I-A(k) with virtually identical kinetics and affinity as the single chain ValphaVbeta domain module (scD10) (Kd = 6-8 microm). The CD4 ectodomain does not alter either interaction. Moreover, CD4 alone demonstrates weak pMHCII binding (Kd = 200 microm), with no discernable affinity for the alphabeta TCR heterodimer. Hence, rather than providing a major contribution to binding energy, the critical role for the coreceptor in antigen-specific activation likely results from transient inducible recruitment of the CD4 cytoplasmic tail-associated lck tyrosine kinase to the pMHCII-ligated TCR complex.  相似文献   

19.
The CD8 receptor plays a central role in the recognition and elimination of virally infected and malignant cells by cytolytic CD8(+) T cells. In conjunction with the TCR, the CD8 coreceptor binds Ag-specific class I MHC (MHC-I) molecules expressed by target cells, initiating signaling events that result in T cell activation. Whether CD8 can further function as an adhesion molecule for non-Ag MHC-I is currently unclear in humans. In this study, we show that in human CD8(+) T cells, TCR complex signaling activates CD8 adhesion molecule function, resulting in a CD8 interaction with MHC-I that is sufficient to maintain firm T cell adhesion under shear conditions. Secondly, we found that while CD8 adhesive function was triggered by TCR complex activation in differentiated cells, including in vitro generated CTL and ex vivo effector/memory phenotype CD8(+) T cells, naive CD8(+) T cells were incapable of activated CD8 adhesion. Lastly, we examine the kinetics of, and signaling for, activated CD8 adhesion in humans and identify notable differences from the equivalent CD8 function in mouse. Activated CD8 adhesion induced by TCR signaling may contribute to the more rapid and robust elimination of pathogen-infected cells by differentiated CD8(+) T cells.  相似文献   

20.
T cell antigen recognition requires binding of the T cell receptor (TCR) to a complex between peptide antigen and major histocompatibility complex molecules (pMHC), and this recognition occurs at the interface between the T cell and the antigen-presenting cell. The TCR and pMHC molecules are small compared with other abundant cell surface molecules, and it has been suggested that small size is functionally important. We show here that elongation of both mouse and human MHC class I molecules abrogates T cell antigen recognition as measured by cytokine production and target cell killing. This elongation disrupted tyrosine phosphorylation and Zap70 recruitment at the contact region without affecting TCR or coreceptor binding. Contact areas with elongated forms of pMHC showed an increase in intermembrane distance and less efficient segregation of CD3 from the large tyrosine phosphatase CD45. These findings demonstrate that T cell antigen recognition is strongly dependent on pMHC size and are consistent with models of TCR triggering requiring segregation or mechanical pulling of the TCR.T cell antigen recognition requires the engagement of the TCR8 with peptide antigen presented on cell surface MHC molecules (pMHC) (1). “Accessory” T cell surface receptors modulate T cell antigen recognition by binding to cell surface ligands on antigen-presenting cells (APCs) (2). The dimensions of the TCR·pMHC complex dictate that TCR binding to pMHC takes places within close contact areas in which the membranes are ∼15 nm apart (35). Many accessory receptor·ligand complexes span similar dimensions to the TCR·pMHC complex and can therefore colocalize with the TCR in such close contact areas (35). Conversely, many cell surface molecules, including two of the most abundant, CD43 and CD45, have much larger ectodomains and would therefore be expected to be excluded or depleted from these close contact areas (3, 6).Signal transduction by the TCR is mediated by the associated CD3 subunits (7). The earliest event that is known to be required for signaling is tyrosine phosphorylation of immunoreceptor tyrosine-based activation motifs in the cytoplasmic portion of these TCR-associated CD3 subunits. This phosphorylation, which is mediated by Src-related kinases such as Lck, is followed by recruitment and activation of the tyrosine kinase Zap70 (which binds doubly phosphorylated immunoreceptor tyrosine-based activation motifs via tandem SH2 domains). Zap70 then phosphorylates downstream proteins, including adaptor proteins such as LAT and SLP-76, leading to the recruitment and activation of a cascade of adaptor and effector proteins (2). Although the downstream events in TCR signal transduction are fairly well characterized, the mechanism by which TCR binding to pMHC leads to increased phosphorylation of CD3 immunoreceptor tyrosine-based activation motifs, a process termed TCR triggering, remains relatively poorly understood and controversial (813).A number of models have been proposed for TCR triggering. These can be classified into three groups depending on whether the signal transduction mechanism involves aggregation, conformational change, or segregation of the TCR·CD3 complex upon pMHC binding (reviewed in Ref. 14). Models based on aggregation have difficulty accounting for TCR triggering by very low densities of agonist pMHC, so recent versions postulate a role for self-pMHC, which is present at higher densities (8). Models postulating conformational change within TCRαβ have not generally been supported by structural studies (15) and so have been adapted by proposing conformational changes of the entire TCRαβ complex with respect to other components or the plasma membrane (14, 16). A version of these models proposed that conformational change may be the result of pMHC binding subjecting the TCR to a mechanical “pulling” force toward the APC membrane (14, 16, 17). However, very recently evidence has been presented that binding to agonist pMHC may indeed trigger a conformational change within the constant domain of the TCRαβ (18), so that models based on conformational change need to be reassessed. In addition, conformational changes in the cytoplasmic domains of the TCR-associated CD3 polypeptides may help to regulate TCR activation (19). Finally, TCR triggering models based on segregation postulate that TCR binding to pMHC functions to retain the TCR·CD3 components within a region of the plasma membrane within which tyrosine kinases such as Lck are enriched and receptor tyrosine phosphatases are depleted. The kinetic segregation model postulates that this segregation is the result of the large size of the ectodomain of tyrosine phosphatases CD45 and CD148 with respect to the TCR·pMHC complex, which leads to physical exclusion from close contact areas (6, 9, 20).To explore the mechanism of TCR triggering, we have examined whether the small size of the TCR·pMHC complex is functionally significant. We showed previously that elongation of one mouse pMHC class I complex abrogated recognition by cognate T cells (21). The present study extends this previous work in several important ways. First, we extend this analysis to other pMHC complexes and cognate T cells, including human CD8 T cells. Second, we test directly whether the inhibitory effect could be the result of decreased TCR or coreceptor binding to elongated pMHC class I. Third, we look at the effect of pMHC elongation on early signaling events and segregation of CD45 from TCR·CD3 within the contact area. Our results conclusively demonstrate the importance of pMHC size in T cell antigen recognition and are consistent with the kinetic segregation model of TCR triggering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号