首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the course of human immunodeficiency virus type 1 (HIV-1) infection, patients develop a strong and persistent immune response characterized by the production of HIV-specific antibodies. The aim of our study was to analyze the appearance of autologous and heterologous neutralizing antibodies in the sera of HIV-infected individuals. For this purpose, primary strains have been isolated from 18 HIV-1-infected subjects prior to seroconversion (in one case) or within 1 to 8 months after seroconversion. Sera, collected at the same time as the virus was isolated and at various times after isolation, have been analyzed for their ability to neutralize the autologous primary strains isolated early after infection, heterologous primary isolates, and cell-line adapted strains. Our neutralization assay, which combines serial dilutions of virus and serial dilutions of sera, is based on the determination of the serum dilution at which a fixed reduction in virus titer (90%) occurs. We have shown that (i) we could not detect autologous neutralizing antibodies in sera collected at the same time as we isolated viruses; (ii) we detected neutralizing antibodies against the autologous strains about 1 year after seroconversion, occasionally after 8 months, but sera were not always available to exclude the presence of neutralizing antibodies at earlier times; (iii) after 1 year, the neutralization response was highly specific to virus present during the early phase of HIV infection; and (iv) heterologous neutralization of primary isolates was detected later (after about 2 years). These results reveal the enormous diversity of neutralization determinants on primary isolates as well as a temporal evolution of the humoral response generating cross-reactive neutralizing antibodies.  相似文献   

2.
Human immunodeficiency virus type 2 (HIV-2) infection is typically less virulent than HIV-1 infection, which may permit the host to mount more effective, sustained T-cell immunity. We investigated antiviral gamma interferon-secreting T-cell responses by an ex vivo Elispot assay in 68 HIV-1- and 55 HIV-2-infected Senegalese patients to determine if differences relate to more efficient HIV-2 control. Homologous HIV-specific T cells were detected in similar frequencies (79% versus 76%, P = 0.7) and magnitude (3.12 versus 3.08 log(10) spot-forming cells/10(6) peripheral blood mononuclear cells) in HIV-1 and HIV-2 infection, respectively. Gag-specific responses predominated in both groups (>/=64%), and significantly higher Nef-specific responses occurred in HIV-1-infected (54%) than HIV-2-infected patients (22%) (P < 0.001). Heterologous responses were more frequent in HIV-1 than in HIV-2 infection (46% versus 27%, P = 0.04), but the mean magnitude was similar. Total frequencies of HIV-specific responses in both groups did not correlate with plasma viral load and CD4(+) T-cell count in multivariate regression analyses. However, the magnitude of HIV-2 Gag-specific responses was significantly associated with lower plasma viremia in HIV-1-infected patients (P = 0.04). CD4(+) T-helper responses, primarily recognizing HIV-2 Gag, were detected in 48% of HIV-2-infected compared to only 8% of HIV-1-infected patients. These findings indicate that improved control of HIV-2 infection may relate to the contribution of T-helper cell responses. By contrast, the superior control of HIV-1 replication associated with HIV-2 Gag responses suggests that these may represent cross-reactive, higher-avidity T cells targeting epitopes within Gag regions of functional importance in HIV replication.  相似文献   

3.
Attempts to elicit broadly neutralizing antibody responses by human immunodeficiency virus type 1 (HIV-1) vaccine antigens have been met with limited success. To better understand the requirements for cross-neutralization of HIV-1, we have characterized the neutralizing antibody specificities present in the sera of three asymptomatic individuals exhibiting broad neutralization. Two individuals were infected with clade B viruses and the third with a clade A virus. The broadly neutralizing activity could be exclusively assigned to the protein A-reactive immunoglobulin G (IgG) fraction of all three donor sera. Neutralization inhibition assays performed with a panel of linear peptides corresponding to the third hypervariable (V3) loop of gp120 failed to inhibit serum neutralization of a panel of HIV-1 viruses. The sera also failed to neutralize chimeric simian immunodeficiency virus (SIV) and HIV-2 viruses displaying highly conserved gp41-neutralizing epitopes, suggesting that antibodies directed against these epitopes likely do not account for the broad neutralizing activity observed. Polyclonal IgG was fractionated on recombinant monomeric clade B gp120, and the neutralization capacities of the gp120-depleted samples were compared to that of the original polyclonal IgG. We found that the gp120-binding antibody population mediated neutralization of some isolates, but not all. Overall, the data suggest that broad neutralization results from more than one specificity in the sera but that the number of these specificities is likely small. The most likely epitope recognized by the monomeric gp120 binding neutralizing fraction is the CD4 binding site, although other epitopes, such as the glycan shield, cannot be excluded.  相似文献   

4.
We analyzed neutralization sensitivity and genetic variation of transmitted subtype B human immunodeficiency virus type 1 (HIV-1) in eight recently infected men who have sex with men and the virus from the six subjects who infected them. In contrast to reports of heterosexual transmission of subtype C HIV-1, in which the transmitted virus appears to be more neutralization sensitive, we demonstrate that in our study population, relatively few phenotypic changes in neutralization sensitivity or genotypic changes in envelope occurred during transmission of subtype B HIV-1. We suggest that limited genetic variation within the infecting host reduces the likelihood of selective transmission of neutralization-sensitive HIV.  相似文献   

5.
HIV-2 has a lower pathogenicity and transmission rate than HIV-1. Neutralizing antibodies could be contributing to these observations. Here we explored side by side the potency and breadth of intratype and intertype neutralizing activity (NAc) in plasma of 20 HIV-1-, 20 HIV-2-, and 11 dually HIV-1/2 (HIV-D)-seropositive individuals from Guinea-Bissau, West Africa. Panels of primary isolates, five HIV-1 and five HIV-2 isolates, were tested in a plaque reduction assay using U87.CD4-CCR5 cells as targets. Intratype NAc in HIV-2 plasma was found to be considerably more potent and also broader than intratype NAc in HIV-1 plasma. This indicates that HIV-2-infected individuals display potent type-specific neutralizing antibodies, whereas such strong type-specific antibodies are absent in HIV-1 infection. Furthermore, the potency of intratype NAc was positively associated with the viral load of HIV-1 but not HIV-2, suggesting that NAc in HIV-1 infection is more antigen stimulation dependent than in HIV-2 infection, where plasma viral loads typically are at least 10-fold lower than in HIV-1 infection. Intertype NAc of both HIV-1 and HIV-2 infections was, instead, of low potency. HIV-D subjects had NAc to HIV-2 with similar high potency as singly HIV-2-infected individuals, whereas neutralization of HIV-1 remained poor, indicating that the difference in NAc between HIV-1 and HIV-2 infections depends on the virus itself. We suggest that immunogenicity and/or antigenicity, meaning the neutralization phenotype, of HIV-2 is distinct from that of HIV-1 and that HIV-2 may display structures that favor triggering of potent neutralizing antibody responses.  相似文献   

6.
Motomura K  Chen J  Hu WS 《Journal of virology》2008,82(4):1923-1933
Human immunodeficiency virus type 1 (HIV-1) and HIV-2 are genetically distinct viruses that each can cause AIDS. Approximately 1 million people are infected with both HIV-1 and HIV-2. Additionally, these two viruses use the same receptor and coreceptors and can therefore infect the same target cell populations. To explore potential genetic interactions, we first examined whether RNAs from HIV-1 and HIV-2 can be copackaged into the same virion. We used modified near-full-length viruses that each contained a green fluorescent protein gene (gfp) with a different inactivating mutation. Thus, a functional gfp could be reconstituted via recombination, which was used to detect the copackaging of HIV-1 and HIV-2 RNAs. The GFP-positive (GFP+) phenotype was detected in approximately 0.2% of the infection events, which was 35-fold lower than the intrasubtype HIV-1 rates. We isolated and characterized 54 GFP+ single-cell clones and determined that all of them contained proviruses with reconstituted gfp. We then mapped the general structures of the recombinant viruses and characterized the recombination junctions by DNA sequencing. We observed several different recombination patterns, including those that had crossovers only in gfp. The most common hybrid genomes had heterologous long terminal repeats. Although infrequent, crossovers in the viral sequences were also identified. Taken together, our study demonstrates that HIV-1 and HIV-2 can recombine, albeit at low frequencies. These observations indicate that multiple factors are likely to restrict the generation of viable hybrid HIV-1 and HIV-2 viruses. However, considering the large coinfected human population and the high viral load in patients, these rare events could provide the basis for the generation of novel human immunodeficiency viruses.  相似文献   

7.
The human immunodeficiency virus type 1 strain MN (HIV-1MN) principal neutralizing determinant (PND, V3 loop) was introduced into infectious molecular clones HIV-2KR and simian immunodeficiency virus mm239 (SIVmm239) by hybridization PCR, replacing the corresponding HIV-2 or SIV envelope cysteine loops with the HIV-1 coding sequence. The HIV-2 chimera (HIV-2KR-MNV3) was found to be capable of infecting a number of T-cell lymphoblastic cell lines as well as primary peripheral blood mononuclear cells. In contrast, the SIV chimera (SIV239MNV3) was not replication competent. Envelope produced by HIV-2KR-MNV3 but not the parental HIV-2KR was recognized by V3-specific and HIV-1-specific polyclonal antisera in radioimmunoprecipitation assays. HIV-2-specific antisera recognized both the chimeric and parental virus but not HIV-1MN. The chimeric HIV-2KR-MNV3 virus proved to be exquisitely susceptible to neutralization by HIV-1-specific and V3-specific antisera, suggesting the potential for use in animal models designed to test HIV-1 vaccine candidates which target the PND.  相似文献   

8.
Superinfection by a second human immunodeficiency virus type 1 (HIV-1) strain indicates that gaps in protective immunity occur during natural infection. To define the role of HIV-1-specific neutralizing antibodies (NAbs) in this setting, we examined NAb responses in 6 women who became superinfected between ~1 to 5 years following initial infection compared to 18 women with similar risk factors who did not. Although superinfected individuals had less NAb breadth than matched controls at ~1 year postinfection, no significant differences in the breadth or potency of NAb responses were observed just prior to the second infection. In fact, four of the six subjects had relatively broad and potent NAb responses prior to infection by the second strain. To more specifically examine the specificity of the NAbs against the superinfecting virus, these variants were cloned from five of the six individuals. The superinfecting variants did not appear to be inherently neutralization resistant, as measured against a pool of plasma from unrelated HIV-infected individuals. Moreover, the superinfected individuals were able to mount autologous NAb responses to these variants following reinfection. In addition, most superinfected individuals had NAbs that could neutralize their second viral strains prior to their reinfection, suggesting that the level of NAbs elicited during natural infection was not sufficient to block infection. These data indicate that preventing infection by vaccination will likely require broader and more potent NAb responses than those found in HIV-1-infected individuals.  相似文献   

9.
Human immunodeficiency virus type 1 (HIV-1) infection results in different patterns of viral replication in pediatric compared to adult populations. The role of early HIV-1-specific responses in viral control has not been well defined, because most studies of HIV-1-infected infants have been retrospective or cross-sectional. We evaluated the association between HIV-1-specific gamma interferon (IFN-gamma) release from the cells of infants of 1 to 3 months of age and peak viral loads and mortality in the first year of life among 61 Kenyan HIV-1-infected infants. At 1 month, responses were detected in 7/12 (58%) and 6/21 (29%) of infants infected in utero and peripartum, respectively (P = 0.09), and in approximately 50% of infants thereafter. Peaks of HIV-specific spot-forming units (SFU) increased significantly with age in all infants, from 251/10(6) peripheral blood mononuclear cells (PBMC) at 1 month of age to 501/10(6) PBMC at 12 months of age (P = 0.03), although when limited to infants who survived to 1 year, the increase in peak HIV-specific SFU was no longer significant (P = 0.18). Over the first year of life, infants with IFN-gamma responses at 1 month had peak plasma viral loads, rates of decline of viral load, and mortality risk similar to those of infants who lacked responses at 1 month. The strength and breadth of IFN-gamma responses at 1 month were not significantly associated with viral containment or mortality. These results suggest that, in contrast to HIV-1-infected adults, in whom strong cytotoxic T lymphocyte responses in primary infection are associated with reductions in viremia, HIV-1-infected neonates generate HIV-1-specific CD8+-T-cell responses early in life that are not clearly associated with improved clinical outcomes.  相似文献   

10.
Broad and potent neutralizing antibody (BNAb) responses are rare in people infected by human immunodeficiency virus type 1 (HIV-1). Clearly defining the nature of BNAb epitopes on HIV-1 envelope glycoproteins (Envs) targeted in vivo is critical for future directions of anti-HIV-1 vaccine development. Conventional techniques are successful in defining neutralizing epitopes in a small number of individual subjects but fail in studying large groups of subjects. Two independent methods were employed to investigate the nature of NAb epitopes targeted in 9 subjects, identified by the NIAID Center for HIV/AIDS Vaccine Immunology (CHAVI) 001 and 008 clinical teams, known to make a strong BNAb response. Neutralizing activity from 8/9 subjects was enhanced by enriching high-mannose N-linked glycan (HM-glycan) of HIV-1 glycoproteins on neutralization target viruses and was sensitive to specific glycan deletion mutations of HIV-1 glycoproteins, indicating that HM-glycan-dependent epitopes are targeted by BNAb responses in these subjects. This discovery adds to accumulating evidence supporting the hypothesis that glycans are important targets on HIV-1 glycoproteins for BNAb responses in vivo, providing an important lead for future directions in developing NAb-based anti-HIV-1 vaccines.  相似文献   

11.
A chimeric virus library was designed whereby sequences corresponding to the V3 loop of human immunodeficiency virus type 1 (HIV-1) were presented on the surface of human rhinovirus 14. The V3 loop sequences consisted of a relatively conserved segment of seven amino acids and five adjacent residues that were allowed to vary in proportion to their seroprevalence among HIV-1 isolates of North America and Europe. A technique called random systematic mutagenesis was used to incorporate the composite V3 loop sequences flanked by zero to two randomized amino acids. This library could contain 2.7 x 10(8) members having diverse sequences and conformations. Immunoselection of a portion of this library by using two neutralizing V3 loop-directed monoclonal antibodies followed by selection for desirable growth and purification characteristics yielded a set of chimeric rhinoviruses, five of which are described. The inserted sequences in the five chimeras do not match those of any known isolate of HIV-1. Nonetheless, all five chimeras were neutralized by antibodies directed against different strains of HIV-1 and were able to elicit the production of antibodies that bind V3 loop peptides from diverse HIV-1 isolates. Moreover, antisera derived from four of the five chimeras were capable of neutralizing one or more strains of HIV-1 in cell culture. This study demonstrates that random systematic mutagenesis in conjunction with antibody screening is a powerful and efficient means to obtain antigenic chimeras with relevant immunogenic properties.  相似文献   

12.
Virion infectivity factor (vif), a gene found in all lentiviruses, plays an essential role in virus replication in certain target cells. We examined the replication competence of the human immunodeficiency virus type 2 (HIV-2) vif mutant in different T-cell lines and primary cells in comparison with that of the HIV-1 vif mutant. Both mutant viruses were unable to replicate in peripheral blood-derived mononuclear cells but replicated with wild-type efficiency in certain T-cell lines, such as SupT1 and MOLT-4/8. These results confirm the importance of vif in the infection of relevant target cells and imply that some cellular factor(s) could compensate for vif function. However, HIV-1 and HIV-2 vif mutant viruses also show differential replications in other cell lines, suggesting either different threshold requirements for the same cellular factor(s) or the involvement of different factors to compensate for vif-1 and vif-2 functions. By cross complementation experiments, we showed that vif-1 and vif-2 have similar functions. Our studies further indicate the existence of two kinds of nonpermissive cells: H9 is unable to complement HIV-1 delta vif but is susceptible to a one-round infection with HIV-1 delta vif produced from permissive cells. In contrast, U937 is nonpermissive for HIV-2 delta vif produced from permissive cells but, once infected, is able to complement the delta vif function. In both types of nonpermissive cells, a step prior to proviral DNA synthesis is affected.  相似文献   

13.
Interaction of the human immunodeficiency virus type 1 (HIV-1) gp120 envelope glycoprotein with the primary receptor, CD4, promotes binding to a chemokine receptor, either CCR5 or CXCR4. The chemokine receptor-binding site on gp120 elicits CD4-induced (CD4i) antibodies in some HIV-1-infected individuals. Like CCR5 itself, the CD4i antibody 412d exhibits a preference for CCR5-using HIV-1 strains and utilizes sulfated tyrosines to achieve binding to gp120. Here, we show that 412d binding requires the gp120 beta19 strand and the base of the V3 loop, elements that are important for the binding of the CCR5 N terminus. Two gp120 residues in the V3 loop base determined 412d preference for CCR5-using HIV-1 strains. A chimeric molecule in which the 412d heavy-chain third complementarity-determining loop sequence replaces the CCR5 N terminus functioned as an efficient second receptor, selectively supporting the entry of CCR5-using HIV-1 strains. Sulfation of N-terminal tyrosines contributed to the function of this chimeric receptor. These results emphasize the close mimicry of the CCR5 N terminus by the gp120-interactive region of a naturally elicited CD4i antibody.  相似文献   

14.
15.
Human immunodeficiency virus type 2 (HIV-2) infection results in slower CD4+ T-cell decline, lower plasma viral load levels, and hence slower progression of the disease than does HIV-1 infection. Although the reasons for this are not clear, it is possible that HIV-2 replication is more effectively controlled by host responses. We used aligned pools of overlapping HIV-1 and HIV-2 Gag peptides in an enhanced gamma interferon enzyme-linked immunospot assay to compare the levels of homologous and cross-reactive Gag-specific T-cell responses between HIV-1- and HIV-2-infected patients. HIV-2-infected patients showed broader and stronger homologous Gag-specific T-cell responses than HIV-1-infected patients. In contrast, the cross-reactive T-cell responses in HIV-2-infected patients were both narrower and weaker than those in HIV-1-infected patients, in line with overall weaker correlations between homologous and heterologous T-cell responses among HIV-2-infected patients than among HIV-1-infected patients. Cross-reactive responses in HIV-2-infected patients tended to correlate directly with HIV-1/HIV-2 Gag sequence similarities; this was not found in HIV-1-infected patients. The CD4+ T-cell counts of HIV-2-infected patients correlated directly with homologous responses and inversely with cross-reactive responses; this was not found in HIV-1-infected patients. Our data support a model whereby high-level HIV-2-specific T-cell responses control the replication of HIV-2, thus limiting viral diversification and priming of HIV-1 cross-reactive T-cell responses over time. However, we cannot exclude the possibility that HIV-2 replication is controlled by other host factors and that HIV-2-specific T-cell responses are better maintained in the context of slow viral divergence and a less damaged immune system. Understanding the nature of immune control of HIV-2 infection could be crucial for HIV vaccine design.  相似文献   

16.
Kim H  Yin J 《Biophysical journal》2005,89(4):2210-2221
The persistence of human immunodeficiency virus type-1 (HIV-1) has long been attributed to its high mutation rate and the capacity of its resulting heterogeneous virus populations to evade host immune responses and antiviral drugs. However, this view is incomplete because it does not explain how the virus persists in light of the adverse effects mutations in the viral genome and variations in host functions can potentially have on viral functions and growth. Here we show that the resilience of HIV-1 can be credited, at least in part, to a robust response to perturbations that emerges as an intrinsic property of its intracellular development. Specifically, robustness in HIV-1 arises through the coupling of two feedback loops: a Rev-mediated negative feedback and a Tat-mediated positive feedback. By employing a mechanistic kinetic model for its growth we found that HIV-1 buffers the effects of many potentially detrimental variations in essential viral and cellular functions, including the binding of Rev to mRNA; the level of rev mRNA in the pool of fully spliced mRNA; the splicing of mRNA; the Rev-mediated nuclear export of incompletely-spliced mRNAs; and the nuclear import of Tat and Rev. The virus did not, however, perform robustly to perturbations in all functions. Notably, HIV-1 tended to amplify rather than buffer adverse effects of variations in the interaction of Tat with viral mRNA. This result shows how targeting therapeutics against molecular components of the viral positive-feedback loop open new possibilities and potential in the effective treatment of HIV-1.  相似文献   

17.
18.
Sera from human immunodeficiency virus type 1 (HIV-1)-infected individuals from the United States and Tanzania were examined for antibody reactivity to four synthetic peptides which corresponded to the principal neutralizing determinant from the V3 region of HIV-1 gp120. We observed that the majority of sera from both countries contained antibodies reactive with a V3 peptide whose sequence is based on that of the HIV-1 MN isolate. We were unable to establish a relationship between the presence of V3-reactive antibodies, as measured by enzyme-linked immunosorbent assay and neutralization of homologous HIV-1 isolates, in sera from either the United States or Tanzania. We observed that some sera which contained high antibody titers to the V3 peptides failed to neutralize HIV-1, while others with no antibody reactivity to the panel of V3 peptides exhibited in vitro neutralizing activity. These results suggest that neutralizing epitopes exist outside the V3 loop and that the presence of V3-reactive antibodies in sera does not imply in vitro neutralization of the homologous HIV-1 isolate. In addition, it appears that the V3 loop may consist of both neutralizing and nonneutralizing epitopes. The identification of neutralizing as well as nonneutralizing epitopes will be important for the design of potential HIV-1 vaccines.  相似文献   

19.
20.
We have analyzed the unique epitope for the broadly neutralizing human monoclonal antibody (MAb) 2G12 on the gp120 surface glycoprotein of human immunodeficiency virus type 1 (HIV-1). Sequence analysis, focusing on the conservation of relevant residues across multiple HIV-1 isolates, refined the epitope that was defined previously by substitutional mutagenesis (A. Trkola, M. Purtscher, T. Muster, C. Ballaun, A. Buchacher, N. Sullivan, K. Srinivasan, J. Sodroski, J. P. Moore, and H. Katinger, J. Virol. 70:1100-1108, 1996). In a biochemical study, we digested recombinant gp120 with various glycosidase enzymes of known specificities and showed that the 2G12 epitope is lost when gp120 is treated with mannosidases. Computational analyses were used to position the epitope in the context of the virion-associated envelope glycoprotein complex, to determine the variability of the surrounding surface, and to calculate the surface accessibility of possible glycan- and polypeptide-epitope components. Together, these analyses suggest that the 2G12 epitope is centered on the high-mannose and/or hybrid glycans of residues 295, 332, and 392, with peripheral glycans from 386 and 448 on either flank. The epitope is mannose dependent and composed primarily of carbohydrate, with probably no direct involvement of the gp120 polypeptide surface. It resides on a face orthogonal to the CD4 binding face, on a surface proximal to, but distinct from, that implicated in coreceptor binding. Its conservation amidst an otherwise highly variable gp120 surface suggests a functional role for the 2G12 binding site, perhaps related to the mannose-dependent attachment of HIV-1 to DC-SIGN or related lectins that facilitate virus entry into susceptible target cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号