首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Inhibin, a gonadal peptide, selectively suppresses FSH release from the pituitary. The cDNAs coding for ovarian inhibin have been isolated and characterized. However, little is known about testicular inhibin. In this study we have isolated inhibin alpha-subunit cDNA from human testicular cDNA libraries and determined inhibin alpha-subunit mRNA levels in testes. The longest cDNA isolated from human testis was 1380 nucleotides long and contained a nucleotide sequence identical to that of human placental inhibin alpha-subunit and isolated human inhibin alpha-subunit gene, but different from human ovarian inhibin alpha-subunit in two amino acids in the signal peptide. A single 1.5-kilobase species of inhibin alpha-subunit mRNA was identified in the testes of several species. This mRNA was the same size as those in human ovary and placenta. The regulation of inhibin alpha-subunit mRNA in rat testis was next examined. The concentration of testicular inhibin alpha-subunit mRNA peaked between 20-25 days of age and gradually declined thereafter. Hypophysectomy decreased testicular inhibin alpha-subunit mRNA levels. Supplementation of hypophysectomized animals with FSH restored inhibin alpha-subunit mRNA levels to those in intact controls. By contrast, treatment with testosterone had no effect. Similarly, in Sertoli cell-enriched cultures, FSH, but not testosterone, increased inhibin alpha-subunit mRNA levels. We conclude that 1) human testicular inhibin alpha-subunit mRNA is similar to that of human ovary and placenta; and 2) inhibin alpha-subunit mRNA in Sertoli cells is regulated by FSH, but not testosterone, both in vivo and in vitro.  相似文献   

2.
Inhibin B is a testicular peptide hormone that regulates FSH secretion in a negative feedback loop. Inhibin B is a dimer of an alpha and a beta(B) subunit. In adult testes, the cellular site of production is still controversial, and it was hypothesized that germ cells contribute to inhibin B production. To determine which cell types in the testes may produce inhibin B, the immunohistochemical localization of the two subunits of inhibin B were examined in adult testicular biopsies with normal spermatogenesis, spermatogenic arrest, or Sertoli cell only (SCO) tubules. Moreover, using in situ hybridization with mRNA probes, the mRNA expression patterns of inhibin alpha and inhibin/activin beta(B) subunits have been investigated. In all testes, Sertoli cells and Leydig cells showed positive immunostaining for inhibin alpha subunit and expressed inhibin alpha subunit mRNA. Using inhibin beta(B) subunit immunoserum on testes with normal spermatogenesis and with spermatogenic arrest, intense labeling was located in germ cells from pachytene spermatocytes to round spermatids but not in Sertoli cells. Inhibin beta(B) subunit mRNA expression was intense in germ cells from spermatogonia to round spermatids and in Sertoli cells in these testes. In testes with SCO, high inhibin beta(B) subunit mRNA labeling density was observed in both Sertoli cells and Leydig cells, whereas beta(B) subunit immunostaining was negative for Sertoli cells and faintly positive for Leydig cells. These results agree with the recent opinion that inhibin B in adult men is possibly a joint product of Sertoli cells and germ cells.  相似文献   

3.
Immunocytochemical study on the localization of inhibin in the testes of human, bonnet monkey, dog and rat was carried out using indirect immunoperoxidase technique, in order to investigate the cell types involved in inhibin production/storage. A positive reaction was observed in the testes of human, monkey and dog while it was negative in rat testis using specific antiserum to human testicular inhibin generated against homogeneous preparation of human testicular inhibin in our laboratory. Inhibin was found to be localized in Sertoli cells, spermatogonia and primary spermatocytes of human, monkey and dog testes. A weak positive reaction was observed in spermatids of human testis only. Interestingly, Leydig cells of human, monkey and dog testes showed positive reaction indicating presence of inhibin in these cells also.  相似文献   

4.
Inhibin, a hormone produced by Sertoli cells in response to FSH, regulates androgen production in nearby Leydig cells. Beta-endorphin synthesized by Leydig cells under LH control is also known to regulate Sertoli function. To delineate whether beta-endorphin might constitute part of a short loop regulatory system between these two testicular cells, the effect of this opiate on inhibin secretion was examined. Beta-endorphin alone did not alter basal inhibin accumulation in primary Sertoli cell-enriched cultures, however it did significantly reduce FSH-induced inhibin production and adenylyl cyclase activity but had no effect on forskolin-stimulated inhibin accumulation or adenylyl cyclase activity. Other opioid peptides (ACTH, dMSH, methionine-enkephalin) were without effect. These observations suggest that beta-endorphin regulates inhibin secretion by inhibiting FSH receptor coupling to adenylyl cyclase.  相似文献   

5.
The various mechanisms regulating testicular and ovarian androgen secretion are reviewed. Testicular androgen secretion is controlled by luteinizing hormone (LH) and follicle stimulating hormone (FSH), which influence the Leydig cell response to the LH. The contribution of prolactin, growth hormone and thyroid hormones to the Leydig cell function is discussed. The ovarian androgen secretion is regulated in a very similar fashion as the Leydig cell of testis. Prolactin, however, has an inhibitory effect on androgen secretion in the ovary. The intratesticular action of androgens is linked to spermatogenesis. Sertoli cells, by producing the androgen-binding protein, contribute to the intratubular androgen concentration. Inhibin production of the Sertoli cell is stimulated by androgens. In the ovary, androgens produced by the theca interna are used as precursors for the aromatization of estradiol, which stimulates together with FSH the mitosis of granulosa cells. The feedback control of androgen secretion is complicated, as the direct feedback mechanisms are joined by indirect feedback regulations like the peptide inhibin, which can be stimulated by androgens. Intragonadal mechanisms regulating androgen production are the cybernins for testicles and ovaries. In the testicle, estrogens from the Sertoli cells regulate the Leydig cell testosterone biosynthesis. In the ovary, nonaromatizable androgens are potent inhibitors of the aromatization activity in the granulosa cell. A peptide with a FSH receptor binding inhibiting activity is found in male and female gonads. Finally, LH-RH-like peptides have been found in the testicle, which are capable of inhibiting steroidogenesis. These gonadocrinins are similarly produced in granulosa cells of the ovary.  相似文献   

6.
Inhibins are heterodimeric (alpha:betaA and alpha:betaB) endocrine, paracrine, and autocrine factors of the TGFbeta superfamily that are produced predominantly by ovarian granulosa cells in females and testicular Sertoli cells in males. Control of granulosa and Sertoli cell proliferation is lost in the inhibin alpha (Inhalpha) knockout mouse model, leading to gonadotropin-dependent gonadal tumors of the granulosa/Sertoli cell lineage in both females and males. Castrate Inhalpha knockout mice develop sex steroidogenic tumors of the adrenal cortex. Physiological control of granulosa/Sertoli cell cycle progression depends on p27Kip1 and cyclin D2, which function in the G1-->S phase transition. To study the cell cycle-regulatory factors involved in ovarian, testicular, and adrenal tumor development in vivo, we have bred Inhalpha mutant mice to mice with targeted disruptions of the p27 and cyclin D2 genes. Our previous studies demonstrated that inhibins act cooperatively with p27 to negatively regulate granulosa cell proliferation, as double mutant mice lacking inhibins and p27 develop and succumb to ovarian tumors more rapidly than Inhalpha knockout mice. Here, we report that cyclin D2 antagonizes this inhibition and is key in promoting gonadal growth and tumor development, and tumor development is markedly suppressed in double-mutant mice. We found that double-knockout females lacking cyclin D2 and Inhalpha lived longer than mice lacking inhibins alone; the majority of these double-knockout mice lived longer than 17 wk, as opposed to inhibin alpha single-knockout females with 50% survival at between 12 and 13 wk of age. Moreover, 95% of inhibin alpha knockout males succumb to testicular tumor development by 12 wk of age, whereas double knockouts were protected from early signs of tumor development and had a 50% survival of 40 wk. Interestingly, the results of these studies reflect tissue-specific consequences of loss of these cell cycle regulators. In castrate mice, loss of p27 has little effect on adrenal cortical tumor progression in the absence of inhibins, whereas loss of cyclin D2 prolongs the lifespan of cyclin D2, Inhalpha double knockouts. After gonadectomy, 50% of cyclin D2, Inhalpha double-knockout males live to more than 46 wk of age, 10 wk longer than 50% of littermates lacking only inhibins. Similarly, 50% of female cyclin D2, inhibin alpha double knockouts live to 47 wk of age before succumbing to adrenal tumor development, in contrast to the 50% survival of Inhalpha single-knockout females at between 27 and 28 wk. Thus, identification of genetic modifiers of the Inhalpha knockout tumor phenotype has led us to a better appreciation of how specific components of the cell cycle machinery contribute to tumorigenesis in the ovary, testis, and adrenal gland.  相似文献   

7.
The changes in inhibin immunostaining in the gonads during the annual reproductive cycle of both sexes of the prairie dog are described. No inhibin immunostaining was found in primary or secondary follicles of the ovary. Theca and granulosa cells of preovulatory Graafian follicles found in January and February stained for inhibin. Corpora lutea of both pregnant and non-pregnant females stain more densely for inhibin than follicles. Inhibin staining is present in luteal cells for at least 4 months during regression, longer than detectable progesterone is secreted. Sertoli cells in the testes do not have inhibin immunostaining during recrudescence. These cells show light immunostain for inhibin during peak spermatogenic activity in January and February but stain more deeply during early regression of the testis. Stain is gradually lost in the next 4-5 months as the tubules close. Leydig cells and germ cells do not stain for inhibin at any stage of the annual cycle but interstitial cells and tunic cells stain during the breeding phase. The presence of immunochemical staining for inhibin in prairie dog gonads during regression suggests that inhibin is part of a negative feedback complex that includes progesterone in the female and testosterone or another androgen in the male. Negative feedback during regression may also cause gonadal inactivity.  相似文献   

8.

Background  

Inhibins are dimeric gonadal protein hormones that negatively regulate pituitary FSH synthesis and secretion. Inhibin B is produced by testicular Sertoli cells and is the primary circulating form of inhibin in most adult male mammals. Inhibin B is comprised of the inhibin alpha subunit disulfide-linked to the inhibin/activin betaB subunit. Here we describe the cloning of the cDNAs encoding these subunits from adult rhesus monkey testis RNA.  相似文献   

9.
Inhibin and p27 interact to regulate gonadal tumorigenesis   总被引:3,自引:0,他引:3  
Tumor suppressors function as antiproliferative signaling proteins, and defects in these genes lead to uncontrolled cell proliferation and cancer. For example, absence of the tumor suppressor p27(Kip1), a cyclin-dependent kinase inhibitor (CKI), results in increased body size, hyperplasia of several organs including the testes, and cancer in mice. Similarly, lack of inhibins, alpha/beta heterodimeric members of the transforming growth factor-beta (TGFbeta) superfamily, causes testicular and ovarian tumors of the granulosa/Sertoli cell lineage beginning at 4 weeks of age and adrenal tumors in gonadectomized mice. Neither the cell cycle alterations in the absence of inhibin nor the cause of the increased testis size in the p27 knockout mice is known. To study the molecular (cell cycle) changes that result from absence of inhibins, we analyzed the regulation of cell cycle proteins in gonadal tumors derived from inhibin alpha knockout mice (Inha(-/-)). Northern blot analyses demonstrate that cyclin-dependent kinase 4 (Cdk4) and cyclin D2 mRNA levels are elevated, and immunohistochemistry shows that p27 protein levels are decreased in both ovarian and testicular tumors from Inha(-/-) mice. These findings suggest that increased Cdk4/cyclin D2 (positive) activity and decreased p27 (negative) activity is causal for gonadal tumor formation. To test this hypothesis, we generated double mutant mice lacking both p27 and inhibin alpha to determine whether the tumor suppressors p27 and inhibin have additive suppressor activity in the gonads. Like Inha(-/-) mice, p27(-/-)Inha(-/-) mice demonstrate elevated serum activin levels, ovarian and testicular tumors, and a resultant lethal cachexia-like syndrome. However, whereas 95% of the Inha(-/-) female mice die by 18 weeks of age, 100% of the p27(-/-)Inha(-/-) female mice are dead by 8 weeks. Similarly, 95% of the Inha(-/-) single mutant males die by 13 weeks while 100% of the p27(-/-)Inha(-/-) male mice die by 10 weeks. Moreover, tumor foci in p27(-/-)Inha(-/-) mice can be observed as early as 2 weeks of age in males and as early as 4 weeks in females. These findings demonstrate that absence of both inhibin and p27 in mice causes earlier development of ovarian and testicular tumors and earlier death compared with absence of inhibin alone.  相似文献   

10.
11.
This study provides quantitative information on the testes of seasonally breeding golden hamsters during active and regressed states of gonadal activity. Seminiferous tubules occupied 92.5% of testis volume in adult gonadally active animals. Leydig cells constituted 1.4% of the testicular volume. The mean volume of an individual Leydig cell was 1092 microns 3, and each testis contained about 25.4 million Leydig cells. The volume of an average Sertoli cell nucleus during stage VII-VIII of the cycle was 502 microns 3. A gram of hamster testis during the active state of gonadal activity contained 44.5 million Sertoli cells, and the entire testis contained approximately 73.8 million Sertoli cells. Testes of the hamsters exposed to short photoperiods for 12-13 wk displayed a 90% reduction in testis volume that was associated with a decrease in the volume of seminiferous tubules (90.8% reduction), tubular lumena (98.8%), interstitium (72.7%), Leydig cell compartment (79.3%), individual Leydig cells (69.7%), Leydig cell nuclei (50.0%), blood vessels (85.5%), macrophages (68.9%), and Sertoli cell nuclei (34.1%). The diameter (61.1%) and the length (36.8%) of the seminiferous tubules were also decreased. Although the number of Leydig cells per testis was significantly lower (p less than 0.02) after short-photoperiod exposure, the number of Sertoli cells per testis remained unchanged. The individual Sertoli cell in gonadally active hamsters accommodated, on the average, 2.27 pre-leptotene spermatocytes, 2.46 pachytene spermatocytes, and 8.17 round spermatids; the corresponding numbers in the regressed testes were 0.96, 0.20, and 0.04, respectively. The striking differences in the testicular structure between the active and regressed states of gonadal activity follow photoperiod-induced changes in endocrine function and suggest that the golden hamster may be used as a model to study structure-function relationships in the testis.  相似文献   

12.
The effects of testosterone administration on testicular inhibin content and histology were studied in bilaterally cryptorchid rats, in which a marked decrease in testicular inhibin content had been observed. Mature male Wistar rats weighing approximately 300 g were made bilaterally cryptorchid by placing the testes in the abdominal cavity. Testosterone in oil, 0.1, 1.0 or 10 mg, was given i.m. each week. Testicular inhibin and testosterone content, histology and plasma LH, FSH and testosterone were studied 2 weeks later. Abnormally decreased testicular inhibin in cryptorchidism was restored toward normal by testosterone in a dose dependent manner in 2 weeks after surgery. Sertoli cell structure also recovered toward normal with increasing amount of testosterone. Decreased testicular testosterone content and Leydig cell atrophy were observed with suppressed plasma LH and FSH after testosterone. These results showed that the increased plasma concentration of testosterone had a stimulatory effect on the Sertoli cell function in cryptorchidism, in which compensated Leydig cell failure was demonstrated.  相似文献   

13.
S Ohno  Y Nagai  S Ciccarese  R Smith 《In vitro》1979,15(1):11-18
In a very strict sense, the primary (gonadal) sex of mammals is determined not so much by the presence or absence of the Y but the expression or nonexpression of the evolutionary extremely conserved plasma membrane H-Y antigen. The central somatic blastema of embryonic indifferent gonads contains one cell lineage characterized by the possession of S-F differentiation antigen that differentiates into testicular Sertoli cells in the presence of H-Y and into ovarian follicular (granulosa) cells in its absence. This cell lineage appears to play the most critical role in gonadal differentiation. Whether or not testicular Leydig cells and ovarian theca cells are similarly derived from the common cell lineage has not been determined. Nevertheless, if given H-Y antigen, presumptive theca-cell precursors of the fetal ovary acquire hCG (LH?)-receptors-the characteristic of fetal Leydig cells.  相似文献   

14.
Rats were given s.c. implants of high (HT) or low (LT) doses of testosterone and 10 days later hypophysectomy or sham-operation was performed. The rats were killed after 50 days. Unilateral efferent duct ligation was performed 16 h before death to measure seminiferous tubule fluid production and the increment in testicular inhibin values (inhibin production). Inhibin levels in testis cytosols were measured by a pituitary cell culture bioassay. The LT implants maintained serum testosterone at control values and decreased testicular weight whereas HT implants raised serum testosterone 3-fold and maintained testicular weight at 75-85% of pretreatment levels. In intact rats, LT implants caused no change in testicular inhibin content but decreased inhibin production; no significant changes occurred with HT implants. After hypophysectomy both values were significantly suppressed and could not be maintained by HT or LT implants. However, the HT implants partly restored inhibin production despite their inability to influence testicular inhibin content. In contrast, tubule fluid production depended mainly on intratesticular testosterone levels and occurred normally in intact or hypophysectomized rats with HT but not LT implants. These results indicate that inhibin and seminiferous tubule fluid production, both functions of the Sertoli cell, are under different hormonal control. The maintenance of inhibin production by the testis requires the support of pituitary hormones, presumably FSH, while seminiferous tubule fluid production requires testosterone, presumably through LH stimulation of Leydig cells. These findings are consistent with the hypothesis that inhibin is produced in response to trophic stimulation by FSH.  相似文献   

15.
Mammalian gametogenesis is regulated through complex interactions between germ and somatic cells. To investigate the mechanism underlying the differentiation of functional gametes, some genes specifically expressed during gametogenesis have been isolated and characterized. In a search for further examples of such genes, we have isolated from a newborn mouse testis cDNA library, a clone corresponding to mouse inhibin alpha-subunit. Although it is known that the inhibin alpha-subunit molecule is abundantly produced in ovarian follicle and in testicular Sertoli cells, the spatial and temporal patterns of expression of this gene remain to be elucidated. In this study, the patterns of expression of inhibin alpha-subunit mRNA during mouse gametogenesis were examined by RNA blot, cytoplasmic dot and in situ hybridization techniques. In the testis, the concentration of inhibin alpha-subunit mRNA increased from about 16 dpc (days post coitum), peaked at birth and then gradually decreased, paralleling testicular development. Inhibin alpha-subunit mRNA was localized in Sertoli cells of wild type as well as W/Wv testes. In adult testis, mRNA was restricted to the perinuclear cytoplasm of Sertoli cells. Inhibin alpha-subunit mRNA was expressed in follicle cells of adult ovary more abundantly than in adult testis. Analysis of expression during folliculogenesis showed that the accumulation of this mRNA began in preantrum follicles and the level of expression reached a maximum in Graafian follicles.  相似文献   

16.
Summary In a very strict sense, the primary (gonadal) sex of mammals is determined not so much by the presence or absence of the Y but the expression or nonexpression of the evolutionary extremely conserved plasma membrane H-Y antigen. The central somatic blastema of embryonic indifferent gonads contains one cell lineage characterized by the possession of S−F differentiation antigen that differentiates into testicular Sertoli cells in the presence of H-Y and into ovarian follicular (granulosa) cells in its absence. This cell lineage appears to play the most critical role in gonadal differentiation. Whether or not testicular Leydig cells and ovarian theca cells are similarly derived from the common cell lineage has not been determined. Nevertheless, if given H-Y antigen, presumptive theca-cell precursors of the fetal ovary acquire hCG (LH?)-receptors—the characteristic of fetal Leydig cells. Presented in the formal symposium on Sexual Differentiation in Vitro and in Vivo at the 29th Annual Meeting of the Tissue Culture Association, Denver, Colorado, June 4–8, 1978. This work was supported by Contract NO1-CB-33907, and Grants No. 1 RO1 AG00042 and No. 5 RO1 CA16952 from the National Institutes of Health.  相似文献   

17.
Inhibin is a glycoprotein hormone composed of two nonidentical subunits. It is produced by the ovary and testis and plays a vital role in gonadal function by inhibiting the secretion of FSH. More recently, additional activities associated with inhibin peptides have been identified. Inhibin heterodimers (alpha-beta) are reported to act directly on ovarian granulosa cells and inhibit estrogen production induced by FSH. Furthermore, homodimers of beta-inhibin subunits stimulate the secretion of FSH, an activity that is directly opposite to that of inhibin. Each of these inhibin-related activities are concerned with the hypothalamic-pituitary-gonadal axis. We have investigated further the complexity of inhibin activity by determining whether inhibin genes are expressed in nongonadal tissue. RNA hybridization experiments demonstrate that the alpha-inhibin gene is expressed in the sheep adrenal cortex and hybridization histochemistry shows that this gene is expressed in each of the functional zones within the cortex. Dot blot analysis showed that the level of alpha mRNA within the adrenal is influenced by ACTH, one of the major regulators of adrenal cortex function. These observations imply that there are inhibin-related peptides not directly associated with the gonads. beta-inhibin gene expression was not clearly detected in the adrenal and we conclude that if expression occurs then it does so at extremely low levels.  相似文献   

18.
SMAD3 regulates gonadal tumorigenesis   总被引:3,自引:0,他引:3  
Inhibin is a secreted tumor suppressor and an activin antagonist. Inhibin alpha null mice develop gonadal sex cord-stromal tumors with 100% penetrance and die of a cachexia-like syndrome due to increased activin signaling. Because Sma and Mad-related protein (SMAD)2 and SMAD3 transduce activin signals in vitro, we attempted to define the role of SMAD3 in gonadal tumorigenesis and the wasting syndrome by generating inhibin alpha and Smad3 double mutant mice. Inhibin alpha and Smad3 double homozygous males were protected from early tumorigenesis and the usual weight loss and death. Approximately 90% of these males survived to 26 wk in contrast to 95% of inhibin-deficient males, which develop bilateral testicular tumors and die of the wasting syndrome by 12 wk. Testicular tumors were either absent or unilaterally slow growing and less hemorrhagic in the majority of double-knockout males. In contrast, development of the ovarian tumors and wasting syndrome was delayed, but still occurred, in the majority of the double-knockout females by 26 wk. In double mutant females, tumor development was accompanied by typical activin-induced pathological changes. In summary, we identify an important function of SMAD3 in gonadal tumorigenesis in both sexes. However, this effect is significantly more pronounced in the male, indicating that SMAD3 is the primary transducer of male gonadal tumorigenesis, whereas SMAD3 potentially overlaps with SMAD2 function in the ovary. Moreover, the activin-induced cachexia syndrome is potentially mediated through both SMAD2 and SMAD3 or only through SMAD2 in the liver and stomach. These studies identify sexually dimorphic functions of SMAD3 in gonadal tumorigenesis.  相似文献   

19.
Summary The localization of inhibin -subunit in the human testis was studied at the light- and electron-microscope level with immunostaining techniques. Antibodies against specific fragments of porcine and human inhibin -subunits were utilized. At light microscopy, inhibin -subunit immunoreactivity was detected in Sertoli cells, spermatocytes and in some Leydig cells. At electron microscopy, gold labeling was found in the cisternae of the Golgi apparatus and in the endoplasmic reticulum of Sertoli and Leydig cells. Gold labeling for inhibin was also found in coated vesicles in the cytoplasm of Sertoli cells as well as in coated pits and coated vesicles in the cytoplasm of some spermatocytes. The results of the present study suggest that, in the human testis, inhibin is produced by Sertoli and Leydig cells and is taken up by spermatocytes, on which it might act in a paracrine manner.  相似文献   

20.
Immunohistochemical detection of inhibin in the gonad   总被引:1,自引:0,他引:1  
Antiserum to inhibin was produced in rabbits by immunization with a synthetic [Tyr30]alpha-chain(1-30)NH2 fragment of porcine inhibin coupled to bovine serum albumin, and the elicited antiserum was used in conjunction with the avidin-biotin immunoperoxidase procedure to localize inhibin-reactive cells in various rat tissue preparations. In the testes, only the Sertoli cells revealed immunoreactivity with the antiserum. Intense staining was also observed in ovarian follicular granulosa cells but not in the theca layer outside the basement membrane. In addition, the luteal cells in the corpus luteum were also stained by the antiserum. The positive staining in the gonadal tissues could be blocked completely by pre-adsorbing the serum with either the synthetic peptide or native inhibin. Immunostaining was not detected in brain, pituitary, thymus, stomach, pancreas, kidney and adrenal section, thus confirming that inhibin is a polypeptide originating only from specific cells of the gonad.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号