首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trees in the city not only have an ornamental function but also a role in improving the ecological function in urban ecosystems that has been substantially disturbed by human activities such as environmental pollution. Today the ecological role of urban greenery is clearer than ever and is included in the new scientific field of ecological engineering, which is the design of sustainable ecosystems that integrate human society with its natural environment for the benefit of both. Trees in an urban environment show many difficulties in surviving in it because the ecological conditions that exist in the cities are worse than these of the nature. One of these seems to be the heavy wind loads. But even though rough surfaces slow down the wind speed, tall buildings can cause wind tunnel effects that stress a tree as much or even more than if it was positioned in an exposed, unprotected site. An urban tree must be able to endure all the damages and loads from the wind throughout its life. The ability of a tree to withstand wind loads of gale forces depends on its shape and its dimensions. The objective of this paper is the evaluation of tree stability based on the aboveground silvicultural characteristics in order to create an empirical index which can correlate tree stability with these features. Silvicultural characteristics that play the greatest role on tree stability are crown ratio (CR), crown asymmetry index (CAI), and tree height (H). Consequently, tree stability index (TSI) is formed by them. According to TSI values, tree stability was classified in three categories (classes): high, moderate and crucial stability. The limits of the transition from one class to another, as the classes themselves are depended on the number of variables that represent silvicultural characteristics.  相似文献   

2.
Wind is the major abiotic disturbance in New Zealand's planted forests, but little is known about how the risk of wind damage may be affected by future climate change. We linked a mechanistic wind damage model (ForestGALES) to an empirical growth model for radiata pine (Pinus radiata D. Don) and a process‐based growth model (cenw ) to predict the risk of wind damage under different future emissions scenarios and assumptions about the future wind climate. The cenw model was used to estimate site productivity for constant CO2 concentration at 1990 values and for assumed increases in CO2 concentration from current values to those expected during 2040 and 2090 under the B1 (low), A1B (mid‐range) and A2 (high) emission scenarios. Stand development was modelled for different levels of site productivity, contrasting silvicultural regimes and sites across New Zealand. The risk of wind damage was predicted for each regime and emission scenario combination using the ForestGALES model. The sensitivity to changes in the intensity of the future wind climate was also examined. Results showed that increased tree growth rates under the different emissions scenarios had the greatest impact on the risk of wind damage. The increase in risk was greatest for stands growing at high stand density under the A2 emissions scenario with increased CO2 concentration. The increased productivity under this scenario resulted in increased tree height, without a corresponding increase in diameter, leading to more slender trees that were predicted to be at greater risk from wind damage. The risk of wind damage was further increased by the modest increases in the extreme wind climate that are predicted to occur. These results have implications for the development of silvicultural regimes that are resilient to climate change and also indicate that future productivity gains may be offset by greater losses from disturbances.  相似文献   

3.
Mechanical properties of the muscle-tendon unit change with aging, but it is not known how these modifications influence the control of lower leg muscles during upright stance. In this study, young and elderly adults stood upright on a force platform with and without vision while muscle architecture and myotendinous junction movements (expressed relative to the change in the moment on the x-axis of the force platform) were recorded by ultrasonography and muscle activity by electromyography. The results show that the maximal amplitude of the sway in the antero-posterior direction was greater in elderly adults (age effect, P < 0.05) and was accompanied by an increase in lower leg muscle activity compared with young adults. Moreover, the data highlight that fascicles shorten during forward sway and lengthen during backward sways but more so for young (-4 ± 3 and -4 ± 3 mm/Nm, respectively) than elderly adults (-0.7 ± 3 and 0.8 ± 3 mm/Nm, respectively; age × sway, P < 0.001). Concurrently, the pennation angle increased and decreased during forward and backward sways, respectively, with greater changes in young than elderly adults (age × sway, P < 0.001). In contrast, no significant differences were observed between age groups for tendon lengthening and shortening during sways. The results indicate that, compared with young, elderly adults increase the stiffness of the muscular portion of the muscle-tendon unit during upright stance that may compensate for the age-related decrease in tendon stiffness. These observations suggest a shift in the control strategy used to maintain balance.  相似文献   

4.
Identification of valid indicators of biodiversity is a critical need for sustainable forest management. We developed compositional, structural and functional indicators of biodiversity for five taxonomic groups—bryophytes, vascular plants, spiders, hoverflies and birds—using data from 44 Sitka spruce (Picea sitchensis) and ash (Fraxinus excelsior) plantation forests in Ireland. The best structural biodiversity indicator was stand stage, defined using a multivariate classification of forest structure variables. However, biodiversity trends over the forest cycle and between tree species differ among the taxonomic groups studied. Canopy cover was the main structural indicator and affected other structural variables such as cover of lower vegetation layers. Other structural indicators included deadwood and distances to forest edge and to broadleaved woodland. Functional indicators included stand age, site environmental characteristics and management practices. Compositional indicators were limited to more easily identifiable plant and bird species. Our results suggest that the biodiversity of any one of the species groups we surveyed cannot act as a surrogate for all of the other species groups. However, certain subgroups, such as forest bryophytes and saproxylic hoverflies, may be able to act as surrogates for each other. The indicators we have identified should be used together to identify stands of potentially high biodiversity or to evaluate the biodiversity effects of silvicultural management practices. They are readily assessed by non-specialists, ecologically meaningful and applicable over a broad area with similar climate conditions and silvicultural systems. The approach we have used to develop biodiversity indicators, including stand structural types, is widely relevant and can enhance sustainable forest management of plantations.  相似文献   

5.
The periodic sways of a group of ten Pinus contorta var. latifolia (lodgepole pine) trees with slender stems from the Two Creeks site (TW) and ten stout trees from the Chickadee site (CH) both in Alberta, Canada were quantified. Tree displacement at TW was measured during periods of consistent wind direction with three mean wind speeds (1.9, 4.6, and 5.4 m/s) and for two mean wind speeds at CH (5.0 and 7.9 m/s). Spectral analysis of sway displacement data showed a decrease in the frequency with wind speed for trees at TW, but remained unchanged for trees at CH. Significant correlations between tree sway frequency and amplitude during high winds at TW indicate a loss of sway energy concomitant with the occurrence of high collision intensity. These observations support the hypothesis that inter-crown collisions have an important influence on the sway frequency of trees and should be incorporated into efforts to model their sway dynamics. We also present a theoretical collision-damped sway model which supports our empirical findings.  相似文献   

6.
台风是重要的森林干扰因子之一,会对森林生态系统的结构和功能产生较大的影响。2012年的台风"布拉万"对我国东北地区局部森林造成了严重的破坏。以受灾最重的吉林省汪清林业局的近天然落叶松云冷杉林为对象,采用方差分析和相关分析方法,研究林分结构和地形条件对林木株数损伤率的影响。结果表明:(1)林木损伤类型可分为折断、连根拔起、搭挂、压弯4种,其中连根拔起为最主要的损伤类型,占总损伤株数的52%,台风灾害造成的林木株数损伤率平均为14.09%。(2)径级大小对林木株数损伤率的影响显著。损伤主要发生于径级较小林分处,径级越大,其株数损伤率越小。(3)林木株数损伤率随林分密度的增加有减小的趋势,但在统计学上它们的关系不显著。(4)不同树种间的林木株数损伤率差异显著,落叶松、冷杉等针叶树种损伤株数最多。(5)林分的树种多样性指数与林木株数损伤率无显著的相关性。(6)海拔、坡度和坡位对林木株数损伤率的影响不显著,但坡向的影响显著,东北坡向林分的林木株数损伤率最大。研究结果可以为灾后森林恢复和减少风灾影响的森林培育措施提供依据。  相似文献   

7.

Key message

Stem defects in loblolly pine due to insect pests and wind damage can decrease economic value and affect ecosystem function, however silvicultural management can decrease the impact of these stresses.

Abstract

Loblolly pine (Pinus taeda L.) is one of the most important tree crops in the southern United States, comprising 45 % of commercial forestry land. Stem defects can reduce timber product quality and influence competitive interactions. We examined the effects of controlling Nantucket pine tip moth (Rhyacionia frustrata Scudder in Comstock, 1880) and site management (fertilizer or herbicide use) on stem defects, of two full-sib families (C1 and C2) and two clonal varieties (V1 and V2) of loblolly pine at upper and lower coastal plain sites in North Carolina (UCP and LCP, respectively). At UCP, V1 and V2 had fewer stem defects with insecticide treatment indicating that pest pressure affected stem form. C2 had twice as many defects as other genotypes at LCP, while C1 had the most defects at UCP, showing that carefully matching site and genotype could improve plantation performance without increasing costs. Additionally, we examined the effects of Hurricane Irene on stem leaning at LCP. V1, the tallest genotype, was most strongly affected, indicating genotype differences in tolerance to this form of abiotic stress. Interestingly, insecticide treatment decreased the negative effects of the hurricane on C1 stem lean, indicating that tip moth pressure may make C1 more susceptible. Our results illustrate that the interaction of biotic and abiotic stressors, such as pest infestation and climate, can strongly impact stem form, potentially affecting ecophysiological function and economic value. Cost-effective silvicultural options, such as pest control and management of genetic resources can potentially decrease exposure to such environmental risk.  相似文献   

8.
Understanding the mechanism of tree anchorage in a forest is a priority because of the increase in wind storms in recent years and their projected recurrence as a consequence of global warming. To characterize anchorage mechanisms during tree uprooting, we developed a generic finite element model where real three-dimensional (3D) root system architectures were represented in a 3D soil. The model was used to simulate tree overturning during wind loading, and results compared with real data from two poplar species (Populus trichocarpa and P. deltoides). These trees were winched sideways until failure, and uprooting force and root architecture measured. The uprooting force was higher for P. deltoides than P. trichocarpa, probably due to its higher root volume and thicker lateral roots. Results from the model showed that soil type influences failure modes. In frictional soils, e.g., sandy soils, plastic failure of the soil occurred mainly on the windward side of the tree. In cohesive soils, e.g., clay soils, a more symmetrical slip surface was formed. Root systems were more resistant to uprooting in cohesive soil than in frictional soil. Applications of this generic model include virtual uprooting experiments, where each component of anchorage can be tested individually.  相似文献   

9.
The theory of tree bole and branch form   总被引:1,自引:0,他引:1  
Summary Working from the general postulate that natural selection of plant form operates so as to maximize the survival potential of a species, this paper examines the hypothesis that the mechanical support of tree foliage must approach optimality in the use of wood, i.e., that tree stems and branches will have optimal form with respect to the amount of support tissue. Mathematical models of bole and branch form are presented, based on the proposition that either wind or gravity are the primary limiting factors for tree size and shape. Predictions of trunk and branch diameter as a function of tree size were tested with dimensional measurements ofPopulus tremuloides. The individual stems were selected from close-grown stands of differing ages. For small and intermediate trees, trunk diameter is such that stems have only 1.6 times as much wood as the minimum required to keep the tree from buckling under its own weight due to elastic instability. Branch diameters are shown to be close to the minimum required to maintain the spatial position of growing branches, as well as withstand wind forces. This minimal branch cost not only reduces the load which the stem must support against elastic instability, but allows the crown to flex in high winds. The flexing, in turn, reduces the drag force exerted by the wind on the trunk. Thus, the hypothesis that the observed tree form is an optimal design cannot be rejected on the basis of these results. Additional studies are planned with respect to optimal foliage distribution.  相似文献   

10.
The New England cottontail (Sylvilagus transitionalis) is a high conservation priority in the Northeastern United States and has been listed as a candidate species under the Endangered Species Act. Loss of early successional habitat is the most common explanation for the decline of the species, which is considered to require habitat with dense low vegetation and limited overstory tree canopy. Federal and state wildlife agencies actively encourage landowners to create this habitat type by clearcutting blocks of forest. However, there are recent indications that the species also occupies sites with moderate overstory tree canopy cover. This is important because many landowners have negative views about clearcutting and are more willing to adopt silvicultural approaches that retain some overstory trees. Furthermore, it is possible that clearcuts with no overstory canopy cover may attract the eastern cottontail (S. floridanus), an introduced species with an expanding range. The objective of our study was to provide guidance for future efforts to create habitat that would be more favorable for New England cottontail than eastern cottontail in areas where the two species are sympatric. We analyzed canopy cover at 336 cottontail locations in five states using maximum entropy modelling and other statistical methods. We found that New England cottontail occupied sites with a mean overstory tree canopy cover of 58% (SE±1.36), and was less likely than eastern cottontail to occupy sites with lower overstory canopy cover and more likely to occupy sites with higher overstory canopy cover. Our findings suggest that silvicultural approaches that retain some overstory canopy cover may be appropriate for creating habitat for New England cottontail. We believe that our results will help inform critical management decisions for the conservation of New England cottontail, and that our methodology can be applied to analyses of habitat use of other critical wildlife species.  相似文献   

11.
Relatively little information exists on neotropical secondary rain forests that have progressed beyond the pioneer stages of succession, or on the potential of natural regeneration to restore forest on large areas. We determined the structural and floristic characteristics (10 cm dbh) of a 30‐year‐old secondary forest developing on a 32.5 ha pasture on hilly terrain, abandoned after use of moderate intensity. Ten 0.24 ha sample plots covered the range of site conditions. The forest was dominated by long‐lived pioneer tree species; overall, the majority of species (70%) was vertebrate dispersed but the majority of individuals (52%) was of wind‐dispersed species. Tree species, including the dominants, were a mixture of those present in old‐growth and adventives colonizing from agricultural land. The forest was very heterogeneous. Vochysia ferruginea‐dominated stands characterized slopes with soils of high exchangeable acidity, while the adventive Cordia alliodora dominated sites with gentler topography and soils of lower acidity. Structural differences between the two forest types were slight, but Cordia forest had significantly greater species diversity and absolute and relative abundances of vertebrate‐dispersed tree species than Vochysia forest, which had significantly greater absolute and relative abundances of wind‐dispersed tree species. These latter differences between forest types, as well as the wide structural variation of the forest as a whole, were probably largely due to spatial and temporal variation in seed rains, some of it linked to the characteristics of the dominant species. Rain forest restoration on large pastures may depend greatly on wind dispersal and adventive tree species, and techniques for silvicultural diagnosis must be developed as a basis for the management of heterogeneous successional stands. Studies of early colonization of pastures should be expanded to focus on the causes of heterogeneity in older forests.  相似文献   

12.
Wind can alter plant growth and cause extensive, irreversible damage in forested areas. To better understand how to mitigate the effects of wind action, we investigated the sensitivity of tree aerodynamic behavior to the material and geometrical factors characterizing the aerial system. The mechanical response of a 35-yr-old maritime pine (Pinus pinaster, Pinaceae) submitted to static and dynamic wind loads is simulated with a finite element model. The branching structure is represented in three dimensions. Factor effects are evaluated using a fractional experimental design. Results show that material properties play only a limited role in tree dynamics. In contrast, small morphological variations can produce extreme behaviors such as either very little or nearly critical dissipation of stem oscillations. Slender trees are shown to be relatively more vulnerable to stem breakage than uprooting. Dynamic loading leads to deflections and forces up to 20% higher near the base of the tree than those calculated for a static loading of similar magnitude. Effects of branch geometry on dynamic amplification are substantial yet not linear. The flexibility of the aerial system is found to be critical to reducing the resistance to the airflow and thus to minimizing the risk of failure.  相似文献   

13.
A simple tree swaying model, valid for windstorm conditions, has been developed for the purpose of simulating the effect of strong wind on the vulnerability of heterogeneous forest canopies. In this model the tree is represented as a flexible cantilever beam whose motion, induced by turbulent winds, is solved through a modal analysis. The geometric nonlinearities related to the tree curvature are accounted for through the formulation of the wind drag force. Furthermore, a breakage condition is considered at very large deflections. A variety of case studies is used to evaluate the present model. As compared to field data collected on three different tree species, and to the outputs of mechanistic models of wind damage, it appears to be able to predict accurately large tree deflections as well as tree breakage, using wind velocity at tree top as a forcing function. The instantaneous response of the modelled tree to a turbulent wind load shows very good agreement with a more complex tree model. The simplicity of the present model and its low computational time make it well adapted to future use in large-eddy simulation airflow models, aimed at simulating the complete interaction between turbulent wind fields and tree motion in fragmented forests.  相似文献   

14.
森林的风/雪灾害研究综述   总被引:38,自引:1,他引:38  
风/雪灾害不仪极大影响木材生产,同时对森林生态系统的稳定性也造成很大影响。森林风/雪危害的主要类型有树干弯曲、干(冠)折、掘根以及后续危害等;其发生主要依赖于气象条件、立地因子、树木和林分特征及其之间的相互作用。其中.林木尖削度(胸径/树高)和林分结构特征(树种、组成、密度等)是控制树木和林分对风/雪荷载抵抗的主要特征量。因此.通过造林、调整林分结构.加强林分管理如间伐、施肥等措施一直是用来减少林木的风/雪灾害的主要措施。另外.林木或林分发生风/雪害的模型分析研究也取得了很大进展,但由于森林风/雪害受诸如地形、天气等多种因素影响、目前所建立的模型系统在实际应用中普适性较芹。通过综述以往研究结果认为:在气象和立地条件难以控制的情况下.通过改变可控因子林分结构来减少森林风/雪害是可行的。因此.研究如何加强森林经营管理,尤其是不同形式的间伐技术和不同处理的造林措施与风/雪灾害发生的关系、如何增加林木和林分抵抗风/雪灾害的能力等是今后该研究领域的重点和难点。与此同时.应加强风/雪灾害危险率评估研究.进而对森林进行风/雪灾害危险率管理;并注重对受灾前后林地内生态效应的研究,以便为灾后的森林经营管理和调控提供坚实的理论依据。  相似文献   

15.
Genetic diversity and mating system were quantified for shelterwood, patch cut and green tree-retention silvicultural systems, and compared to adjacent old-growth. This is a component of a larger study conducted in montane old-growth forests of coastal British Columbia to evaluate the feasibility and ecological consequences of alternative silvicultural systems. The experiment includes replicated treatments representing a range of overstory removal adjacent to old-growth and clearcut areas. Based on 22 electrophoretically assayed loci, the effects of silvicultural systems on genetic parameters of amabilis fir (Abies amabilis and western hemlock (Tsuga heterophylla were assessed by comparing an average number of alleles per locus, the percent polymorphic loci, and observed and expected heterozygosity between parental populations and naturally regenerated progeny as well as among treatments. Genetic variation in natural regeneration was greater than in parental populations, especially for low-frequency alleles. Silvicultural treatments caused no significant differences in amabilis fir genetic-diversity parameters, while the shelterwood system resulted in lower observed and expected heterozygosity in western hemlock. Nei's genetic distance revealed that all parental populations were extremely similar. The two species had contrasting mating system dynamics with amabilis fir producing higher levels of correlated paternity and inbreeding with wider variation among individual tree outcrossing-rate estimates. Western hemlock had significant levels of correlated paternity only for the green tree and shelterwood treatments demonstrating family structuring inversely related to stand density. Inbreeding in western hemlock was significant but lower than that observed for amabilis fir with a J-shaped distribution for individual tree multilocus outcrossing-rate estimates. The pollination and dispersal mechanisms of the two species represent the most-likely factors causing these differences. Artificial regeneration may be utilized to augment the genetic resources of natural ingress.  相似文献   

16.
Uneven-aged management of conifer plantations is proposed as a way to increase the value of these forests for the conservation of bird diversity. To test this assumption, we compared the impact of four common silvicultural systems on bird communities, defined by cutblock size (large in even-aged silvicultural systems/smaller in uneven-aged silvicultural systems) and tree species composition (spruce/beech) in the Belgian Ardenne where beech forests have been replaced by spruce plantations. The abundances of bird species were surveyed in young, medium-aged and mature stands in 3–5 forests per silvicultural system (66 plots in all). The effect of silvicultural systems on bird species richness, abundance and composition were analysed both at the plot and at the silvicultural system levels. In plots of a given age, beech stands were richer in species. The composition of bird species at the plot level was explained by stand age and tree composition, but weakly so by stand evenness. For the silvicultural systems, bird species richness was significantly higher in even-aged and in beech forests, and bird species composition depended on the silvicultural system. This study emphasises the importance of maintaining native beech stands for birds and suggests that uneven-aged management of conifer plantations does not provide a valuable improvement of bird diversity comparatively with even-aged systems.  相似文献   

17.
Summary

This paper deals with three aspects of the process of restoring planted ancient woodland sites(PAWS) to semi-natural conditions. Firstly, we describe a baseline assessment of botanical interest within a PAWS. This survey has been undertaken to determine the impact of clearfelling, particularly on lower plants and the subsequent colonisation of ground vegetation into areas currently dominated by needle litter. Secondly, we discuss some of the main considerations when undertaking restoration through alternative silvicultural systems to clearfell. Finally, we describe the main requirement for successful site monitoring for management purposes.

The last decade has seen considerable attention given to the benefits of restoring plantations on ancient woodland sites (PAWS) to semi-natural conditions. The survival of species and communities associated with ancient woodland through the process of conversion will be a critical measure of success for restoration practice. It is generally assumed that a gradual approach will improve the chances of such success.

Glencripesdale National Nature Reserve (NNR) is a heterogeneous area of semi-natural open ground, ancient woodland and Sitka spruce plantation. The plantation blocks contain occasional discrete elements of semi-natural vegetation, including some veteran trees. Because of difficult access and poor stability, silvicultural options are limited and clear felling is the only practical option. We describe a simple method of monitoring changes to cryptogamic communities and ground layer vegetation prior to and following clearfelling of the plantation matrix. Baseline data are presented.

In more stable and accessible stands, there are a number of alternative silvicultural approaches to consider when gradually restoring a PAWS. This paper addresses the question of how to secure ancient woodland remnants. We outline some of the initial silvicultural considerations such as stability, thinning/felling pattern and light requirements of native tree species. An approach to site monitoring is presented to allow managers to assess whether conditions are improving or declining and whether they are delivering objectives.  相似文献   

18.
Considerable uncertainties remain about magnitude and character, if not general direction of anthropogenic climate change. Global mean temperature could increase by 1.5–4.5°C or more over historic levels, and extreme weather events—drought, storms, and flooding—are likely to increase greatly in frequency. Although ecologists and foresters agree that the practice of forestry will be transformed under climate change, these uncertainties compound the challenge of achieving sustainable, adaptive forest management. In this aritcle, we (i) present a multidisciplinary synthesis of current knowledge of responses of temperate and boreal tree species and forest communities to climate change, and (ii) outline silvicultural strategies for adapting temperate and boreal forests to confront climate change. Our knowledge synthesis proceeds through critical appraisals of efforts to model future tree distributions and responses to climate change, and reviews physiological, phenological, acclimation, and epigenetic responses to climate. As is the case of climate change itself, there are numerous uncertainties about tree species and provenance responses to climate change. For example, acclimation of respiration and epigenetic conditioning of seed embryos has the potential to buffer species against limited warming. Provenances within species also display idiosyncratic responses to altered climates, implying that soemm varieties will be more resilient or resistant to climate change than others. Genetically determined limits to climatic tolerance, and the limits of tree community resistance and resilience (speed of recovery from disturbance) in the face of climate-related disturbances are largely unknown. These unknowns require managers to adopt a portfolio of silvicultural strategies, which may range from minor modifications of current practices to design of novel multi-species stands that may have no historical analogue. Forest managers must be prepared to respond nimbly as they develop, incorporate new insights about climate change and species responses to warming into their practices. Marshalling all strategies and sources of knowledge should enable forest managers to mount (at least) a partially successful response to the challenges of climate change.  相似文献   

19.
? Premise of the study: Gravitropic movements are unexpected mechanical processes that could disturb tree design allometries derived from the physics of nonliving bodies. We investigated whether the scaling law of gravitropic performance (power of -2 of stem diameter) derived from integrative biomechanical modeling is disturbed by ontogeny or environment, then discuss the silvicultural and dendroecological consequences. ? Methods: In a beech (Fagus sylvatica) plantation, four plots with different initial planting densities evolved without any intervention for 26 yr. Regular tree inventories and a silvicultural model were used to monitor competition over time in each plot. The radial production of tension wood was quantified using a cross-section of the stems at 1.30-m height, and an integrative biomechanical model computed the tree gravitropic performance over time. ? Key results: All trees developed tension wood over the whole period, with higher amounts at the youngest age, resulting in theoretical lean corrections of ca. 20-30° on the first 4 m of the stem over the whole period. The scaling law of gravitropic performance is slightly larger than the power of -2 of stem diameter. ? Conclusions: Gravitropic performance in forest ecosystems is mainly limited by size (diameter). Ontogenic acclimation of tension wood formation allows the youngest trees to be more reactive. No additional effect of spacing was found. However, silviculture influences size and, therefore, tree reactivity at a given age. Such results will be helpful for dendroecological approaches that use wood as a marker of environmental disturbances or a trait linked to plant strategies.  相似文献   

20.
The use of nitrogen-fixing trees such as black alder (Alnus glutinosa L. Gaertn.) as forest silvicultural tools has recently been recognized. The potential benefit of black alder in silvicultural practices may be reduced by nitrate fertilization. Fifteen-month-old, nodulated, black alder rooted cuttings were fertilized for 6 days with 0, 7.5 or 15 mM NO3 to determine the influence of nitrate on acetylene reduction, nodule respiration and net photosynthesis. Acetylene reduction, net photosynthesis and nodule respiration were measured on the second, fourth and sixth days of nitrate application. Nitrate treatment significantly reduced acetylene reduction and nodule respiration by day 4. Acetylene reduction was 75% lower and nodule respiration 36% lower for the 15 mM NO3 treatment when compared to that of the control treatment. By day 6, net photosynthesis and nodule respiration were significantly reduced by 29 and 59%, respectively, for seedlings treated with 15 mM NO3. This study suggests that nitrate fertilization has a profound influence on nitrogenase activity and that nitrogen-fixing tree species may respond to nitrate fertilization by shifting photosynthetic rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号