首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IscS from Escherichia coli is a cysteine desulfurase that has been shown to be involved in Fe-S cluster formation. The enzyme converts L-cysteine to L-alanine and sulfane sulfur (S(0)) in the form of a cysteine persulfide in its active site. Recently, we reported that IscS can donate sulfur for the in vitro biosynthesis of 4-thiouridine (s(4)U), a modified nucleotide in tRNA. In addition to IscS, s(4)U synthesis in E. coli also requires the thiamin biosynthetic enzyme ThiI, Mg-ATP, and L-cysteine as the sulfur donor. We now report evidence that the sulfane sulfur generated by IscS is transferred sequentially to ThiI and then to tRNA during the in vitro synthesis of s(4)U. Treatment of ThiI with 5-((2-iodoacetamido)ethyl)-1-aminonapthalene sulfonic acid (I-AEDANS) results in irreversible inhibition, suggesting the presence of a reactive cysteine that is required for binding and/or catalysis. Both ATP and tRNA can protect ThiI from I-AEDANS inhibition. Finally, using gel shift and protease protection assays, we show that ThiI binds to unmodified E. coli tRNA(Phe). Together, these results suggest that ThiI is a recipient of S(0) from IscS and catalyzes the ultimate sulfur transfer step in the biosynthesis of s(4)U.  相似文献   

2.
Kambampati R  Lauhon CT 《Biochemistry》2003,42(4):1109-1117
Thionucleosides are uniquely present in tRNA. In many organisms, tRNA specific for Lys, Glu, and Gln contain hypermodified 2-thiouridine (s(2)U) derivatives at wobble position 34. The s(2) group of s(2)U34 stabilizes anticodon structure, confers ribosome binding ability to tRNA and improves reading frame maintenance. Earlier studies have mapped and later identified the mnmA gene (formerly asuE or trmU) as required for the s(2)U modification in Escherichia coli. We have prepared a nonpolar deletion of the mnmA gene and show that it is not required for viability in E. coli. We also cloned mnmA from E. coli, and overproduced and purified the protein. Using a gel mobility shift assay, we show that MnmA binds to unmodified E. coli tRNA(Lys) with affinity in the low micromolar range. MnmA does not bind observably to the nonsubstrate E. coli tRNA(Phe). Corroborating this, tRNA(Glu) protected MnmA from tryptic digestion. ATP also protected MnmA from trypsinolysis, suggesting the presence of an ATP binding site that is consistent with analysis of the amino acid sequence. We have reconstituted the in vitro biosynthesis of s(2)U using unmodified E. coli tRNA(Glu) as a substrate. The activity requires MnmA, Mg-ATP, l-cysteine, and the cysteine desulfurase IscS. HPLC analysis of thiolated tRNA digests using [(35)S]cysteine confirms that the product of the in vitro reaction is s(2)U. As in the case of 4-thiouridine synthesis, purified IscS-persulfide is able to provide sulfur for in vitro s(2)U synthesis in the absence of cysteine. Small RNAs that represent the anticodon stem loops for tRNA(Glu) and tRNA(Lys) are substrates of comparable activity to the full length tRNAs, indicating that the major determinants for substrate recognition are contained within this region.  相似文献   

3.
Escherichia coli tRNA contains four naturally occurring nucleosides modified with sulfur. Cysteine is the intracellular sulfur source for each of these modified bases. We previously found that the iscS gene, a member of the nifS cysteine desulfurase gene family, is required for 4-thiouridine biosynthesis in E. coli. Since IscS does not bind tRNA, its role is the mobilization and distribution of sulfur to enzymes that catalyze the sulfur insertion steps. In addition to iscS, E. coli contains two other nifS homologs, csdA and csdB, each of which has cysteine desulfurase activity and could potentially donate sulfur for thionucleoside biosynthesis. Double csdA csdB and iscS csdA mutants were prepared or obtained, and all mutants were analyzed for thionucleoside content. It was found that unfractionated tRNA isolated from the iscS mutant strain contained <5% of the level of sulfur found in the parent strain. High-pressure liquid chromatography analysis of tRNA nuclease digests from the mutant strain grown in the presence of [(35)S]cysteine showed that only a small fraction of 2-thiocytidine was present, while the other thionucleosides were absent when cells were isolated during log phase. As expected, digests from the iscS mutant strain contained 6-N-dimethylallyl adenosine (i(6)A) in place of 6-N-dimethylallyl-2-methylthioadenosine and 5-methylaminomethyl uridine (mnm(5)U) instead of 5-methylaminomethyl-2-thiouridine. Prolonged growth of the iscS and iscS csdA mutant strains revealed a gradual increase in levels of 2-thiocytidine and 6-N-dimethylallyl-2-methylthioadenosine with extended incubation (>24 h), while the thiouridines remained absent. This may be due to a residual level of Fe-S cluster biosynthesis in iscS deletion strains. An overall scheme for thionucleoside biosynthesis in E. coli is discussed.  相似文献   

4.
IscS, a cysteine desulfurase implicated in the repair of Fe-S clusters, was recently shown to act as a sulfurtransferase in the biosynthesis of 4-thiouridine (s(4)U) in tRNA (Kambampati, R., and Lauhon, C. T. (1999) Biochemistry 38, 16561-16568). In frame deletion of the iscS gene in Escherichia coli results in a mutant strain that lacks s(4)U in its tRNA. Assays of cell-free extracts isolated from the iscS(-) strain confirm the complete loss of tRNA sulfurtransferase activity. In addition to lacking s(4)U, the iscS(-) strain requires thiamin and nicotinic acid for growth in minimal media. The thiamin requirement can be relieved by the addition of the thiamin precursor 5-hydroxyethyl-4-methylthiazole, indicating that iscS is required specifically for thiazole biosynthesis. The growth rate of the iscS(-) strain is half that of the parent strain in rich medium. When the iscS(-) strain is switched from rich to minimal medium containing thiamin and nicotinate, growth is preceded by a considerable lag period relative to the parent strain. Addition of isoleucine results in a significant reduction in the duration of this lag phase. To examine the thiazole requirement, we have reconstituted the in vitro biosynthesis of ThiS thiocarboxylate, the ultimate sulfur donor in thiazole biosynthesis, and we show that IscS mobilizes sulfur for transfer to the C-terminal carboxylate of ThiS. ThiI, a known factor involved in both thiazole and s(4)U synthesis, stimulates this sulfur transfer step by 7-fold. Extracts from the iscS(-) strain show significantly reduced activity in the in vitro synthesis of ThiS thiocarboxylate. Transformation of the iscS(-) strain with an iscS expression plasmid complemented all of the observed phenotypic effects of the deletion mutant. Of the remaining two nifS-like genes in E. coli, neither can complement loss of iscS when each is overexpressed in the iscS(-) strain. Thus, IscS plays a significant and specific role at the top of a potentially broad sulfur transfer cascade that is required for the biosynthesis of thiamin, NAD, Fe-S clusters, and thionucleosides.  相似文献   

5.
6.
O Leon  L H Schulman 《Biochemistry》1987,26(22):7113-7121
A new method has been developed to couple a lysine-reactive cross-linker to the 4-thiouridine residue at position 8 in the primary structure of the Escherichia coli initiator methionine tRNA (tRNAfMet). Incubation of the affinity-labeling tRNAfMet derivative with E. coli methionyl-tRNA synthetase (MetRS) yielded a covalent complex of the protein and nucleic acid and resulted in loss of amino acid acceptor activity of the enzyme. A stoichiometric relationship (1:1) was observed between the amount of cross-linked tRNA and the amount of enzyme inactivated. Cross-linking was effectively inhibited by unmodified tRNAfMet, but not by noncognate tRNAPhe. The covalent complex was digested with trypsin, and the resulting tRNA-bound peptides were purified from excess free peptides by anion-exchange chromatography. The tRNA was then degraded with T1 ribonuclease, and the peptides bound to the 4-thiouridine-containing dinucleotide were purified by high-pressure liquid chromatography. Two major peptide products were isolated plus several minor peptides. N-Terminal sequencing of the peptides obtained in highest yield revealed that the 4-thiouridine was cross-linked to lysine residues 402 and 439 in the primary sequence of MetRS. Since many prokaryotic tRNAs contain 4-thiouridine, the procedures described here should prove useful for identification of peptide sequences near this modified base when a variety of tRNAs are bound to specific proteins.  相似文献   

7.
A simple filter paper assay for the measurement of Escherichia coli 4-thiouridine-tRNA sulfurtransferase activity is described. The assay includes the following procedures: (a) incubation of enzyme with appropriate substrates including unfractionated yeast tRNA and [35S]cysteine, (b) reisolation of tRNA, and (c) binding of tRNA to ion exchange filter papers. The assay can be routinely performed with relatively small sample volumes (0.1 ml) and completed within 14 h. Proof of the validity of the assay is based in part on two experimental observations: (1) tRNA is the predominant 35S-labeled species remaining bound to the filter after extensive washing, and (2) 4-thiouracyl is the predominant thiolated base formed during the assay.  相似文献   

8.
BACKGROUND: Rhodanese domains are structural modules occurring in the three major evolutionary phyla. They are found as single-domain proteins, as tandemly repeated modules in which the C-terminal domain only bears the properly structured active site, or as members of multidomain proteins. Although in vitro assays show sulfurtransferase or phosphatase activity associated with rhodanese or rhodanese-like domains, specific biological roles for most members of this homology superfamily have not been established. RESULTS: Eight ORFs coding for proteins consisting of (or containing) a rhodanese domain bearing the potentially catalytic Cys have been identified in the Escherichia coli K-12 genome. One of these codes for the 12-kDa protein GlpE, a member of the sn-glycerol 3-phosphate (glp) regulon. The crystal structure of GlpE, reported here at 1.06 A resolution, displays alpha/beta topology based on five beta strands and five alpha helices. The GlpE catalytic Cys residue is persulfurated and enclosed in a structurally conserved 5-residue loop in a region of positive electrostatic field. CONCLUSIONS: Relative to the two-domain rhodanese enzymes of known three-dimensional structure, GlpE displays substantial shortening of loops connecting alpha helices and beta sheets, resulting in radical conformational changes surrounding the active site. As a consequence, GlpE is structurally more similar to Cdc25 phosphatases than to bovine or Azotobacter vinelandii rhodaneses. Sequence searches through completed genomes indicate that GlpE can be considered to be the prototype structure for the ubiquitous single-domain rhodanese module.  相似文献   

9.
l-Cysteine desulfurases provide sulfur to several metabolic pathways in the form of persulfides on specific cysteine residues of an acceptor protein for the eventual incorporation of sulfur into an end product. IscS is one of the three Escherichia coli l-cysteine desulfurases. It interacts with FdhD, a protein essential for the activity of formate dehydrogenases (FDHs), which are iron/molybdenum/selenium-containing enzymes. Here, we address the role played by this interaction in the activity of FDH-H (FdhF) in E. coli. The interaction of IscS with FdhD results in a sulfur transfer between IscS and FdhD in the form of persulfides. Substitution of the strictly conserved residue Cys-121 of FdhD impairs both sulfur transfer from IscS to FdhD and FdhF activity. Furthermore, inactive FdhF produced in the absence of FdhD contains both metal centers, albeit the molybdenum cofactor is at a reduced level. Finally, FdhF activity is sulfur-dependent, as it shows reversible sensitivity to cyanide treatment. Conclusively, FdhD is a sulfurtransferase between IscS and FdhF and is thereby essential to yield FDH activity.  相似文献   

10.
A previously described mutant of Escherichia coli which lacks 4-thiouridine in its tRNA was here shown to be deficient in factor A, one of the two proteins responsible for this thiolation of uridine. Addition of exogenous factor A restored the thiolating ability of extracts prepared from the mutant. The activities of the two thiolation proteins were governed by genes at two widely separated positions on the chromosome, as determined with F-prime merodiploids. The site governing factor A activity lay roughly in the region of the recently reported position of nuv, a gene controlling the production of 4-thiouridine in tRNA.  相似文献   

11.
Transposon Tn10-mediated rearrangement was used to isolate a strain of Escherichia coli carrying a deletion in the rnd region which is known to encode the structural gene for the putative 3' tRNA processing nuclease, RNase D. Genetic analysis indicated that about 0.4-0.5 min of the chromosome in the 39.5-40.0 min region was deleted. The mutant strain was devoid of RNase D activity, but other RNase activities were unaffected. The viability of the mutant strain and its normal growth characteristics indicate that RNase D is not essential for E. coli survival. The normal plating efficiency in this mutant host of wild type T4 and a T4 psu1+-amber double mutant indicates that RNase D is also not required for T4 growth or psu1+-tRNA processing. The implications of these findings for the role of RNase D in bacterial and bacteriophage tRNA metabolism, and the possible involvement of alternative enzymes, are discussed.  相似文献   

12.
Treatment of intact tRNAs from Escherichia coli B with mild oxidizing agents, such as KI-I2, appears to quantitatively oxidize the 4-thiouridine present in these molecules to the disulfide form as judged by the loss of absorbance near 330 nm. Chromatography of these oxidized tRNAs on Sephadex G-75 did not reveal tRNA dimers or larger aggregates, suggesting intra- rather than intermolecular disulfide-bond formation. Enzymatic hydrolyses of both unlabeled and 35S-labeled oxidized tRNAs followed by chromatography on columns of Sephadex G-25 indicated that 4-thiouridine did form covalent linkages with some component(s) in the tRNA that were reversible upon reduction. It was not clear whether 4-thiouridine formed disulfides only with itself, other sulfurcontaining nucleosides, or some non-sulfur-containing component. Data presented suggest that an earlier report on the isolation of 4-thiouridylate disulfide from oxidized tRNAs of E. coli was an artifact, resulting from oxidation of the thionucleotide during chromatography on Bio-Gel.  相似文献   

13.
Mutations in three Escherichia coli K-12 genes were isolated that reduce the efficiency of the lysine-inserting nonsense suppressor supL. These antisuppressor mutations asuD, asuE, and asuF map at 61.9, 25.3, and 76.3 min, respectively, on the E. coli chromosome. Biochemical and genetic analysis of the mutant strains revealed the reason for the antisuppressor phenotype for two of these genes. The activity of lysyl-tRNA synthetase was reduced in strains with asuD mutations. The modification of 5-methylaminomethyl-2-thiouridine, the wobble base of tRNALys, was impaired in asuE mutant strains, presumably at the 2-thiolation step.  相似文献   

14.
Photochemistry of 4-thiouridine in Escherichia coli transfer RNA1Val   总被引:9,自引:0,他引:9  
Irradiation of pure transfer RNA1Val with monochromatic light (334 nm) produces characteristic changes in the spectral properties of 4-thiouridine, the only base which strongly absorbs light at this wavelength. Variations in absorption and fluorescence of 4-thiouridine during irradiation are interpreted in terms of a specific, quantitative photoreaction which proceeds with a yield of about 5 × 10−3E/mole. The photoreaction occurs under conditions where tRNA1Val is biologically active but not under conditions that destroy the tertiary structure of the 4-thiouridine region.  相似文献   

15.
16.
17.
A mutant of Escherichia coli has been isolated that lacks 4-thiouridine, a rare base in transfer ribonucleic acid. The mutant grows at the same rate as wild-type cells. It shows little near-ultraviolet-induced growth delay, thus supporting earlier hypotheses that 4-thiouridine in transfer ribonucleic acid is the chromophore for this growth delay.  相似文献   

18.
The role of tRNA nucleotidyltransferase in Escherichia coli has been uncertain because all tRNA genes studied in this organism already encode the -C-C-A sequence. Examination of a cca mutant, originally thought to contain 1-2% enzyme activity, indicated that it actually produces an inactive fragment of 40 kd compared to 47 kd for the wild-type enzyme due to a nonsense mutation in its cca gene. To confirm that the residual activity in extracts of this strain is due to another enzyme, and that tRNA nucleotidyltransferase is non-essential, we have interrupted the cca gene in vitro, and transferred this mutant gene to a variety of strains. In all cases mutant strains are viable, although as much as 15% of the tRNA population contains defective 3' termini, and no tRNA nucleotidyltransferase is detectable. Mutant strains grow slowly, but can be restored to more normal growth by a relA mutation or by a decrease in RNase T activity. In the latter case the amount of defective tRNA decreases dramatically. These findings indicate that tRNA nucleotidyltransferase is not essential for E. coli viability, and therefore, that all essential tRNA genes in this organism encode the -C-C-A sequence.  相似文献   

19.
20.
IscS is a widely distributed cysteine desulfurase that catalyzes the pyridoxal phosphate-dependent desulfuration of L-cysteine and plays a central role in the delivery of sulfur to a variety of metabolic pathways. We report the crystal structure of Escherichia coli IscS to a resolution of 2.1A. The crystals belong to the space group P2(1)2(1)2(1) and have unit cell dimensions a=73.70A, b=101.97A, c=108.62A (alpha=beta=gamma=90 degrees ). Molecular replacement with the Thermotoga maritima NifS model was used to determine phasing, and the IscS model was refined to an R=20.6% (R(free)=23.6%) with two molecules per asymmetric unit. The structure of E.coli IscS is similar to that of T.maritima NifS with nearly identical secondary structure and an overall backbone r.m.s. difference of 1.4A. However, in contrast to NifS a peptide segment containing the catalytic cysteine residue (Cys328) is partially ordered in the IscS structure. This segment of IscS (residues 323-335) forms a surface loop directed away from the active site pocket. Cys328 is positioned greater than 17A from the pyridoxal phosphate cofactor, suggesting that a large conformational change must occur during catalysis in order for Cys328 to participate in nucleophilic attack of a pyridoxal phosphate-bound cysteine substrate. Modeling suggests that rotation of this loop may allow movement of Cys328 to within approximately 3A of the pyridoxal phosphate cofactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号