首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Migration of Dictyostelium discoideum slugs results from coordinated movement of their constituent cells. It is generally assumed that each cell contributes to the total motive force of the slug. However, the basic mechanisms by which mechanical forces (traction and resistive forces) are transmitted to the substrate, their magnitude and their location, are largely unknown. In this work, we performed detailed observations of cell movements by fluorescence microscopy using two-dimensional (2D) slugs. We show that 2D slugs share most of the properties of 3D ones. In particular, waves of movement propagate in long 2D slugs, and slug speed correlates with slug length as found in 3D slugs. We also present the first measurements of the distribution of forces exerted by 2D and 3D slugs using the elastic substrate method. Traction forces are mainly exerted in the central region of the slug. The large perpendicular forces around slug boundary and the existence of parallel resistive forces in the tip and/or the tail suggest an important role of the sheath in the transmission of forces to the substrate.  相似文献   

2.
Differential cell movement is an important mechanism in the development and morphogenesis of many organisms. In many cases there are indications that chemotaxis is a key mechanism controlling differential cell movement. This can be particularly well studied in the starvation-induced multicellular development of the social amoeba Dictyostelium discoideum. Upon starvation, up to 10(5) individual amoebae aggregate to form a fruiting body The cells aggregate by chemotaxis in response to propagating waves of cAMP, initiated by an aggregation centre. During their chemotactic aggregation the cells start to differentiate into prestalk and prespore cells, precursors to the stalk and spores that form the fruiting body. These cells enter the aggregate in a random order but then sort out to form a simple axial pattern in the slug. Our experiments strongly suggest that the multicellular aggregates (mounds) and slugs are also organized by propagating cAMP waves and, furthermore, that cell-type-specific differences in signalling and chemotaxis result in cell sorting, slug formation and movement.  相似文献   

3.
4.
Abstract. It is very likely that oscillatory cAMP secretion and cAMP relay organize postaggregative cell movement in the cellular slime molds. We present evidence indicating that cAMP signaling may also be involved in the formation of the prestalk/prespore pattern in slugs of Dictyostelium discoideum. Reduction of cAMP relay in slugs caused by caffeine increased the proportion of prespore tissue. An even stronger increase was observed in a mutant with a very low CAMP-relay response. The effects on pattern resulting from a reduction of cAMP relay are not due to a reduction in the amount of cAMP in the slug, but to an as yet undefined property of oscillatory cAMP signaling.  相似文献   

5.
Time-lapse video light microscopy was used to study the emergence and maturation of the migratory slug from a D. discoideum aggregate. The anterior part, the tip of this simple multicellular organism, establishes migration prior to the definition of the rear, and hence the length of the slug. It was found that newly formed slugs of wild-type strain WS380B can reach lengths greater than 1 cm, yet mature slugs of this strain are rarely longer than 2-3 mumm. Often the tip extended out of the aggregation mound upon an arching pillar of cells. After the tip first touched the substratum, it commenced migration with a rapid succession of movement steps. Here we show that at the initiation of migration, a differential rate of cell movement along the developing slug axis results in a series of complicated changes, before the stable and mature shape of the slug is formed. Our results lead to new conclusions about D. discoideum slug formation and shape maintenance. Evidence is presented for regulation of slug length.  相似文献   

6.
ABSTRACT: BACKGROUND: The multicellular slug in Dictyostelium has a single tip that acts as an organising centre patterning the rest of the slug. High adenosine levels at the tip are believed to be responsible for this tip dominance and the adenosine antagonist, caffeine overrides this dominance promoting multiple tip formation. RESULTS: Caffeine induced multiple tip effect is conserved in all the Dictyostelids tested. Two key components of cAMP relay namely, cAMP phosphodiesterase (Pde4) and adenyl cyclase-A (AcaA) levels get reduced during secondary tip formation in Dictyostelium discoideum. Pharmacological inhibition of cAMP phosphodiesterase also resulted in multiple tips. Caffeine reduces cAMP levels by 16.4, 2.34, 4.71 and 6.30 folds, respectively in D. discoideum, D. aureostipes, D. minutum and Polysphondylium pallidum. We propose that altered cAMP levels, perturbed cAMP gradient and impaired signalling may be the critical factors for the origin of multiple tips in other Dictyostelids as well. In the presence of caffeine, slug cell movement gets impaired and restricted. The cell type specific markers, ecmA (prestalk) and pspA (prespore) cells are not equally contributing during additional tip formation. During additional tip emergence, prespore cells transdifferentiate to compensate the loss of prestalk cells. CONCLUSION: Caffeine decreases adenyl cyclase--A (AcaA) levels and as a consequence low cAMP is synthesised altering the gradient. Further if cAMP phosphodiesterase (Pde4) levels go down in the presence of caffeine, the cAMP gradient breaks down. When there is no cAMP gradient, directional movement is inhibited and might favour re-differentiation of prespore to prestalk cells.  相似文献   

7.
Multiple signal transduction pathways within a single cell may share common components. In particular, seven different transmembrane helix receptors may activate identical pathways by interacting with the same G-proteins. Dictyostelium cells respond to cAMP using one such receptor, cAR1, coupled by a typical heterotrimeric G-protein to intracellular effectors. However, cells in which the gene for cAR1 has been deleted are unexpectedly still able to respond to cAMP. This implies either that certain responses are mediated by a different receptor than cAR1, or alternatively that a second, partially redundant receptor shares some of the functions of cAR1. We have examined the dose response and ligand specificity of one response, cAMP relay, and the dose response of another, cyclic GMP synthesis. In each case, the EC50 was approximately 100-fold higher and the maximal response was smaller in car1- than wild-type cells. These data indicate that cAR1 normally mediates responses to cAMP. The ligand specificity suggests that the responses seen in car1- mutants are mediated by a second receptor, cAR3. To test this hypothesis, we constructed a cell line containing deletions of both cAR1 and cAR3 genes. As predicted, these lines are totally insensitive to cAMP. We conclude that the functions of the cAR1 and cAR3 receptors are partially redundant and that both interact with the same heterotrimeric G-protein to mediate these and other responses.  相似文献   

8.
The Dictyostelium slug lays down curved marks in its slime sheath trail as it migrates across an agar substrate. These 'footprints' are caused by elevation of the slug anterior as it initiates a period of aerial migration and can be used as a measure of the slug's propensity for this behavior. A variety of factors have been found to affect the number of footprints created per distance migrated. Smaller slugs produce a higher incidence of footprints than larger slugs. Migration in the light and lower temperatures during migration increase footprint incidence. Activated charcoal reduces, while exogenous addition of ammonia increases, the incidence of footprints. Simulation of the three-dimensional (3D) environment of the soil suggests that aerial migration plays a role in the slug's movement through the cavities of its natural environment. A model proposes that aerial migration is initiated by a small group of continually changing prestalk cells that acts as a pacemaker and is moved around the circumference of the slug tip by the rotation of the prestalk cells. As this pacemaker reaches the upper surface of the slug it can initiate aerial migration.  相似文献   

9.
Summary Scanning electron microscopic observations ofDictyostelium discoideum cell masses during slug formation revealed two populations around the anterior tip; one group of cells resembled elongated aggregation stream cells and their orientation suggested that they move to the tip, whereas the other group of cells were isodiametric and showed no obvious orientation. In seeking further evidence for a role of differential cAMP chemotaxis in the orientation and movement of slug cells the anterior prestalk cells were compared to the posterior prespore cells in two chemotaxis tests. When a cell mass is placed on cAMP agar the prestalk cells exhibited better movement to cAMP sources but when the gradient was generated in a diffusion chamber the prestalk cells did not. This evidence suggested that the cells which are better able to generate a cAMP gradient might form part of the anterior zone of the slug.  相似文献   

10.
During the slug stage, the cellular slime mould Dictyostelium discoideum moves towards light sources. We have modelled this phototactic behaviour using a hybrid cellular automata/partial differential equation model. In our model, individual amoebae are not able to measure the direction from which the light comes, and differences in light intensity do not lead to differentiation in motion velocity among the amoebae. Nevertheless, the whole slug orientates itself towards the light. This behaviour is mediated by a modification of the cyclic AMP (cAMP) waves. As an explanation for phototaxis, we propose the following mechanism, which is basically characterized by four processes: (i) light is focused on the distal side of the slug as a result of the so-called ''lens-effect''; (ii) differences in luminous intensity cause differences in NH3 concentration; (iii) NH3 alters the excitablity of the cell, and thereby the shape of the cAMP wave; and (iv) chemotaxis towards cAMP causes the slug to turn. We show that this mechanism can account for a number of other behaviours that have been observed in experiments, such as bidirectional phototaxis and the cancellation of bidirectionality by a decrease in the light intensity or the addition of charcoal to the medium.  相似文献   

11.
Abstract. The aim of the present study was to draw inferences regarding the properties of single cells responsible for co-operative behaviour in the slug of the soil amoeba Dictyostelium discoideum. The slug is an integrated multicellular mass formed by the aggregation of starved cells. The amoebae comprising the slug differentiate according to their spatial locations relative to one another, implying that, as in the case of other regulative embryos, they must be in mutual communication. We have previously shown that one manifestation of this communication is the time taken for the anteriormost fragment of the slug, the tip, to regenerate from slugs which have been rendered tipless by amputation. We present results of tip-regeneration experiments performed on genetically mosaic slugs. By comparing the mosaics with their component pure genotypes, we were able to discriminate between a set of otherwise equally plausible modes of intercellular signalling. Neither a'pacemaker' model, in which the overall rate of tip regeneration is determined by the cell with the highest frequency of autonomous oscillation, nor an 'independent-particle' model, in which the rate of regeneration is the arithmetical average of independent cell-dependent rates, is in quantitative accord with our findings. Our results are best explained by a form of signalling which operates by means of cell-to-cell relay. Therefore intercellular communication Seems to be essential for tip regeneration.  相似文献   

12.
13.
P Schaap  M Wang 《Cell》1986,45(1):137-144
We present evidence for the hypothesis that in multicellular structures of Dictyostelium, production of adenosine by hydrolysis of cAMP near the tip region prevents both generation of competing tips and differentiation of prespore cells near the tip, and thus establishes a "prestalk" region. We demonstrate that adenosine affects the immunological prespore specific staining pattern in slugs in a manner opposite to cAMP:cAMP induces an increase of prespore antigen; adenosine induces a decrease. When endogenous adenosine is removed from slugs, prespore vacuoles are synthesized throughout the prestalk region. Adenosine was found to inhibit the induction of prespore differentiation by cAMP in an apparently competitive manner. It was also found that adenosine specifically increased the amount of tissue controlled by one tip, probably by inhibiting generation of competing oscillators. Removing endogenous adenosine from slugs resulted in a decrease of tip dominance.  相似文献   

14.
Animal movement varies from undirected dispersal to directed migration. Movement rates may have implications for conservation and resource management, as well as pest control, and they play a key role in invasion success. In slugs, long-distance dispersal is typically passive, whereas active movement is critical for local dispersal and determines access to resources such as food and shelter. Telemetry has recently been used to study individual slug movements in the wild, whereas movement in arena tests has explored mechanisms of interspecific competition and invasiveness in slugs. Studies that relate the performance of individual slugs in arena tests to their post-release behavior in nature are lacking. We measured individual short-term movement speed of commonly occurring native and non-native slugs of the genera Arion and Limax in arena tests and tracked their post-release dispersal movements in a garden by PIT telemetry. We demonstrate clear differences in movement behavior among the species, but non-native slugs did not display higher movement rates than their native congeners. In the arena test, slugs of the genus Limax displayed a higher short-term speed than slugs of the genus Arion, whereas in the field, individuals of Limax maximus showed lower dispersal rates compared to the other slug species. Moreover, there was a positive correlation between short-term speed in the arena test and movement in the field among individuals of L. cinereoniger, indicating the possible existence of behavioral syndromes in slugs, which may link movement ecology, animal personality, and the invasion ecology of pest species.  相似文献   

15.
The organisation and form of most organisms is generated during theirembryonic development and involves precise spatial and temporal controlof cell division, cell death, cell differentiation and cell movement.Differential cell movement is a particularly important mechanism in thegeneration of form. Arguably the best understood mechanism of directedmovement is chemotaxis. Chemotaxis plays a major role in the starvationinduced multicellular development of the social amoebae Dictyostelium.Upon starvation up to 105 individual amoebae aggregate to form afruiting body. In this paper we review the evidence that the movement ofthe cells during all stages of Dictyostelium development is controlled bypropagating waves of cAMP which control the chemotactic movement ofthe cells. We analyse the complex interactions between cell-cell signallingresulting in cAMP waves of various geometries and cell movement whichresults in a redistribution of the signalling sources and therefore changes thegeometry of the waves. We proceed to show how the morphogenesis,including aggregation stream and mound formation, slug formation andmigration, of this relatively simple organism is beginning to be understoodat the level of rules for cell behaviour, which can be tested experimentallyand theoretically by model calculations.  相似文献   

16.
cAMP receptor 1 and G-protein alpha-subunit 2 null cell lines (car1- and g alpha 2-) were examined to assess the roles that these two proteins play in cAMP stimulated adenylyl cyclase activation in Dictyostelium. In intact wild-type cells, cAMP stimulation elicited a rapid activation of adenylyl cyclase that peaked in 1-2 min and subsided within 5 min; in g alpha 2- cells, this activation did not occur; in car1- cells an activation occurred but it rose and subsided more slowly. cAMP also induced a persistent activation of adenylyl cyclase in growth stage cells that contain only low levels of cAMP receptor 1 (cAR1). In lysates of untreated wild-type, car1-, or g alpha 2- cells, guanosine 5'-O-'(3-thiotriphosphate) (GTP gamma S) produced a similar 20-fold increase in adenylyl cyclase activity. Brief treatment of intact cells with cAMP reduced this activity by 75% in control and g alpha 2- cells but by only 8% in the car1- cells. These observations suggest several conclusions regarding the cAMP signal transduction system. 1) cAR1 and another cAMP receptor are linked to activation of adenylyl cyclase in intact cells. Both excitation signals require G alpha 2. 2) cAR1 is required for normal adaptation of adenylyl cyclase. The adaptation reaction caused by cAR1 is not mediated via G alpha 2. 3) Neither cAR1 nor G alpha 2 is required for GTP gamma S-stimulation of adenylyl cyclase in cell lysates. The adenylyl cyclase is directly coupled to an as yet unidentified G-protein.  相似文献   

17.
Dictyostelium discoideum (Dd) is a widely studied model system from which fundamental insights into cell movement, chemotaxis, aggregation and pattern formation can be gained. In this system aggregation results from the chemotactic response by dispersed amoebae to a travelling wave of the chemoattractant cAMP. We have developed a model in which the cells are treated as discrete points in a continuum field of the chemoattractant, and transduction of the extracellular cAMP signal into the intracellular signal is based on the G protein model developed by Tang & Othmer. The model reproduces a number of experimental observations and gives further insight into the aggregation process. We investigate different rules for cell movement the factors that influence stream formation the effect on aggregation of noise in the choice of the direction of movement and when spiral waves of chemoattractant and cell density are likely to occur. Our results give new insight into the origin of spiral waves and suggest that streaming is due to a finite amplitude instability.  相似文献   

18.
Chemoattractant-mediated Rap1 activation requires GPCR/G proteins   总被引:1,自引:0,他引:1  
Cha I  Lee SH  Jeon TJ 《Molecules and cells》2010,30(6):563-567
Rap1 is rapidly activated upon chemoattractant stimulation and plays an important role in cell adhesion and cytoskeletal reorganization during chemotaxis. Here, we demonstrate that G-protein coupled receptors and G-proteins are essential for chemoattractant-mediated Rap1 activation in Dictyostelium. The rapid Rap1 activation upon cAMP chemoattractant stimulation was absent in cells lacking chemoattractant cAMP receptors cAR1/cAR3 or a subunit of the heterotrimeric G-protein complex Gα2. Loss of guanylyl cyclases GCA/SGC or a cGMP-binding protein GbpC exhibited no effect on Rap1 activation kinetics. These results suggest that Rap1, a key regulator for the regulation of cytoskeletal reorganization during cell movement, is activated through the G-protein coupled receptors cAR1/cAR3 and Gα2 proteins in a way independent of the cGMP signaling pathway.  相似文献   

19.
During starvation-induced Dictyostelium development, up to several hundred thousand amoeboid cells aggregate, differentiate and form a fruiting body. The chemotactic movement of the cells is guided by the rising phase of the outward propagating cAMP waves and results in directed periodic movement towards the aggregation centre. In the mound and slug stages of development, cAMP waves continue to play a major role in the coordination of cell movement, cell-type-specific gene expression and morphogenesis; however, in these stages where cells are tightly packed, cell-cell adhesion/contact-dependent signalling mechanisms also play important roles in these processes.  相似文献   

20.
We use the flexible substrate method to study how and where mechanical forces are exerted during the migration of Dictyostelium slugs. This old and contentious issue has been left poorly understood so far. We are able to identify clearly separate friction forces in the tip and in the tail of the slug, traction forces mostly localized in the inner slug/surface contact area in the prespore region and large perpendicular forces directed in the outward direction at the outline of contact area. Surprisingly, the magnitude of friction and traction forces is decreasing with slug velocity indicating that these quantities are probably related to the dynamics of cell/substrate adhesion complexes. Contrary to what is always assumed in models and simulations, friction is not of fluid type (viscous drag) but rather close to solid friction. We suggest that the slime sheath confining laterally the cell mass of the slug experiences a tension that in turn is pulling out the elastic substrate in the direction tangential to the slug profile where sheath is anchored. In addition, we show in the appendix that the iterative method we developed is well adapted to study forces over large and continuous fields when the experimental error is sufficiently low and when the plane of recorded bead deformations is close enough to the elastomer surface, requirements fulfilled in this experimental study of Dictyostelium slugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号