首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of repetitive dynamic fatiguing contractions on the neuromuscular characteristics of the human triceps surae was investigated in 10 subjects. The load was 50% of the torque produced during a maximal voluntary contraction, and the exercise ended when the ankle range of motion declined to 50% of control. The maximal torque of the triceps surae and the electromyographic (EMG) activities of the soleus and medial gastrocnemius were studied in response to voluntary and electrically induced contractions before and after the fatiguing task and after 5 min of recovery. Reflex activities were also tested by recording the Hoffmann reflex (H reflex) and tendon reflex (T reflex) in the soleus muscle. The results indicated that whereas the maximal voluntary contraction torque, tested in isometric conditions, was reduced to a greater extent (P < 0.05) at 20 degrees of plantar flexion (-33%) compared with the neutral position (-23%) of the ankle joint, the EMG activity of both muscles was not significantly reduced after fatigue. Muscle activation, tested by the interpolated-twitch method or the ratio of the voluntary EMG to the amplitude of the muscle action potential (M-wave), as well as the neuromuscular transmission and sarcolemmal excitation, tested by the M-wave amplitude, did not change significantly after the fatiguing exercise. Although the H and T reflexes declined slightly (10-13%; P < 0.05) after fatigue, these adjustments did not appear to have a direct deleterious effect on muscle activation. In contrast, alterations in the mechanical twitch time course and postactivation potentiation indicated that intracellular Ca(2+)-controlled excitation-contraction coupling processes most likely played a major role in the force decrease after dynamic fatiguing contractions performed for short duration.  相似文献   

2.
Electrical stimulation (1-ms pulses, 100 Hz) produces more torque than expected from motor axon activation (extra contractions). This experiment investigates the most effective method of delivering this stimulation for neuromuscular electrical stimulation. Surface stimulation (1-ms pulses; 20 Hz for 2 s, 100 Hz for 2 s, 20 Hz for 3 s) was delivered to triceps surae and wrist flexors (muscle stimulation) and to median and tibial nerves (nerve stimulation) at two intensities. Contractions were evaluated for amplitude, consistency, and stability. Surface electromyograph was collected to assess how H-reflexes and M-waves contribute. In the triceps surae, muscle stimulation produced the largest absolute contractions (23% maximal voluntary contraction), evoked the largest extra contractions as torque increased by 412% after the 100-Hz stimulation, and was more consistent and stable compared with tibial nerve stimulation. Absolute and extra contraction amplitude, consistency, and stability of evoked wrist flexor torques were similar between stimulation types: torques reached 11% maximal voluntary contraction, and extra contractions increased torque by 161%. Extra contractions were 10 times larger in plantar flexors compared with wrist flexors with muscle stimulation but were similar with nerve stimulation. For triceps surae, H reflexes were 3.4 times larger than M waves during nerve stimulation, yet M waves were 15 times larger than H reflexes during muscle stimulation. M waves in the wrist flexors were larger than H reflexes during nerve (8.5 times) and muscle (18.5 times) stimulation. This is an initial step toward utilizing extra contractions for neuromuscular electrical stimulation and the first to demonstrate their presence in the wrist flexors.  相似文献   

3.
This study aimed to clarify the influence of the intensity of a conditioning contraction on subsequent isometric twitch and maximal voluntary concentric torques. Subjects (n=12men) performed voluntary isometric plantar flexion for six seconds as a conditioning contraction, at intensities of 40%, 60%, 80% and 100% of a maximal voluntary isometric contraction (MVIC). Before and immediately after the conditioning contraction, isometric twitch and maximal voluntary concentric (180°/s) plantar flexion torques were determined. Surface electromyograms were recorded from the triceps surae muscles and M-wave amplitudes and root-mean-square values of the electromyographic signals (RMS(EMG)) were calculated. The isometric twitch torque increased significantly after conditioning contraction at all intensities (P<0.05), whereas maximal voluntary concentric torque increased significantly only at 80% and 100% MVIC conditions (P<0.05). It is concluded that during a six second conditioning contraction, the effect of the intensity of a conditioning contraction on subsequent torque development is different between an isometric twitch and maximal voluntary concentric contractions, with the latter being less affected.  相似文献   

4.
Blood pressure and heart rate changes during sustained isometric exercise were studied in 11 healthy male volunteers. The responses were measured during voluntary and involuntary contractions of the biceps brachii at 30% of maximal voluntary contraction (MVC), and the triceps surae at 30% and 50% MVC. Involuntary contractions were evoked by percutaneous electrical stimulation of the muscle. Measurements of the time to peak tension of maximal twitch showed the biceps brachii (67.0 +/- 7.9 ms) muscle to be rapidly contracting, and the triceps surae (118.0 +/- 10.5 ms) to be slow contracting. The systolic and diastolic blood pressures increased linearly throughout the contractions, and systolic blood pressure increased more rapidly than diastolic. There was no significant difference in response to stimulated or voluntary contractions, nor was there any significant difference between the responses to contractions of the calf or arm muscles at the same relative tension. In contrast the heart rate rose to a higher level (P less than 0.01) in the biceps brachii than the triceps surae at given % MVC, and during voluntary compared with the electrically evoked contractions in the two muscle groups. It was concluded that the arterial blood pressure response to isometric contractions, unlike heart rate, is primarily due to a reflex arising within the active muscles (cf. Hultman and Sj?holm 1982) which is associated with relative tension but independent of contraction time and muscle mass.  相似文献   

5.
The effects of 21 days voluntary leg (plaster) immobilization on the mechanical properties of the triceps surae have been studied in 11 young female subjects, mean age 19.4 years. The results show that during the period of immobilization the mean time to peak tension (TPT) and half relaxation time (1/2RT) and tension (Pt) of the maximal twitch increased significantly (p less than 0.001) but the effects were short lived. Maximal tension and contraction times of the twitch recovered within 2-14 days following the removal of the plaster cast. The electrically evoked tetanic tensions at 10 Hz and 20 Hz did not change significantly (P greater than 0.1) during immobilization, but the 50 Hz tetanic tension (Po50) and maximal voluntary contraction (MVC) were reduced (p less than 0.05). The fall in Po50 and MVC was associated with 10% decrease in the estimated muscle (plus bone) cross-sectional area. The relative (%) change in Po50 and MVC following immobilization was related to the initial physiological status (as indicated by the response of the triceps surae to a standard fatigue test prior to immobilization) of the muscle. The rate of rise and recovery fall of the tetanus were slightly but significantly (p less than 0.01) reduced on day 7 of immobilization, but thereafter remained constant. The isokinetic properties of the triceps surae as reflected in the measured torque/velocity relation of the muscle in 4 subjects did not change significantly if account was taken of the slight degree of atrophy present following immobilization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The relationship between diaphragm electromyogram (EMG), isometric force, and length was studied in the canine diaphragm strip with intact blood supply and innervation under three conditions: supramaximal tetanic (100 Hz) phrenic nerve stimulation (STPS; n = 12), supramaximal phrenic stimulation at 25 Hz (n = 15), and submaximal phrenic stimulation at 25 Hz (n = 5). In the same preparation, the EMG-length relationship was also examined with direct muscle stimulation when the neuromuscular junction was blocked. EMG from three different sites and via two types of electrodes (direct or sewn-in and surface) were recorded during isometric contraction at different lengths. Direct EMGs were recorded from two bipolar electrodes sutured into the strip, one near its central end and the other near its costal end. A third EMG electrode configuration summed potentials from the whole strip by recording potentials between central and costal sites. Surface EMGs were recorded by a bipolar spring clip electrode that made contact with upper and lower surfaces of the muscle strip with light pressure. In all conditions of stimulation with different types of electrodes, all EMGs decreased significantly (P less than 0.05) when muscle length was changed from 50 to 120% of resting length (L0). Minimal and maximal force outputs were observed at 50 and 120% of L0, respectively, in all experiments. The results of this study indicated that the muscle length is a significant variable that affects the EMG recording and that the diaphragmatic EMG may not be an accurate reflection of phrenic nerve activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
EMG monitoring in functional electrostimulation]   总被引:1,自引:0,他引:1  
When using functional electrical stimulation (FES), correct adjustment of stimulation parameters, and monitoring of the stimulated muscle is mandatory if tissue damage is to be avoided. Although several FES systems are already in regular use, a method for direct muscle monitoring is still lacking. This paper investigates the suitability of the electromyogram (EMG) for such a purpose. In six sheep, the right latissimus dorsi muscle (LDM) and the associated thoracodorsal nerve were exposed. Stimulation was effected via electrodes placed on the nerve. Three electrodes were placed in the LDM for EMG recording, and the tendon was connected to a force transducer for isometric force measurement. Stimulation was applied for one second (burst), followed by a three-second pause. The stimulation current was increased in 0.2 mA steps, starting at 0 mA and ending at 4 mA. Throughout the investigation, the EMG signal was monitored with an oscilloscope. In addition, the EMG signal and the force transducer signal were recorded for subsequent analysis. An analysis of the data of all six sheep revealed an almost linear relationship between muscle force and m-wave amplitude (magnitude of r = 0.95, p < 0.001). M-wave monitoring during EMG recording with three intramuscular electrodes is a reliable method of monitoring FES-induced muscle activity, but the absolute force cannot be measured.  相似文献   

8.
Monosynaptic testing of excitability in firing triceps surae muscle motoneurons activated during volitional contraction was performed using a technique for recording potentials from single motor units and by producing H-reflex. Motoneuronal excitability was assessed according to level of firing index. Motoneuronal firing index decreased during transition from a low background rhythmic firing rate of less than 6 spikes/sec to one of 6–8 spikes/sec. It hardly changed with a further rise in rate to 12 spikes/sec. The dependence between firing index and spike rate are put down to changes occurring in motoneuronal excitability during the interspike interval. Findings indicate that in the low frequency range of motoneuronal firing characteristic of natural muscle contraction, discharge rate may be considered one of the factors determining excitability in the motoneuron and hence its transmission qualities.Institute of Problems in Information Transmission, Academy of Sciences of the USSR. Translated from Neirofiziologiya, Vol. 19, No. 2, pp. 210–216, March–April, 1987.  相似文献   

9.
Previous research has shown that changes in spinal excitability occur during the postural sway of quiet standing. In the present study, it was of interest to examine the independent effects of sway position and sway direction on the efficacy of the triceps surae Ia pathway, as reflected by the Hoffman (H)-reflex amplitude, during standing. Eighteen participants, tested under two different experimental protocols, stood quietly on a force platform. Percutaneous electrical stimulation was applied to the posterior tibial nerve when the position and direction of anteroposterior (A-P) center of pressure (COP) signal satisfied the criteria for the various experimental conditions. It was found that, regardless of sway position, a larger amplitude of the triceps surae H-reflex (difference of 9-14%; P = 0.005) occurred when subjects were swaying in the forward compared with the backward direction. The effects of sway position, independent of the sway direction, on spinal excitability exhibited a trend (P = 0.075), with an 8.9 +/- 3.7% increase in the H-reflex amplitude occurring when subjects were in a more forward position. The observed changes to the efficacy of the Ia pathway cannot be attributed to changes in stimulus intensity, as indicated by a constant M-wave amplitude, or to the small changes in the level of background electromyographic activity. One explanation for the changes in reflex excitability with respect to the postural sway of standing is that the neural modulation may be related to the small lengthening and shortening contractions occurring in the muscles of the triceps surae.  相似文献   

10.
In thirteen cats anesthetized with alpha-chloralose, we compared the cardiovascular and ventilatory responses to both static contraction and tendon stretch of a hindlimb muscle group, the triceps surae, with those to contraction and stretch of a forelimb muscle group, the triceps brachii. Static contraction and stretch of both muscle groups increased mean arterial pressure and heart rate, and the responses were directly proportional to the developed tension. The cardiovascular increases, however, were significantly greater (P < 0.05) when the triceps brachii muscles were contracted or stretched than when the triceps surae muscles were contracted or stretched, even when the tension developed by either maneuver was corrected for muscle weight. Likewise, the ventilatory increases were greater when the triceps brachii muscles were stretched than when the triceps surae muscles were stretched. Contraction of either muscle group did not increase ventilation. Our results suggest that in the anesthetized cat the cardiovascular responses to both static contraction and tendon stretch are greater when arising from forelimb muscles than from hindlimb muscles.  相似文献   

11.
Contractile adaptations in the human triceps surae after isometric exercise   总被引:2,自引:0,他引:2  
Ultrastructural and twitch contractile characteristics of the human triceps surae were determined in seven healthy but very sedentary subjects before and after 16 wk of unilateral isometric training at 100% maximal voluntary contraction. After training, twitch contraction time decreased by approximately 20%. One-half relaxation time, peak twitch torque, and percent fiber type in any of the muscles of the triceps surae complex were not changed by training. Type I and type II fiber areas increased in the soleus by approximately 30%, but only type II fibers showed an increased in area in the lateral gastrocnemius (40%). Despite such changes in fiber area, the volume density of the sarcoplasmic reticulum-transverse tubular (SR) network averaged 3.2 +/- 0.6 and 5.9 +/- 0.9% in type I and type II fibers, respectively, before and after training in the two heads of the gastrocnemius. Type I SR fraction increased to 3.5 +/- 1.2% after training in the soleus; however, correlations were not significant between the change in the volume density of SR and the change in twitch contraction time (R = 0.46, P = 0.45) or the change in one-half relaxation time (R = -0.68, P = 0.08). The results demonstrate that isometric training at 100% maximal voluntary contraction induced changes in twitch contraction time that were not directly related to changes in the volume density of SR in fibers of the triceps surae.  相似文献   

12.
Interpretation of EMG changes with fatigue: facts, pitfalls, and fallacies.   总被引:13,自引:0,他引:13  
Failure to maintain the required or expected force, defined as muscle fatigue, is accompanied by changes in muscle electrical activity. Although studied for a long time, reasons for EMG changes in time and frequency domain have not been clear until now. Many authors considered that theory predicted linear relation between the characteristic frequencies and muscle fibre propagation velocity (MFPV), irrespective of the fact that spectral characteristics can drop even without any changes in MFPV, or in proportion exceeding the MFPV changes. The amplitude changes seem to be more complicated and contradictory since data on increased, almost unchanged, and decreased amplitude characteristics of the EMG, M-wave or motor unit potential (MUP) during fatigue can be found in literature. Moreover, simultaneous decrease and increase in amplitude of MUP and M-wave, detected with indwelling and surface electrodes, were referred to as paradoxical. In spite of this, EMG amplitude characteristics are predominantly used when causes for fatigue are analysed. We aimed to demonstrate theoretical grounds for pitfalls and fallacies in analysis of experimental results if changes in intracellular action potential (IAP), i.e. in peripheral factors of muscle fatigue, were not taken into consideration. We based on convolution model of potentials produced by a motor unit and detected by a point or rectangular plate electrode in a homogeneous anisotropic infinite volume conductor. Presentation of MUP in the convolution form gave us a chance to consider power spectrum (PS) of MUP as a product of two terms. The first one, PS of the input signal, represented PS of the first temporal derivative of intracellular action potential (IAP). The second term, PS of the impulse response, took into account MFPV, differences in instants of activation of each fibre, MU anatomy, and MU position in the volume conductor in respect to the detecting electrode. PS presentation through product means that not only changes in MFPV could be responsible for PS shift as is usually assumed. Changes in IAP duration and IAP after-potential magnitude, affecting the first term of the product, influence the product and thus MUP PS. Moreover, the interrelations between the two spectra and thus sensitivity of spectrum to different parameters change with MU-electrode distance because the second term depends on it. Thus, we have demonstrated that theory does not predict a linear relation between the characteristic frequencies (maximum, mean and median) and MFPV. IAP duration and after-potential magnitude are among parameters affecting MUP or M-wave PS and thus, EMG PS detected by monopolar and bipolar electrodes. Usage of single fibre action potential models instead of MUP ones can result in false dependencies of frequency characteristics. The MUP amplitude characteristics are determined not only by amplitude of IAP, but also by the length of the IAP profile and source-electrode distance. Due to the IAP profile lengthening and an increase in the negative after-potential, surface detected EMG amplitude characteristics can increase even when IAP amplitude decreases considerably during fatigue. Increase in surface detected MUP or M-wave amplitude should not be attributed to a weaker attenuation of the low-frequency components with distance. Simultaneous decrease and increase in amplitude of MUP and M-wave detected with indwelling and surface electrodes are regular, not paradoxical. Corner frequency of the high pass filter should be 0.5 or 1 Hz when muscle fatigue is analyzed. The area of MUP or M-wave normalized in respect of the amplitude of the terminal phase (that is produced during extinction of the depolarized zones at the ends of the fibres) could be useful as a fatigue index. Analysing literature data on IAP changes due to Ca(2+) increasing, we hypothesised that the ability of muscle fibres to uptake Ca(2+) back into the sarcoplasmic reticulum could be the limiting site for fatigue. If this hypothesis is valid, IAP changes are not a cause of fatigue; they are due to it.  相似文献   

13.
The effects are reported of prolonged exposure to simulated microgravity (strict bed rest in an antiorthostatic position -6 degrees head-down tilt, HDT) on voluntary and electrically evoked contractions of the triceps surae muscle in men (n = 6) and women (n = 4). The subjects served as their own controls. Bed rest is a model that has commonly been used to simulate spaceflight. Measurements made in the control condition (10-8 days before the beginning of HDT) and after 120-days of HDT (on the 3rd day after it ended) included examination of the properties of isometric maximal voluntary contractions (MVC), isometric twitch contractions (Pt) and tetanic contractions (Po). After HDT, the MVC decreased by means of 44% and 33%, P, by means of 36% and 11%, Po by means of 34% and 24%, in the men and the women, respectively. The difference between Po and MVC, expressed as a percentage of Po and referred to as force deficiency (FD), has also been calculated. The FD increased by means of 60% and 28.8% in the men and the women, respectively. Time-to-peak tension of the triceps surae muscle increased by means of 12% and 14% in the men and the women, respectively, but half-relaxation time decreased by means of 9% and 19%. Total contraction time increased by a mean of 23% in the men and decreased by a mean of 17% in the women. Force-velocity of properties of the triceps surae muscle calculated according to a relative scale of voluntary contraction development significantly decreased more in the women than the men. The calculations of the same properties of electrically evoked contraction development did not differ substantially from the initial physiological state. It can be concluded that not only were the contractile properties of the triceps surae muscle significantly different in the men and the women, but that the effects of exposure to simulated microgravity on these properties were also different. These differences may be explained by sex differences in the muscle tissue itself and in its maximal neural activation.  相似文献   

14.
Experiments were carried out to test the effect of prolonged and repeated passive stretching (RPS) of the triceps surae muscle on reflex sensitivity. The results demonstrated a clear deterioration of muscle function immediately after RPS. Maximal voluntary contraction, average electromyographic activity of the gastrocnemius and soleus muscles, and zero crossing rate of the soleus muscle (recorded from 50% maximal voluntary contraction) decreased on average by 23.2, 19.9, 16.5, and 12.2%, respectively. These changes were associated with a clear immediate reduction in the reflex sensitivity; stretch reflex peak-to-peak amplitude decreased by 84. 8%, and the ratio of the electrically induced maximal Hoffmann reflex to the maximal mass compound action potential decreased by 43. 8%. Interestingly, a significant (P < 0.01) reduction in the stretch-resisting force of the measured muscles was observed. Serum creatine kinase activity stayed unaltered. This study presents evidence that the mechanism that decreases the sensitivity of short-latency reflexes can be activated because of RPS. The origin of this system seems to be a reduction in the activity of the large-diameter afferents, resulting from the reduced sensitivity of the muscle spindles to repeated stretch.  相似文献   

15.
In order to assess the significance of the dynamics of neural control signals for the rise time of muscle moment, simulations of isometric and dynamic plantar flexion contractions were performed using electromyographic signals (EMG signals) of m. triceps surae as input. When excitation dynamics of the muscle model was optimized for an M-wave of the medial head of m. gastrocnemius (GM), the model was able to make reasonable predictions of the rise time of muscle moment during voluntary isometric plantar flexion contractions on the basis of voluntary GM EMG signals. The rise time of muscle moment in the model was for the greater part determined by the amplitude of the first EMG burst. For dynamic jumplike movements of the ankle joint, however, no relationship between rise time of muscle moment in the experiment and muscle moment predicted by the model on the basis of GM EMG signals was found. Since rise time of muscle moment varied over a small range for this movement, it cannot be completely excluded that stimulation dynamics plays a role in control of these simple single-joint movements.  相似文献   

16.
The reflex pressor response evoked by static muscular contraction is widely believed to be caused by the stimulation of group III and IV afferents. Although the specific nature of the contraction-induced stimulus to these thin-fiber afferents is unknown, they are thought to be stimulated in part by a condition arising from a mismatch between blood supply and demand in the exercising muscle. Hypoxia, a condition found in skeletal muscle during such a mismatch, may stimulate these afferents. We have therefore tested the hypothesis that perfusion of the triceps surae muscles with hypoxic blood stimulates group III and IV afferents in barbiturate-anesthetized cats. We found that 3-3.5 min of hypoxia with the triceps surae muscles at rest significantly (P < 0.05) increased the average discharge rate of contraction-sensitive group IV afferents but had no effect on the average discharge rate of contraction-sensitive group III afferents. Hypoxia had only trivial effects on the discharge of contraction-insensitive group III and IV afferents. Hypoxia stimulated 4 of 11 contraction-sensitive group IV afferents and 2 of 13 contraction-sensitive group III afferents. The responses of the afferents stimulated by hypoxia were small in magnitude. Hypoxia with the muscles at rest appeared to have no effect on either hydrogen or lactate ion concentrations in the femoral venous blood. In addition, hypoxia increased the responses to contraction in only 3 of 22 group III and 4 of 21 group IV afferents tested. We conclude that muscle tissue hypoxia is a minor stimulus to afferents that sense a mismatch between blood supply and demand during static contraction.  相似文献   

17.
Short term effects of 5 sets of 10 maximal eccentric contractions of the elbow flexors, performed using an isokinetic ergometer, were studied. Maximal eccentric, isometric, concentric torque, myoelectrical activity of biceps and triceps brachii, voluntary activation, M-wave amplitude, as well as twitch and maximal contraction and relaxation velocities were measured before (Control), 2 minutes after (Post), 24 hours (Post24 h) and 48 hours (Post48 h) after the exercise session. Torque significantly decreased over the recovery period, whatever the contraction type, excepted concentric torque assessed at 240 degrees.s-1 which recovered its Control value at Post48 h. Activation level significantly decreased at Post (p < 0.05) and returned to its Control value at Post24 h. Twitch, as well as maximal contraction and relaxation velocities had significantly declined among the experimental procedure (p < 0.01). M-wave amplitude was not modified after the exercise. These results indicate that, over a 48 hour rest period, torque decrement following a maximal eccentric exercise session should mainly be due to a failure of the peripheral part of the neuromuscular system, and force recovery should closely be linked to the developed force value.  相似文献   

18.
The objective of this work was to assess the repeatability of two surface electromyographic (sEMG) recording techniques, the classical bipolar configuration and a Laplacian configuration to document their ability to provide reliable information during follow-up studies. The signals were recorded on 10 healthy subjects during voluntary isometric contractions of the biceps brachii muscle at different constant contraction levels. Slopes, area ratios (at 60% of the maximal voluntary contraction (MVC)) and initial values (at 20%, 40%, 60%, 80% and 100% MVC) of the root mean square (RMS), the mean power frequency (MPF) and the muscle fibre conduction velocity (CV) were estimated. Experimental sessions were repeated on three different days with both electrode sets to evaluate the repeatability of sEMG parameter estimates. Classical results were observed, such as an increase in the RMS and the CV with the contraction level. Only initial values of RMS and MPF were shown to be dependent on electrode type. These two parameters presented intra-class correlation coefficient values higher than .80 for high contraction levels. On the whole, the repeatability of the measures was good; however it was better for all sEMG parameter estimates with bipolar electrodes than Laplacian electrodes. Because a bipolar configuration is less selective than a Laplacian one, it provides a global view of muscular activity, which is more repeatable, hence more suitable for follow-up studies.  相似文献   

19.
The effect of temperature on post-tetanic potentiation (PTP) has been examined in the muscles of small mammals but not in human skeletal muscle. We examined PTP in the ankle dorsiflexor muscles of 10 young men by evoking twitches before and after a 7-second tetanus at 100 Hz in a control (room air approximately 21 degrees C) condition and after immersion of the lower leg in warm (45 degrees C) and cold (10 degrees C) water baths for 30 min. Exposure to cold decreased tetanus and pre-tetanus twitch peak torque, but increased rise time, half-relaxation time, and muscle action potential (M-wave) amplitude; exposure to warm water had little effect. PTP was smallest in cold exposure 5 s post-tetanus, but persisted throughout the 12 min test period, whereas PTP had subsided by 6 min post-tetanus in control and warm exposures. M-wave amplitude initially decreased after exposure to warm water, recovered, then decreased again by 11 min post-tetanus. In contrast, exposure to cold had no initial effect but did increase the M-wave amplitude during the last half of the 12 min test period, similar to that seen in the control. The greatest immediate decrease in rise time and half-relaxation time was observed in the control; however, by 12 min post-tetanus warm exposure showed the greatest increase in rise time and half-relaxation time above pre-tetanus values. The decrease in the unpotentiated twitch torque with cooling in human dorsiflexors is typical for muscles with a predominance of type I (slow) fibres. The effect of cold on PTP is similar to that seen previously in mammalian muscles with a predominance of type II (fast) fibres, although the underlying mechanism of the cooling effect appears to differ.  相似文献   

20.
The purpose of the present study was to investigate whether the mechanical properties (i.e. force strain relationship) of the triceps surae tendon and aponeurosis relate to the performed sport activity in an intensity-dependent manner. This was done by comparing sprinters with endurance runners and subjects not active in sports. Sixty-six young male subjects (26+/-5 yr; 183+/-6 cm; 77.6+/-6.7 kg) participated in the study. Ten of these subjects were adults not active in sports, 28 were endurance runners and 28 sprinters. All subjects performed isometric maximal voluntary plantar flexion contractions (MVC) on a dynamometer. The distal aponeuroses of the gastrocnemius medialis (GM) was visualised by ultrasound during the MVC. The results showed that only the sprinters had higher normalised stiffness (relationship between tendon force and tendon strain) of the triceps surae tendon and aponeurosis and maximal calculated tendon forces than the endurance runners and the subjects not active in sports. Furthermore, including the data of all 66 examined participants tendon stiffness correlated significantly (r=0.817, P<0.001) with the maximal tendon force achieved during the MVC. It has been concluded that the mechanical properties of the triceps surae tendon and aponeurosis do not show a graded response to the intensity of the performed sport activity but rather remain at control level in a wide range of applied strains and that strain amplitude and/or frequency should exceed a given threshold in order to trigger additional adaptation effects. The results further indicate that subjects with higher muscle strength possibly increase the margin of tolerated mechanical loading of the tendon due to the greater stiffness of their triceps surae tendon and aponeurosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号