首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemokines are believed to play a key role in the pathogenesis of acute pancreatitis. We have earlier shown that pancreatic acinar cells produce the chemokine monocyte chemotactic protein (MCP)-1 in response to caerulein hyperstimulation, demonstrating that acinar-derived MCP-1 is an early mediator of inflammation in acute pancreatitis. Blocking chemokine production or action is a major target for pharmacological intervention in a variety of inflammatory diseases, such as acute pancreatitis. 2-Methyl-2-[[1-(phenylmethyl)-1H-indazol-3yl]methoxy]propanoic acid (bindarit) has been shown to preferentially inhibit MCP-1 production in vitro in monocytes and in vivo without affecting the production of the cytokines IL-1, IL-6, or the chemokines IL-8, protein macrophage inflammatory-1alpha, and RANTES. The present study aimed to define the role of MCP-1 in acute pancreatitis with the use of bindarit. In a model of acute pancreatitis induced by caerulein hyperstimulation, prophylactic as well as therapeutic treatment with bindarit significantly reduced MCP-1 levels in the pancreas. Also, this treatment significantly protected mice against acute pancreatitis as evident by attenuated hyperamylasemia neutrophil sequestration in the pancreas (pancreatic MPO activity), and pancreatic acinar cell injury/necrosis on histological examination of pancreas sections.  相似文献   

2.
It is well known that inflammation induced by Helicobacter pylori is characterized by the local production of cytokines and chemokines. In the present study, we analyse the kinetics of MCP-1, IL-12 and IL-4 induction during the interaction of peripheral blood mononuclear cells with killed and/or live H. pylori. Our results demonstrate that live H. pylori does not induce IL-4 release whereas it stimulates MCP-1 and IL-12 production. In addition, the neutralization of IL-12 with monoclonal antibodies determines a lower MCP-1 release. These data demonstrate that MCP-1 production is in part supported by IL-12 induced by live H. pylori. On the contrary, killed H. pylori stimulates the IL-4 but not MCP-1 and IL-12 production. The combined treatment with killed and live H. pylori upregulates the IL-4 production and at the same time downregulates IL-12 and MCP-1 production.  相似文献   

3.
The host response to Gram-negative LPS is characterized by an influx of inflammatory cells into host tissues, which is mediated, in part, by localized production of chemokines. The expression and function of chemokines in vivo appears to be highly selective, though the molecular mechanisms responsible are not well understood. All CXC (IFN-gamma-inducible protein (IP-10), macrophage inflammatory protein (MIP)-2, and KC) and CC (JE/monocyte chemoattractant protein (MCP)-1, MCP-5, MIP-1alpha, MIP-1beta, and RANTES) chemokine genes evaluated were sensitive to stimulation by LPS in vitro and in vivo. While IL-10 suppressed the expression of all LPS-induced chemokine genes evaluated in vitro, treatment with IFN-gamma selectively induced IP-10 and MCP-5 mRNAs, but inhibited LPS-induced MIP-2, KC, JE/MCP-1, MIP-1alpha, and MIP-1beta mRNA and/or protein. Like the response to IFN-gamma, LPS-mediated induction of IP-10 and MCP-5 was Stat1 dependent. Interestingly, only the IFN-gamma-mediated suppression of LPS-induced KC gene expression was IFN regulatory factor-2 dependent. Treatment of mice with LPS in vivo also induced high levels of chemokine mRNA in the liver and lung, with a concomitant increase in circulating protein. Hepatic expression of MIP-1alpha, MIP-1beta, RANTES, and MCP-5 mRNAs were dramatically reduced in Kupffer cell-depleted mice, while IP-10, KC, MIP-2, and MCP-1 were unaffected or enhanced. These findings indicate that selective regulation of chemokine expression in vivo may result from differential response of macrophages to pro- and antiinflammatory stimuli and to cell type-specific patterns of stimulus sensitivity. Moreover, the data suggest that individual chemokine genes are differentially regulated in response to LPS, suggesting unique roles during the sepsis cascade.  相似文献   

4.
Sodhi A  Tripathi A 《Cytokine》2008,41(2):162-173
The role of immune-neuroendocrine interactions in the autoimmune diseases is well recognized. Autoimmune rheumatoid diseases in their active phase have been characterized by high levels of prolactin (PRL) as well as proinflammatory cytokines which suggest a co-relationship between them. In the present study, we have investigated the profile of cytokines secreted by macrophages on treatment with PRL and growth hormone (GH) in vitro. Significantly enhanced production of cytokines IL-1beta, IL-12p40 and IFN-gamma was observed on treatment of macrophages with PRL or GH. However, higher doses of PRL (1000 ng/ml) induced the production of anti-inflammatory cytokine IL-10, with significant abrogation in production of proinflammatory cytokines. It is further observed that PRL and GH induced the production of chemokines MIP-1alpha and RANTES. PRL but not GH selectively induced significantly enhanced production of MCP-1 and IP-10. It is further shown that p38 MAP kinase, STAT3 and NF-kappaB could play a differential regulatory role in PRL or GH induced production of cytokines by macrophages.  相似文献   

5.
The present study was designed to elucidate the role of p38 mitogen-activated protein kinase (p38) in the pathogenesis of inflammation, using a mouse contact hypersensitivity (CHS) model induced by 2,4-dinitro-1-fluorobenzene (DNFB). Ear swelling was induced by challenge with DNFB, accompanied by infiltration of mononuclear cells, neutrophils, and eosinophils and a marked increase in mRNA levels of cytokines such as interleukin (IL)-2, interferon (IFN)-gamma, IL-4, IL-5, IL-1beta, IL-18, and tumor necrosis factor-alpha in the challenged ear skin. Both ear swelling and the number of infiltrated cells in DNFB-challenged ear skin were significantly inhibited by treatment with SB202190, a p38 inhibitor. Furthermore, the DNFB-induced expression of all cytokines except IL-4 was significantly inhibited by treatment with SB202190. Ribonuclease protection assay revealed that the mRNA levels of chemokines such as IP-10 and MCP-1 in ear skin were markedly increased at 24 h after challenge with DNFB. The induction of these chemokines was significantly inhibited by treatment with SB202190. In p38alpha +/- mice, both ear swelling and infiltration of cells induced by DNFB were reduced compared with those in wild-type mice. However, induction of cytokines by DNFB was also observed in p38alpha +/- mice, although the induction of IFN-gamma, IL-5, and IL-18 was typically reduced compared with that in wild-type mice. Challenge with DNFB slightly induced IP-10 and MCP-1 mRNA in p38alpha +/- mice, with weaker signals than those in SB202190-treated wild-type mice. These results suggest that p38 plays a key role in CHS and is an important target for the treatment of CHS.  相似文献   

6.
Acute and fulminant liver failure induced by viral hepatitis, alcohol or other hepatotoxic drugs are associated with tumor necrosis factor (TNF) production. D-Galactosamine (D-GalN) and lipopolysaccharide (LPS)-induced liver injury is an experimental model of fulminant hepatic failure. In this model, TNF-alpha plays a central role in the pathogenesis of D-GalN/LPS-induced liver injury in mice. Y-40138, N-[1-(4-[4-(pyrimidin-2-yl)piperazin-1-yl]methyl phenyl)cyclopropyl] acetamide.HCl inhibits TNF-alpha and augments interleukin (IL)-10 production in LPS-injected mice in plasma. In the present study, we examined the effect of Y-40138 on D-GalN/LPS-induced hepatitis. Y-40138 (10mg/kg, i.v.) significantly suppressed TNF-alpha and monocyte chemoattractant protein-1 (MCP-1) production and augmented IL-10 production in plasma. In addition, Y-40138 significantly inhibited TNF-alpha production induced by direct interaction between human T lymphocytes and macrophages. Y-40138 suppressed plasma alanine transaminase (ALT) elevation and improved survival rate in D-GalN/LPS-injected mice, and it is suggested that the protective effect of Y-40138 on hepatitis may be mediated by inhibition of TNF-alpha and MCP-1, and/or augmentation of IL-10. This compound is expected to be a new candidate for treatment of cytokine and/or chemokine-related liver diseases such as alcoholic hepatitis.  相似文献   

7.
Recognition of conserved bacterial structures called pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs), may lead to induction of a variety of "early immediate genes" such as chemokines. In the current study, we have in an ex vivo whole blood model studied the induction of the chemokines MIP-1alpha, MCP-1 and IL-8 by various PAMPs. The rate of appearance of Escherichia coli-Lipopolysaccharide (LPS) induced chemokines differed. The production of MIP-1alpha and IL-8 was after 1 h of stimulation significantly higher when compared to unstimulated whole blood, whereas MCP-1 was not significantly elevated until after 3 h. At peak levels the MIP-1alpha concentration induced by E. coli-LPS was 3-5-fold higher than MCP-1 and IL-8. By specific cell depletion, we demonstrated that all three chemokines were mainly produced by monocytes. However, the mRNA results showed that IL-8 was induced in both monocytes and granulocytes. The production of all three chemokines, induced by the E. coli-LPS and Neisseria meningitidis-LPS, was significantly inhibited by antibodies against CD14 and TLR4, implying these receptors to be of importance for the effects of LPS in whole blood. The chemokine production induced by lipoteichoic acid (LTA) and non-mannose-capped lipoarabinomannan (AraLAM) was, however, less efficiently blocked by antibodies against CD14 and TLR2. E. coli-LPS and LTA induced a dose-dependent increase of CD14, TLR2 and TLR4 expression on monocytes in whole blood. These data show that PAMPs may induce chemokine production in whole blood and that antibodies against PRRs inhibit the production to different extent.  相似文献   

8.
9.
Dendritic cells (DCs) are essential mediators of the host immune response to surrounding microbes. In this study, we investigate the role of DCs in the pathogenesis of a widely used colitis model, dextran sulfate sodium-induced colitis. The effect of dextran sulfate sodium on the production of proinflammatory cytokines and chemokines by bone marrow-derived DCs (BM-DCs) was analyzed. BM-DCs were adoptively transferred into C57BL/6 mice or DCs were ablated using transgenic CD11c-DTR/GFP mice before treatment with 5% dextran sulfate sodium in drinking water. We found that dextran sulfate sodium induced production of proinflammatory cytokines (IL-12 and TNF-alpha) and chemokines (KC, MIP-1alpha, MIP-2, and MCP-1) by DCs. Adoptive transfer of BM-DCs exacerbated dextran sulfate sodium colitis while ablation of DCs attenuated the colitis. We conclude that DCs are critical in the development of acute dextran sulfate sodium colitis and may serve a key role in immune balance of the gut mucosa.  相似文献   

10.
We examined the mechanisms involved in the development of lung lesions after infection with Cryptococcus neoformans by comparing the histopathological findings and chemokine responses in the lungs of mice infected with C. neoformans and assessed the effect of interleukin (IL) 12 which protects mice from lethal infection. In mice infected intratracheally with a highly virulent strain of C. neoformans, the yeast cells multiplied quickly in the alveolar spaces but only a poor cellular inflammatory response was observed throughout the course of infection. Very little or no production of chemokines, including MCP-1, RANTES, MIP-1alpha, MIP-1beta and IP-10, was detected at the mRNA level using RT-PCR as well as at a protein level in MCP-1, RANTES and MIP-1alpha. In contrast, intraperitoneal administration of IL-12 induced the synthesis of these chemokines and a marked cellular inflammatory response involving histiocytes and lymphocytes in infected mice. Our findings were confirmed by flow cytometry of intraparenchymal leukocytes obtained from lung homogenates which showed IL-12-induced accumulation of inflammatory cells consisting mostly of macrophages and CD4+ alphabeta T cells. On the other hand, C-X-C chemokines including MIP-2 and KC, which attract neutrophils, were produced in infected and PBS-treated mice but treatment with IL-12 showed a marginal effect on their level, and neutrophil accumulation was similar in PBS- and IL-12-treated mice infected with C. neoforman. Our results demonstrate a close correlation between chemokine levels and development of lung lesions, and suggest that the induction of chemokine synthesis may be one of the mechanisms of IL-12-induced protection against cryptococcal infection.  相似文献   

11.
Eosinophils are the predominant cell type recruited in inflammatory reactions in response to allergen challenge. The mechanisms of selective eosinophil recruitment in allergic reactions are not fully elucidated. In this study, the ability of several C-C chemokines to induce transendothelial migration (TEM) of eosinophils in vitro was assessed. Eotaxin, eotaxin-2, monocyte chemotactic protein (MCP)-4, and RANTES induced eosinophil TEM across unstimulated human umbilical vein endothelial cells (HUVEC) in a concentration-dependent manner with the following rank order of potency: eotaxin approximately eotaxin-2 > MCP-4 approximately RANTES. The maximal response induced by eotaxin or eotaxin-2 exceeded that of RANTES or MCP-4. Preincubation of eosinophils with anti-CCR3 Ab (7B11) completely blocked eosinophil TEM induced by eotaxin, MCP-4, and RANTES. Activation of endothelial cells with IL-1beta or TNF-alpha induced concentration-dependent migration of eosinophils, which was enhanced synergistically in the presence of eotaxin and RANTES. Anti-CCR3 also inhibited eotaxin-induced eosinophil TEM across TNF-alpha-stimulated HUVEC. The ability of eosinophil-active cytokines to potentiate eosinophil TEM was assessed by investigating eotaxin or RANTES-induced eosinophil TEM across resting and IL-1beta-stimulated HUVEC in the presence or absence of IL-5. The results showed synergy between IL-5 and the chemokines but not between IL-5 and the endothelial activator IL-1beta. Our data suggest that eotaxin, eotaxin-2, MCP-4, and RANTES induce eosinophil TEM via CCR3 with varied potency and efficacy. Activation of HUVEC by IL-1beta or TNF-alpha or priming of eosinophils by IL-5 both promote CCR3-dependent migration of eosinophils from the vasculature in conjunction with CCR3-active chemokines.  相似文献   

12.
The chemokine monocyte chemoattractant protein-1 (MCP-1) and its receptor CCR2 have been shown to play an important role in the migration and trafficking of macrophages and Th1 effector cells in experimental autoimmune encephalomyelitis. Also, MCP-1 has been reported to regulate oral tolerance induction by inhibition of Th1 cell-related cytokines and by the ability of Abs to MCP-1 to inhibit oral tolerance. This study demonstrates that neither MCP-1 nor its receptor CCR2 is required for the induction of oral tolerance. Mice deletional for either MCP-1 or CCR2 had suppressed cell-proliferative and Th1 responses following oral administration and immunization with myelin oligodendrocyte glycoprotein (MOG(35-55)). TGF-beta was up-regulated in fed and immunized deletional mice, while IL-4 was absent from deletional mice, but up-regulated in controls. Decreased experimental autoimmune encephalomyelitis severity was found in MOG(35-55)-fed MCP-1 deletional mice, indicating induction of oral tolerance. These results demonstrate that MCP-1 is not required for induction of oral tolerance and that MCP-1 and CCR2 are essential for up-regulation of IL-4 in tolerized mice.  相似文献   

13.
In the present study we analyse chemokine expression in the remodelling of subchondral bone in arthritis patients. Trabecular bone biopsies were tested by immunohistochemistry to identify interleukin (IL)-8, GRO-alpha, MCP-1, RANTES, MIP-1alpha and MIP-1beta expression. Subsequently, we evaluated by immunoassay the effect of interferon (IFN)-gamma and IL-6 on chemokine production by osteoarthritis (OA), rheumatoid arthritis (RA) and post-traumatic (PT) patients' isolated osteoblasts (OB). OB constitutively produced in situ IL-8, GRO-alpha, MCP-1, RANTES and MIP-1alpha. MIP-1beta was positive only in mononuclear cells. In RA many of these chemokines were also produced by mononuclear cells. IFN-gamma significantly down-regulated IL-8 and up-regulated MCP-1 produced by OB from all patients tested, whereas it did not affect the other chemokines analysed. Moreover, IFN-gamma reduced IL-1beta-stimulated IL-8 production but significantly increased both MCP-1 and RANTES. Interestingly, IL-6 significantly downregulated IFN-gamma-induced MCP-1 production, that was significantly lower in OA compared to RA patients. OB expressed chemokines both in vivo and in vitro suggesting that these cells are primary effectors in the bone capable of regulating autocrine/paracrine circuits that affect bone remodelling in these diseases.  相似文献   

14.
15.
Electronegative low-density lipoprotein (LDL(-)) is a modified subfraction of LDL present in plasma able to induce the release of interleukin 8 (IL-8) and monocyte chemotactic protein 1 (MCP-1) by human umbilical vein endothelial cells (HUVEC). To ascertain whether further inflammation mediator release could be induced by LDL(-), a protein array system was used to measure 42 cytokines and related compounds. Native LDL and LDL(-) isolated from normolipemic subjects were incubated for 24 h with HUVEC and culture supernatants were used to measure inflammation mediator release. The protein array revealed that IL-6, granulocyte/monocyte colony-stimulating factor (GM-CSF) and growth-related oncogene (GRO) release were increased by cultured HUVEC in response to LDL(-). LDL(-) enhanced production of IL-6 (4-fold vs. LDL(+)), GM-CSF (4-fold), GRObeta (2-fold) and GROgamma (7-fold) was confirmed by ELISA. Time-course experiments revealed that IL-6 was released earlier than the other inflammation mediators, suggesting a first-wave cytokine action. However, the addition of IL-6 alone did not stimulate the production of IL-8, MCP-1 or GM-CSF. Moreover, IL-8, MCP-1 or GM-CSF alone did not promote the release of the other inflammatory molecules. Modification of LDL(+) by phospholipase A(2)-mediated lipolysis or by loading with non-esterified fatty acids (NEFA) reproduced the action of LDL(-), thereby suggesting the involvement of NEFA and/or lysophosphatidylcholine in the release of these molecules. Our results indicate that LDL(-) promotes a proinflammatory phenotype in endothelial cells through the production of cytokines, chemokines and growth factors.  相似文献   

16.
The present work aimed to take advantage of the screening capacity of protein arrays to search for additional targets of rhein in interleukin (IL)-1-stimulated chondrocytes. Primary cultures of chondrocytes from osteoarthritic (OA) patients were stimulated for 24 and 48 h with 1 ng/ml of IL-1alpha, in the presence or absence of 10(-5) M of rhein. Culture supernatants were analyzed with arrays membranes consisting of 120 antibodies directed against cytokines, chemokines, and angiogenic or growth factors and were controlled for 8 proteins by specific immuno-enzymatic assays (ELISA). Protein arrays showed that several CC or CXC chemokines, the growth factor GM-CSF, the cytokines IL-6, IL-7 and IL-10 (but unexpectedly not IL-1beta or TNFalpha) and the adhesion molecule ICAM-1 were induced maximally by IL-1alpha. In IL-1-stimulated chondrocytes, rhein reduced slightly the production of MCP-1 and increased those of IL-1Ra, of the cytokine receptors sgp130, IL-6R, sTNFR I and R II, but also of some chemokines or ICAM-1. Specific ELISAs confirmed the effect of rhein on MCP-1, IL-1Ra, sgp130, IL-6R and sTNFR II but was discrepant for GROalpha and were always more sensitive than protein arrays to detect IL-1 effects such as IL-1Ra and TNFalpha release. The present data show that rhein modulated some IL-1-induced responses contributing possibly to its chondroprotective (IL-1Ra, MCP-1) or cytokine modifying (sTNFR II, sgp130) properties, but that protein arrays were poorly sensitive to check for IL-1- and/or rhein-induced changes.  相似文献   

17.
It has been hypothesized that hormonally regulated histamine production plays a role in preparation of the uterus for implantation. Histidine decarboxylase (HDC) is the rate-limiting enzyme for histamine production. The current study was designed to determine intrauterine expression of HDC mRNA expression during pregnancy in the mouse. High levels of HDC mRNA expression were observed in the preimplantation mouse uterus with peak expression occurring on day 4. High levels of HDC mRNA expression were also detected in the post-implantation uterus. In an effort to determine whether HDC mRNA is regulated by pro-inflammatory cytokines, the HDC mRNA pattern was compared to intrauterine expression of mRNA's for interleukin-1alpha (IL-1alpha), IL-1beta, macrophage chemotactic protein-1 (MCP-1) and RANTES (regulated on activation, normal T expressed and secreted) during the peri-implantation period. IL-1beta, MCP-1 and RANTES mRNA levels were increased in the uterus on days 1-2 and on days 4-5. Increased expression of IL-1alpha mRNA was observed on days 1-2 and days 5-7. There was no clear relationship between HDC mRNA expression and cytokine/chemokine mRNA expression. Progesterone-stimulated intrauterine expression of HDC mRNA. Intrauterine cytokine/chemokine mRNA was also hormonally regulated. This data allowed the possibility that one or more of these pro-inflammatory cytokines could be involved in regulating intrauterine HDC mRNA production. Recombinant IL-1alpha, IL-1beta, MCP-1 and RANTES all failed to induce HDC mRNA expression in the preimplantation uterus in a mouse pseudopregnancy model. At the same time, IL-1beta induced the expression of mRNA for each of the four cytokines/chemokines. Despite the fact that these were also produced in the uterus during pregnancy and were hormonally regulated, none of these cytokines induced intrauterine HDC mRNA expression. The data suggest that progesterone is involved in the regulation of HDC mRNA expression in the preimplantation uterus, but IL-1alpha/beta, MCP-1 and RANTES, which have been reported to regulate histamine synthesis during inflammatory processes, do not appear to play a role.  相似文献   

18.
The expression of the chemokine, eotaxin-1, and its receptors in normal and osteoarthritic human chondrocytes was examined, and its role in cartilage degradation was elucidated in this study. Results indicated that plasma concentrations of eotaxin-1 as well as the chemokines, RANTES, and MCP-1alpha, were higher in patients with osteoarthritis (OA) than those in normal humans. Stimulation of chondrocytes with IL-1beta or TNF-alpha significantly induced eotaxin-1 expression. The production of eotaxin-1 induced expression of its own receptor of CCR3 and CCR5 on the cell surface of chondrosarcomas, suggesting that an autocrine/paracrine pathway is involved in eotaxin-1's action. In addition, eotaxin-1 markedly increased the expressions of MMP-3 and MMP-13 mRNA, but had no effect on TIMP-1 expression in chondrocytes. However, pretreatment of anti-eotaxin-1 antibody significantly decreased the MMP-3 expression induced by IL-1beta. These results first demonstrate that human chondrocytes express the chemokine, eotaxin-1, and that its expression is induced by treatment with IL-1beta and TNF-alpha. The cytokine-triggered induction of eotaxin-1 further results in enhanced expressions of its own receptor of CCR3, CCR5, and MMPs, suggesting that eotaxin-1 plays an important role in cartilage degradation in OA.  相似文献   

19.
The complement-derived anaphylatoxin, C5a, is a potent phlogistic molecule that mediates its effects by binding to C5a receptor (C5aR; CD88). We now demonstrate specific binding of radiolabeled recombinant mouse C5a to mouse dermal microvascular endothelial cells (MDMEC) with a K(d50) of 3.6 nM and to approximately 15,000-20,000 receptors/cell. Recombinant mC5a competed effectively with binding of [(125)I]rmC5a to MDMEC. Enhanced binding of C5a occurred, as well as increased mRNA for C5aR, after in vitro exposure of MDMEC to LPS, IFN-gamma, or IL-6 in a time- and dose-dependent manner. By confocal microscopy, C5aR could be detected on surfaces of MDMEC using anti-C5aR Ab. In vitro expression of macrophage inflammatory protein-2 (MIP-2) and monocyte chemoattractant protein-1 (MCP-1) by MDMEC was also measured. Exposure of MDMEC to C5a or IL-6 did not result in changes in MIP-2 or MCP-1 production, but initial exposure of MDMEC to IL-6, followed by exposure to C5a, resulted in significantly enhanced production of MIP-2 and MCP-1 (but not TNF-alpha and MIP-1alpha). Although LPS or IFN-gamma alone induced some release of MCP-1 and MIP-2, pre-exposure of these monolayers to LPS or IFN-gamma, followed by addition of C5a, resulted in synergistic production of MIP-2 and MCP-1. Following i.v. infusion of LPS into mice, up-regulation of C5aR occurred in the capillary endothelium of mouse lung, as determined by immunostaining. These results support the hypothesis that C5aR expression on MDMEC and on the microvascular endothelium of lung can be up-regulated, suggesting that C5a in the co-presence of additional agonists may mediate pro-inflammatory effects of endothelial cells.  相似文献   

20.
Airway epithelial cells are a rich source of eosinophil-selective C-C chemokines. We investigated whether cytokines and the topical glucocorticoid budesonide differentially regulate RANTES, monocyte chemoattractant protein-4 (MCP-4), and eotaxin mRNA and protein expression in the human bronchial epithelial cell line BEAS-2B and in primary human bronchial epithelial cells by Northern blot analysis and ELISAs. Eotaxin and MCP-4 mRNA expression induced by TNF-alpha alone or in combination with IFN-gamma was near-maximal after 1 h, peaked at 4 and 8 h, respectively, remained unchanged up to 24 h, and was protein synthesis independent. In contrast, RANTES mRNA was detectable only after 2 h and slowly increased to a peak at 24 h, and was protein synthesis dependent. Induction of eotaxin and MCP-4 mRNA showed a 10- to 100-fold greater sensitivity to TNF-alpha compared with RANTES mRNA. IL-4 and IFN-gamma had selective effects on chemokine expression; IL-4 selectively up-regulated the expression of eotaxin and MCP-4 and potentiated TNF-alpha-induced eotaxin, while IFN-gamma markedly potentiated only the TNF-alpha-induced expression of RANTES. Although budesonide inhibited the expression of chemokine mRNA to a variable extent, it effectively inhibited production of eotaxin and RANTES protein. Budesonide inhibited both RANTES- and eotaxin promoter-driven reporter gene activity. Budesonide also selectively accelerated the decay of eotaxin and MCP-4 mRNA. These results point to IL-4 as a possible mediator by which Th2 cells may induce selective production of C-C chemokines from epithelium and indicate that glucocorticoid inhibit chemokine expression through multiple mechanisms of action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号