首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The location of lipoprotein lipase activity in rat adipose tissue was studied using intact epididymal fat pads, isolated adipocytes, and lipoprotein lipase activity secreted from adipocytes as enzyme sources. The enzyme activities of these preparations were characterized by gel filtration. The method used for isolation of adipocytes had been modified to minimize activation of lipoprotein lipase during the procedures. Extracts of intact adipose tissue separated into two major lipoprotein lipase activity peaks, designated "a" and "b", the "a" fraction representing about 30 (fasted rats) to 50% (fed rats) of the total enzyme activity. An intermediate fraction (designated "i") was frequently observed. Extracts of isolated adipocytes from fed rats contained about 35% and those from fasted rats about 65% of the lipoprotein lipase activity present in intact tissue. The "b" fraction constituted 80--97% of the adipocyte lipoprotein lipase activity. In contrast, the enzyme activity secreted from the adipocytes contained only the "a" and "i" fractions. These data implicate the existance of one intracellular form of lipoprotein lipase (corresponding to the "b" fraction), different from extracellular forms of the enzyme (corresponding to fractions "a" and "i"). A transformation of the intracellular to the extracellular forms appears to occur in conjunction with secretion of enzyme from the fat cell.  相似文献   

2.
The separation of rat epididymal adipocytes into plasma-membrane, mitochondrial, microsomal and cytosol fractions is described. The fractions, which were characterized by marker-enzyme analysis and electron-micrographic observation, from the cells of fed and 24 h-starved animals were used to prepare acetone/diethyl ether-dried powders for the measurement of lipoprotein lipase activities. The highest specific activities and proportion of recovered lipoprotein lipase activity were found in the plasma-membrane and microsomal fractions. The two fractions from the cells of fed rats showed similar activities and enrichments of the enzyme, these activities being higher than the plasma-membrane and lower than the microsomal activities recovered from the cells of starved animals. Chicken and guinea-pig anti-(rat lipoprotein lipase) sera were prepared, and an indirect labelled-second-antibody cellular immunoassay, using 125I-labelled rabbit anti-(chicken IgG) or 125I-labelled sheep anti-(guinea-pig IgG) antibodies respectively, for the detection of cell-surface enzyme was devised and optimized. The amount of immunodetectable cell-surface lipoprotein lipase was higher for cells isolated from fed animals than for cells from 24 h-starved animals, when either anti-(lipoprotein lipase) serum was used in the assay. The amount of immunodetectable cell-surface lipoprotein lipase fell further when starvation was extended to 48 h. The lipoprotein lipase of plasma-membrane vesicles was shown to be a patent activity and to be immunodetectable in a modification of the cellular immunoassay. Although the functional significance of the adipocyte surface lipoprotein lipase is not known, the possibility of it forming a pool of enzyme en route to the capillary endothelium is advanced.  相似文献   

3.
During adipose tissue development changes in lipoprotein lipase activity per adipocyte precede significant changes in fat cell size. Lipoprotein lipase activity per adipocyte increases fourfold from the second to seventh postnatal week. Furthermore, when isolated adipocytes and stromal--vascular cells are prepared by collagenase digestion of adipose tissue, there is a progressive shift in enzyme activity during development from the stromal-vascular compartment to the adipocyte fraction. The data support the concept that during normal development a "bed" of preadipocytes is synthesized during the suckling period. The data further suggest a regulatory role for lipoprotein lipase in the control of "lipid-filling" during early postnatal development.  相似文献   

4.
Lipoprotein lipase activity was higher in fat-pad pieces than in isolated adipocytes from the same fed rats, whereas hydrolysis of triacylglycerols from triacylglycerol-rich lipoproteins was similar in the two preparations when incubated either in basal conditions or in the presence of heparin. In both preparations there was a similar release of lipoprotein lipase activity into the medium during basal incubation, enhanced by the presence of heparin. In fat-pad pieces, but not in isolated adipocytes, incubation with heparin produced a decrease in the lipoprotein lipase activity measured in the tissue preparation. In fat-pad pieces from 24 h-starved rats, lipoprotein lipase activity was the same as in isolated adipocytes from the same animals and incubation with heparin did not affect the appearance of lipoprotein lipase in the medium or the utilization of triacylglycerols from triacylglycerol-rich lipoproteins. These results support the following conclusions. (1) The effectiveness of lipoprotein lipase in adipose tissue preparations in vitro depends more on its availability to the substrate than on its total activity. (2) Heparin acts on adipose tissue preparations from fed animals both by enhancing the release of pre-existing extracellular enzyme (which is absent in isolated adipocytes) and by enhancing the transfer outside the cells of the intracellular (and mainly undetectable) enzyme that is activated in the secretion process. (3) In adipose tissue from starved animals there is not only a decrease in the active extracellular form of lipoprotein lipase activity but also a reduction in the intracellular (and mainly undetectable) pool of the enzyme.  相似文献   

5.
Increasing body weight appears to alter lipid metabolism in adipose tissue. We have measured the content of lipoprotein lipase and the uptake of chylomicron triglyceride fatty acids in epididymal fat pads of rats of different weights. In order that the results might be expressed in terms of cell numbers, the relationship between the weights of fat pads and the numbers and volumes of fat cells isolated from them was determined. Highly significant correlations were found between fat pad weight and both the number and the volume of the individual adipocytes. In rats weighing from 140 to 350 g, the increase in the size of fat pads was attributable almost equally to increases in cell size and in cell number. Lipoprotein lipase activity was measured in acetone powders of whole fat pads and of isolated fat cell preparations. With both, lipoprotein lipase activity per cell diminished significantly as the weight of fat tissue increased, i.e., larger fat cells contained less enzyme per cell than smaller cells. The uptake of triglyceride fatty acid radioactivity was measured after incubation of fat pads with radiolabeled rat lymph chylomicrons in flasks containing either buffer alone or with added glucose or glucose plus insulin. The addition of glucose and insulin led to a mean increase of 70% in the uptake of radioactivity, but larger adipocytes were stimulated less than smaller cells. This resulted in a significant negative correlation between the weights of fat pads and the uptake of radioactivity. Enlargement of fat cells also led to a diminution in their capacity to esterify fatty acids.  相似文献   

6.
The mechanism of heparin stimulation of rat adipocyte lipoprotein lipase   总被引:2,自引:0,他引:2  
Free fat cells and stromal-vascular cells were prepared from rat adipose tissue by incubation with collagenase. NH(4)OH-NH(4)Cl extracts of acetone-ether powders prepared from fat cells contained lipoprotein lipase activity but extracts of stromal-vascular cells did not. Intact fat cells released lipoprotein lipase activity into incubation medium, but intact stromal-vascular cells did not. The lipoprotein lipase activity of the medium was increased when fat cells were incubated with heparin, and this was accompanied by a corresponding decrease in the activity of subsequently prepared fat cell extracts. Heparin did not release lipoprotein lipase activity from stromal-vascular cells. The lipoprotein lipase activity of NH(4)OH-NH(4)Cl extracts of fat cell acetone powders is increased by the presence of heparin during the assay. This increase is not due to preservation of enzyme activity, but to increased binding of lipoprotein lipase to chylomicrons. Protamine sulfate and sodium chloride have little effect on the binding of lipoprotein lipase to chylomicrons, but they inhibit enzyme activity after binding to substrate has occurred. These inhibitors do, however, inhibit the stimulatory effect of heparin on enzyme-substrate binding.  相似文献   

7.
Multiple effects of tumor necrosis factor on lipoprotein lipase in vivo   总被引:13,自引:0,他引:13  
A single dose of recombinant murine tumor necrosis factor (TNF) suppressed lipoprotein lipase activity in adipose tissue of fed rats, mice, and guinea pigs for 48 h, even though TNF itself is rapidly metabolized in vivo. Immunoprecipitation of [35S]lipoprotein lipase from fat pads pulse-labeled with [35S]methionine showed a decrease in relative synthesis of the enzyme, which correlated to the decrease in activity. There was no decrease in general protein synthesis and no change in distribution of the enzyme between adipocytes and extracellular locations in the tissue. This is in contrast to fasting in which case there is redistribution of the enzyme within the tissue, decrease in general protein synthesis, but no change in relative synthesis of lipoprotein lipase. TNF did not decrease lipoprotein lipase activity in any tissue other than the adipose but increased the activity in several cases, most markedly in the liver. No [35S]methionine was incorporated into lipoprotein lipase by liver slices from normal or TNF-treated animals. Thus, the increased activity can not be ascribed to enhanced hepatic synthesis of the enzyme. There was an increase in lipoprotein lipase activity in plasma, which correlated to the increase in liver. Thus, TNF suppresses lipoprotein lipase synthesis in adipocytes, but not in other tissues, and has some as yet undefined effect on lipoprotein lipase turnover in extrahepatic tissues, which results in increased transport of active lipase through plasma to the liver.  相似文献   

8.
Objective: To test the hypothesis that adipose tissue could be one of the primary targets through which medium‐chain fatty acids (MCFAs) exert their metabolic influence. Research Methods and Procedures: Sprague‐Dawley rats were fed a control high‐fat diet compared with an isocaloric diet rich in medium‐chain triglycerides (MCTs). We determined the effects of MCTs on body fat mass, plasma leptin and lipid levels, acyl chain composition of adipose triglycerides and phospholipids, adipose tissue lipoprotein lipase activity, and the expression of key adipogenic genes. Tissue triglyceride content was measured in heart and gastrocnemius muscle, and whole body insulin sensitivity and glucose tolerance were also measured. The effects of MCFAs on lipoprotein lipase activity and adipogenic gene expression were also assessed in vitro using cultured adipose tissue explants or 3T3‐L1 adipocytes. Results: MCT‐fed animals had smaller fat pads, and they contained a considerable amount of MCFAs in both triglycerides and phospholipids. A number of key adipogenic genes were down‐regulated, including peroxisome proliferator activated receptor γ and CCAAT/enhancer binding protein α and their downstream metabolic target genes. We also found reduced adipose tissue lipoprotein lipase activity and improved insulin sensitivity and glucose tolerance in MCT‐fed animals. Analogous effects of MCFAs on adipogenic genes were found in cultured rat adipose tissue explants and 3T3‐L1 adipocytes. Discussion: These results suggest that direct inhibitory effects of MCFAs on adiposity may play an important role in the regulation of body fat development.  相似文献   

9.
1. Subcellular fractions, characterized by using morphological, compositional and enzymic markers, were prepared from rat heart tissue and cells isolated from the hearts of fed and 24 h-starved rats. 2. The lipoprotein lipase activity of fractions from whole tissue and isolated cells was determined in either fresh fractions or in acetone/diethyl ether powders of the fractions. 3. Lipoprotein lipase activity was present in all the fractions from tissue and cells, but was found to be of highest relative specific activity in the microsomal () fractions. 4. In fractions prepared from the isolated cells of hearts from starved rats the proportion of the total lipoprotein lipase present and its relative specific activity in the microsomal fraction were greater than in the equivalent fractions from fed animals. 5. The enhancement of lipoprotein lipase activity as a result of the acetone/diethyl ether powder preparation of fractions was most extensive in the microsomal fractions. 6. Investigation of the microsomal fraction showed that the lipoprotein lipase activity present was in two pools, one of which was within endoplasmic-reticulum vesicles. 7. The observations were consistent with the possibility that the cardiac-muscle cell could be the origin of the lipoprotein lipase activity functional in triacylglycerol uptake by the heart.  相似文献   

10.
We have investigated the effects of nutritional state on the lipoprotein lipase activities of the experimentally hypothyroid rat. Both short-term effects (i.e., those of a 24 h fast with and without re-feeding) and long-term effects (due to decreased food intake in hypothyroidism) have been studied. The hypothyroid rats had significantly higher lipoprotein lipase activities of adipose tissue and heart muscle. The effect of hypothyroidism on adipose tissue lipoprotein lipase activities was modified by the nutritional state. In rats studied after 24 h fasting, the hypothyroid group had significantly higher lipoprotein lipase activities than weight-matched, age-matched and pair-fed (i.e., semi-starved) control groups. In rats studied in the re-fed state, the effects of hypothyroidism as such were less evident, since the pair-fed group also demonstrated significantly higher enzyme activities than did the other control groups. We have also studied the lipoprotein lipase activities of different enzyme preparations from adipose tissue. The effects of hypothyroidism were most clearly reflected in an increase of heparin-elutable enzyme activity from adipose tissue, whereas adipocyte lipoprotein lipase activity and the lipoprotein lipase secretion rate from adipocytes were affected to a lesser extent. We conclude that alterations in food intake strongly influence the lipoprotein lipase activities in the hypothyroidism. Our data also imply that the increased lipoprotein lipase activity in the hypothyroid state is due to a decreased degradation of the enzyme, both intra- and extracellularly.  相似文献   

11.
The role of glucagon in regulating the lipoprotein lipase activities of rat heart and adipose tissue was examined. When starved rats were fed glucose, heart lipoprotein lipase activity decreased while that of adipose tissue increased. Glucagon administration to these animals at the time of glucose feeding prevented the decline in heart lipoprotein lipase activity, but had no effect on the adipose tissue enzyme. When glucagon was administered to fed rats, heart lipoprotein lipase activity increased to levels found in starved animals but there was no change in the adipose tissue enzyme. It is suggested that the reciprocal lipoprotein lipase activities in heart and adipose tissue of fed and starved animals may be regulated by the circulating plasma insulin and glucagon concentrations.  相似文献   

12.
Tumour necrosis factor (TNF) has previously been shown to decrease lipoprotein lipase (LPL) activity and mRNA levels in 3T3-L1 cells and in adipose tissue from rats and guinea pigs when injected in vivo, but not to alter LPL activity in human adipocytes incubated in vitro. The effect of recombinant human TNF on LPL activity and mRNA levels in rat epididymal adipose tissue incubated in vitro was examined. LPL activity and mRNA levels fell in adipose tissue taken from fed rats and incubated in Krebs-Henseleit bicarbonate medium with glucose. The addition of insulin and dexamethasone prevented these falls. TNF (400 ng/ml) produced a fall of approx. 50% in LPL activity after 2 h of incubation and of approx. 30% in LPL mRNA levels after 3 h. TNF did not decrease LPL activity in isolated adipocytes. These results demonstrate that rat adipose tissue incubated in vitro is responsive to TNF whereas isolated adipocytes are not.  相似文献   

13.
Fasted rats injected with actinomycin or fed glucose show increased lipoprotein lipase activity of epididymal adipose tissue. Data from the actinomycin-treated animals showed a direct correlation between the lipoprotein lipase activity and the uptake of lipoprotein triglyceride by the epididymal fat pad in vitro and in vivo. Data from the animals fed glucose confirmed these findings in vitro. These data strongly suggest that lipoprotein lipase plays a major role in triglyceride deposition in adipose tissue.  相似文献   

14.
This study supports the possibility for multiple subcellular forms of lipoprotein lipase. 1. The total activity of lipoprotein lipase per g of intact epididymal adipose tissue from fed rats is much higher than that from starved rats. 2. The isolated fat-cells of fed and of starved rats have lipoprotein lipase of almost the same activity per g of fat-pads. The isolated fat-cells of starved rats have a much higher proportion of total activity per g of the intact tissue than do those of fed rats. 3. Under the conditions of homogenization used, only a small proportion of the total activity per g of intact tissue from fed rats was associated with the fat layer which floated to the top of the homogenate during low-speed centrifugation. The different proportions of the specific enzyme activity found in each subcellular fraction are described. 4. Lipoprotein lipase from plasma membranes and microsomal fractions from starved and fed rats was purified by affinity chromatography. 5. The total activity of microsomal lipoprotein lipase per g of intact adipose tissue is enhanced by a normal diet. 6. In intact epididymal adipose tissue from fed rats, the activity per g of tissue of lipoprotein lipase of plasma membranes is much higher than that in the same fraction from starved rats. By contrast, the activities per g of tissue in plasma membranes obtained from starved or from fed rats by collagenase treatment were similar.  相似文献   

15.
The activity of lipoprotein lipase was measured in white and brown adipose tissues, red vastus lateralis muscle, and heart of rats that have been insulin deficient (streptozotocin, 75 mg.kg-1) for 2 weeks, and that have then received implants of insulin-delivering minipumps (17 U.kg-1.day-1) for 1 or 4 days. Normal glycemia was restored in insulin-deficient animals after 4 days of insulin treatment. Hypertriglyceridemia, but not hypercholesterolemia, was reversed after 4 days of insulin infusion. After 2 weeks of insulin deficiency, fasting lipoprotein lipase activity was lowered in all tissues studied. In white adipose tissue, lipoprotein lipase decreased to 50% of control values. After a single day of insulin infusion, even if tissue weight has not yet been greatly affected, total activity was completely restored to control levels. Enzyme activity in brown adipose tissue was also depressed in deficient animals, and insulin infusion was followed by a slow recovery of activity, to a level intermediate between those of control and insulin-deficient groups. Insulin status had milder effects on lipoprotein lipase activity in vastus lateralis muscle than in the adipose tissues. Deficient rats displayed 60% less activity than controls, and 4 days of hormone infusion only partially restored enzyme activity. There was a large loss of lipoprotein lipase in the heart following 2 weeks of insulin depletion, which was not counteracted by hormone infusion. Thus the speed and extent of recovery of lipoprotein lipase activity following hormone replacement in insulin-deficient animals varied widely among tissues. These findings suggest that insulin is part of the factors that determine the tissue specificity of lipoprotein lipase regulation.  相似文献   

16.
The aim of this study was to determine whether the increase in lipoprotein lipase activity displayed by the adipose tissue of obese (fa/fa) rats as compared with that of lean (Fa/fa) rats could be ascribed to a change in the content or in the catalytic properties of the enzyme. The question was addressed in rats of two ages: in 7-day-old suckling and in 30-day-old post-weaning pups. Inguinal fat-pads were removed surgically (7 days of age) or after killing (30 days of age), and acetone-extract powders were prepared. The relative quantity of enzyme was assessed by immunotitration using an antiserum raised in goat against purified lipoprotein lipase from rat adipose tissue. The results indicate that increases in enzyme activity in obese animals were strictly paralleled by increases in the amount of enzyme in suckling as well as in post-weaning pups. Moreover, the apparent Km values of lipoprotein lipase for its substrate triacylglycerol were identical in the two genotypes. In conclusion, the genotype-mediated increase in lipoprotein lipase activity in adipose tissue of obese Zucker rats was fully accounted for by an increase in the content of the enzyme. In addition, this work documents the mechanism of the increase in lipoprotein lipase activity during weaning, which is mediated mainly through changes in the adipose-tissue enzyme content.  相似文献   

17.
The lipid-lowering effect of pantethine, a new drug affecting lipid metabolism, had been evaluated in carbohydrate-induced hyperlipidemic rats. Administration of the drug raised post-heparin lipolytic activities, the change being due to an increase in lipoprotein lipase activity, whereas hepatic lipase activity remained virtually unchanged. Total lipoprotein lipase activity per g of adipose tissue increased in pantethine-treated rats compared with controls. Furthermore, the soluble lipoprotein lipase of fat-pads was fractionated by heparin-Sepharose affinity chromatography. The first active peak, originated from the microsomal fractions, significantly increased after the drug treatment, while the second one, originated from the plasma membranes, remained unchanged. The increase in the microsomal lipoprotein lipase activity may be due to an increase in intracellular synthesis of lipoprotein lipase enzyme proteins. The heterogeneity of lipoprotein lipase of rat adipose tissues was ensured using affinity chromatography on heparin-Sepharose.  相似文献   

18.
During lactation lipoprotein lipase (LPL) is elevated in mammary tissue and depressed in adipose tissue to redirect lipids for incorporation into milk fat. The cellular origin of lipoprotein lipase in mammary tissue is thought to be the mammary epithelial cell which is the predominant cell type noticeable in the lactating gland; however, mammary adipocytes are also present. If lipoprotein lipase is produced by adipocytes in other sites of the body, then the question remains as to why mammary adipocytes have not been shown to produce lipoprotein lipase. In this study we present several lines of evidence that indicate that the mammary adipocyte is a source of LPL in the lactating mammary gland of mice. This evidence includes the absence of extracellular and intracellular lipoprotein lipase activity in two types of primary mammary epithelial cell cultures and a similarity in the changes of lipoprotein lipase activity in genital adipose tissue from nonpregnant mice and lactating mammary tissue to the nutritional state of the animal. Other evidence presented here includes strong localization of lipoprotein lipase protein and messenger RNA by fluorescence immunohistochemistry and in situ hybridization, respectively, to interstitial cells located between epithelial structures. We postulate that these interstitial cells are regressed, lipid-deleted mammary adipocytes.  相似文献   

19.
Nutritional regulation of lipoprotein lipase in guinea pig tissues   总被引:2,自引:0,他引:2  
Glucose transport in guinea pig adipocytes has been shown to be markedly resistant to stimulation by insulin. Lipoprotein lipase is another transport catalyst in adipose tissue which is believed to be regulated by insulin. We have therefore studied how feeding-fasting affects lipoprotein lipase activity in guinea pig tissues. There was an even more marked decrease in adipose tissue lipoprotein lipase activity on fasting in guinea pigs (10-20 fold) than in rats or mice (4-5 fold). In adipocytes, the activity decreased only 2.5-4.5 fold; most of the change was in extracellular lipoprotein lipase. On glucose refeeding, the activity was rapidly restored. In the first 4 hours after glucose administration extracellular lipoprotein lipase activity increased to more than 10 times the amount present in adipocytes. After cycloheximide, lipoprotein lipase activity decreased with a half-life of 22 min. It is concluded that lipoprotein lipase is rapidly produced and turned over in guinea pig adipose tissue, and that the system is quite sensitive to feeding-fasting. In contrast to adipose tissue, there was no significant change in lipoprotein lipase activity in any other tissue on fasting. There was a strong correlation between the activities in heart and diaphragm muscle, but this correlation was independent of feeding-fasting.  相似文献   

20.
At concentrations corresponding to the levels usually reported in the blood of different species in the fed state, gastrin and pancreozymin but not secretin and vasoactive intestinal peptide, stimulate the lipoprotein lipase activity of adipose tissue from fasted rats. The enzyme response to gastrin is, like that to insulin, dependent on the presence of glucose and is not additive with the enzyme response to insulin. On the contrary, the effect of pancreozymin on lipoprotein lipase is glucoseindependent and is additive with the enzyme response to insulin. Both the effects of gastrin and pancreozymin depend on protein synthesis as shown by their suppression by cycloheximide. With isolated fat cells, gastrin increases both the releasable and non-releasable lipase activities whereas pancreozymin increases almost exclusively the non-releasable activity. The mechanisms and the possible physiological significance of these findings are discussed in relationship with the influence of insulin and the nutritional state on adipose tissue lipoprotein lipase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号