首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Induction of the oxidative stress response has been described under many physiological conditions in Saccharomyces cerevisiae, including industrial fermentation for wine yeast biomass production where cells are grown through several batch and fed-batch cultures on molasses. Here, we investigate the influence of aeration on the expression changes of different gene markers for oxidative stress and compare the induction profiles to the accumulation of several intracellular metabolites in order to correlate the molecular response to physiological and metabolic changes. We also demonstrate that this specific oxidative response is relevant for wine yeast performance by construction of a genetically engineered wine yeast strain overexpressing the TRX2 gene that codifies a thioredoxin, one of the most important cellular defenses against oxidative damage. This modified strain displays an improved fermentative capacity and lower levels of oxidative cellular damages than its parental strain after dry biomass production.  相似文献   

2.
Phenylpyruvic acid is a deaminated form of phenylalanine and is used in various areas such as development of cheese and wine flavors, diagnosis of phenylketonuria, and to decrease excessive nitrogen accumulation in the manure of farm animals. However, reported phenylpyruvic acid fermentation studies in the literature have been usually performed at shake-flask scale with low production. In this study, phenylpyruvic acid production was evaluated in bench-top bioreactors by conducting fed-batch and continuous fermentation for the first time. As a result, maximum phenylpyruvic acid concentrations increased from 1350 mg/L (batch fermentation) to 2958 mg/L utilizing fed-batch fermentation. Furthermore, phenylpyruvic acid productivity was increased from 48 mg/L/hr (batch fermentation) to 104 and 259 mg/L/hr by conducting fed-batch and continuous fermentation, respectively. Overall, this study demonstrated that fed-batch and continuous fermentation significantly improved phenylpyruvic acid production in bench-scale bioreactor production.  相似文献   

3.
A simple, accurate model capable of predicting cell growth and methanol utilization during the mixed substrate fed-batch fermentation of MutS recombinant Pichia pastoris was developed and was used to design an exponential feeding strategy for mixed substrate fed-batch fermentation at a constant specific growth rate. Mixed substrate feeding has been shown to boost productivity in recombinant fed-batch culture of P. pastoris, while fixed growth rate exponential feeding during fed-batch culture is a useful tool in process optimization and control.  相似文献   

4.

With the advent of modern genetic engineering methods, microcultivation systems have become increasingly important tools for accelerated strain phenotyping and bioprocess engineering. While these systems offer sophisticated capabilities to screen batch processes, they lack the ability to realize fed-batch processes, which are used more frequently in industrial bioprocessing. In this study, a novel approach to realize a feedback-regulated enzyme-based slow-release system (FeedER), allowing exponential fed-batch for microscale cultivations, was realized by extending our existing Mini Pilot Plant technology with a customized process control system. By continuously comparing the experimental growth rates with predefined set points, the automated dosage of Amyloglucosidase enzyme for the cleavage of dextrin polymers into d-glucose monomers is triggered. As a prerequisite for stable fed-batch operation, a constant pH is maintained by automated addition of ammonium hydroxide. We show the successful application of FeedER to study fed-batch growth of different industrial model organisms including Corynebacterium glutamicum, Pichia pastoris, and Escherichia coli. Moreover, the comparative analysis of a C. glutamicum GFP producer strain, cultivated under microscale batch and fed-batch conditions, revealed two times higher product yields under slow growing fed-batch operation. In summary, FeedER enables to run 48 parallel fed-batch experiments in an automated and miniaturized manner, and thereby accelerates industrial bioprocess development at the screening stage.

  相似文献   

5.
The principal objective of this study was to assess the effects of culture modes including batch culture, pulse fed-batch culture, constant feeding rate fed-batch culture, and exponential fed-batch culture on the production of hyaluronic acid (HA) by Streptococcus zooepidemicus. Batch cultures had the highest levels of HA productivity, whereas fed-batch cultures were more favorable with regard to cell growth, and exponential fed-batch cultures evidenced the highest cell concentrations. A two-step culture model was proposed to enhance HA production: an exponential fed-batch culture was conducted prior to 8 h and then sucrose supplementation was applied for 8 h to start the batch fermentation of S. zooepidemicus. HA production and productivity were increased by 36 and 37% in the proposed two-step culture process as compared with that observed in the batch culture, respectively. The proposed two-step culture model can be applied in the production of secondary metabolites, and particularly of the exopolysaccharides.  相似文献   

6.
Fungal xylanases have been widely studied and various production methods have been proposed using submerged and solid-state fermentation. This class of enzyme is used to supplement cellulolytic enzyme cocktails in order to enhance the enzymatic hydrolysis of plant cell walls. The present work investigates the production of xylanase and other accessory enzymes by a recently isolated endophytic Aspergillus niger DR02 strain, using the pentose-rich liquor from hydrothermal pretreatment of sugarcane bagasse as carbon source. Batch and fed-batch submerged cultivation approaches were developed in order to minimize the toxicity of the liquor and increase enzyme production. Maximum xylanase activities obtained were 458.1 U/mL for constant fed-batch, 428.1 U/mL for exponential fed-batch, and 264.37 U/mL for pulsed fed-batch modes. The results indicated that carbon-limited fed-batch cultivation can reduce fungal catabolite repression, as well as overcome possible negative effects of toxic compounds present in the pentose-rich liquor. Enzymatic panel and mass spectrometric analyses of the fed-batch A. niger secretome showed high levels of xylanolytic enzymes (GH10, GH11, and GH62 Cazy families), together with cellobiohydrolase (G6 and GH7), β-glucosidase, β-xylosidase (GH3), and feruloyl esterase (CE1) accessory enzyme activities. The yields of glucose and xylose from enzymatic hydrolysis of hydrothermally pretreated sugarcane bagasse increased by 43.7 and 65.3%, respectively, when a commercial cellulase preparation was supplemented with the A. niger DR02 constant fed-batch enzyme complex.  相似文献   

7.
Summary In acetic acid fermentation, the number of viable cells decrease as the acetic acid concentration increases to more than about 40 g/l, which means that the productivity attainable by conventional fed-batch and repeated fed-batch operations using one fermentor is limited. In this paper, based on a fed-batch experiment using Acetobacter aceti 2096, a mathematical model was developed. The optimization carried out showed the superiority of repeated fed-batch operation using two fermentors. The performance evaluation was made with respect to productivity and product concentration. It was shown to be attractive in practice to use multiple fermentors, in particular for high product concentrations. Experiments were then conducted to ascertain the simulation results. Offprint requests to: T. Kobayashi  相似文献   

8.
Forty-eight single-use stirred tank bioreactors on a 10-mL scale operated in a magnetically inductive driven bioreaction block and automated with a liquid handler were applied for discrimination of different riboflavin producing Bacillus subtilis strains based on their performances in the parallel fed-batch processes. It was shown that a discrimination of the B. subtilis riboflavin producer strains can efficiently be achieved within one parallel fermentation run based on the integral riboflavin yield after 48 h. The possibility to perform replicates within the parallel fermentation run allows for a robust statistical analysis and is a prerequisite for the discrimination of producer strains under fed-batch process conditions. Within the estimation error, all of the riboflavin producing B. subtilis strains under study showed the same fed-batch process performances on the litre scale compared to the millilitre scale.  相似文献   

9.
The operation of a fed-batch culture is more complicated than that of batch or continuous culture. Thus, an appropriate feeding strategy for fed-batch cultures should be carefully designed. In this study, a simple feeding strategy for fed-batch culture of Bacillus thuringiensis based on motile intensity is described. The feeding strategy consisted of two steps: (1) initiating feeding at the peak of motile intensity; (2) terminating feeding at low motile intensity (or non-motility) of the cells. In addition, the motile intensity of B. thuringiensis was used to determine the optimum environmental conditions (pH, temperature, and dissolved oxygen) and optimum medium composition. Using this fed-batch strategy, the production of thuringiensin increased 34% compared with batch culture using the same environmental conditions and medium composition. The proposed strategy for fed-batch culture helps to avoid overfeeding of substrate and facilitates on-line control. A comparison of several alternative strategies for fed-batch culture demonstrated that strategies such as glucose-stat and DO-stat result in a lower productivity than that obtained using the motility intensity method.  相似文献   

10.
Preproinsulin is a well-known precursor of human insulin for the regulation of blood glucose levels. In this study, fed-batch fermentations of recombinantEscherichia coli JM109/pPT-MRpi were carried out for the overexpression of human preproinsulin. The expression of human preproinsulin was controlled by the temperature inducibleP2 promoter. The time-course profiles of fed-batch fermentation and SDS-PAGE analysis showed that human insulin expression was triggered by a culture temperature change from 30 to 37°C. Fermentation shift strategies, including the multi-step increase of temperature and the modulation of initiation time, were optimized to obtain high titers of cell mass and preproinsulin. The optimized fed-batch fermentation, consisting of a three-step shift of culture temperature from 30 to 37°C for 2 h, gave the best results of 43.1 g/L of dry cell weight and 33.3% preproinsulin content, which corresponded to 2.0- and 1.2-fold increases, respectively, as compared to those of fed-batch culture at a constant temperature of 37°C.  相似文献   

11.
Summary In substrate-limited continuous or fed-batch cultures,Clostridium thermolacticum excreted high yield of xylanases even when readily metabolizable compounds such as glucose were used as substrate. These results demonstrated that theC. thermolacticum xylanases were constitutive and were catabolite repressed. Optimization of culture conditions showed that the highest yields were obtained in fed-batch culture.  相似文献   

12.
Abstract

Artificial neural networking (ANN) seems to be a promising soft sensor for implementing current approaches of quality by design (QbD) and process analytical technologies (PAT) in the biopharmaceutical industry. In this study, we aimed to implement best-fitted ANN architecture for online prediction of the biomass amount of recombinant Pichia pastoris (P. pastoris) – expressing intracellular hepatitis B surface antigen (HBsAg) – during the fed-batch fermentation process using methanol as a sole carbon source. For this purpose, at the induction phase of methanol fed-batch fermentation, carbon evolution rate (CER), dissolved oxygen (DO), and methanol feed rate were selected as input vectors and total wet cell weight (WCW) was considered as output vector for the ANN. The obtained results indicated that after training recurrent ANN with data sets of four fed-batch runs, this toolbox could predict the WCW of the next fed-batch fermentation process at each specified time point with high accuracy. The R-squared and root-mean-square error between actual and predicted values were found to be 0.9985 and 13.73, respectively. This verified toolbox could have major importance in the biopharmaceutical industry since recombinant P. pastoris is widely used for the large-scale production of HBsAg.  相似文献   

13.
We performed fed-batch and continuous fermentations to extend the time of maximal nikkomycin production by Streptomyces tendae Tü 901/S 2566. This was achieved by the fed-batch culture technique. Furthermore, high productivity was obtained at slow growth rates in a continuous fermentation process. Different dilution rates with and without carbon limitation were done and the results were compared. Correspondence to : T. Schüz  相似文献   

14.
To overcome catabolite repression, industrial fermentation processes are usually operated in substrate-limited fed-batch mode. Therefore, the implementation of such an operating mode at small scale is crucial to maintain comparable process conditions. In this study, Bacillus licheniformis, a well-known producer of proteases, was cultivated with carbon (glucose)- and nitrogen (ammonium)-limited fed-batch conditions using the previously introduced membrane-based fed-batch shake flasks. A repression of protease production by glucose and ammonium was thus avoided and yields increased 1.5- and 2.1-fold relative to batch, respectively. An elevated feeding rate of glucose caused depletion of ammonium, which was recognizable within the oxygen transfer rate (OTR) signal measured with the Respiration Activity MOnitoring System (RAMOS). Ammonium limitation was prevented by feeding ammonium simultaneously with glucose. The OTR signal clearly indicated the initiation of the fed-batch phase and gave direct feedback on the nutrient release kinetics. Increased feeding rates of glucose and ammonium led to an elevated protease activity without affecting the protease yield (YP/Glu). In addition to YP/Glu, protease yields were determined based on the metabolized amount of oxygen . The results showed that the protease production correlated with the amount of consumed glucose as well as with the amount of consumed oxygen. The membrane-based fed-batch shake flask in combination with the RAMOS device is a powerful combination to investigate the effect of substrate-limited fed-batch conditions.  相似文献   

15.
The hydrolase (Thermobifida fusca hydrolase; TfH) from T. fusca was produced in Escherichia coli as fusion protein using the OmpA leader sequence and a His6 tag. Productivity could be raised more than 100-fold. Both batch and fed-batch cultivations yield comparable cell specific productivities whereas volumetric productivities differ largely. In the fed-batch cultivations final rTfH concentrations of 0.5 g L−1 could be achieved. In batch cultivations the generated rTfH is translocated to the periplasm wherefrom it is completely released into the extracellular medium. In fed-batch runs most of the produced rTfH remains as soluble protein in the cytoplasm and only a fraction of about 35% is translocated to the periplasm. Migration of periplasmic proteins in the medium is obviously coupled with growth rate and this final transport step possibly plays an important role in product localization and efficacy of the Sec translocation process.  相似文献   

16.
Acid anhydrides were used as highly reactive and non-water-producing acyl donors for hydrolase-catalyzed enantioselective esterification. Efficient kinetic resolution of dl-menthol has been achieved via lipase-catalyzed enantioselective esterification in cyclohexane when propionic anhydride as an acyl donor was continuously fed into a reactor containing dl-menthol and Candida cylindracea lipase OF 360, while a high concentration of the acid anhydride in a batch reaction system with a dehydrated organic solvent did not facilitate the reaction, because water necessary for the enzyme function was consumed by the competing hydrolysis of the anhydride catalyzed by the same enzyme. The efficiency of this fed-batch reaction system using acid anhydride was higher and the enzyme stability in repeated use was much better than those of conventional batch and fed-batch reaction systems using propionic acid as an acyl donor. The optical purity (more than 98% e.e.) of the l-menthyl ester produced in the fed-batch system using the anhydride was comparable to that in the system using the corresponding acid. *** DIRECT SUPPORT *** AG903062 00002  相似文献   

17.
Microbial growth in the fed-batch mode is described by a simple unstructured model. The model is found to be in good agreement with agreement with the experimental observation, except under highly transient conditions. Extensive experimental data were collected and the energetics of the bacterium Klebsiella pneumoniae is evaluated. It is shown that the fed-batch culti vation is a powerful experimental tool in the study of microbial kinetics and energetics simultaneously. Methods for determining the maintenance requirements are shown and evaluated. The maintenance coefficients determined from fed-batch data are systematically smaller than those reported for continuous culture systems. Results suggest a decrease in maintenance demands at low specific growth rates.  相似文献   

18.
2,3-Butanediol is one of the promising bulk chemicals with wide applications. Its fermentative production has attracted great interest due to the high end concentration. However, large-scale production of 2,3-butanediol requires low-cost substrate and efficient fermentation process. In the present study, 2,3-butanediol production by Klebsiella pneumoniae from Jerusalem artichoke tubers was successfully performed, and various technologies, including separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF), were investigated. The concentration of target products reached 81.59 and 91.63 g/l, respectively after 40 h in batch and fed-batch SSF processes. Comparing with fed-batch SHF, the fed-batch SSF provided 30.3% higher concentration and 83.2% higher productivity of target products. The results showed that Jerusalem artichoke tuber is a favorable substrate for 2,3-butanediol production, and the application of fed-batch SSF for its conversion can result in a more cost-effective process.  相似文献   

19.
To enhance the productivity and activity of nitrile hydratase inRhodococcus rhodochrous M33, a glucose-limited fed-batch culture was performed. In a fed-batch culture where the glucose was controlled at a limited level and cobalt was supplemented during the fermentation period, the cell mass and total activity of nitrile hydratase both increased 3.3-fold compared to that in the batch fermentation. The productivity of nitrile hydratase also increased 1.9-fold compared to that in the batch fermentation. The specific activity of nitrile hydratase in the whole cell preparation when using a fed-batch culture was 120 units/mg-DCW, which was similar to that in the batch culture.  相似文献   

20.
The current investigation focuses on shedding further light on the characteristics of lipase A from Candida antarctica (CalA), which has attracted growing attention in its suitability for industrial applications. CalA was functionally expressed in the methylotrophic yeast Pichia pastoris, purified and characterised. A classical fed-batch process and a semi-continuous process were developed and tested with regard to their yield capacity. Lipase concentrations of 0.88 and 0.55 g l−1 were obtained using the fed-batch and semi-continuous processes, respectively. The semi-continuous process reaches a total activity of 10,233,000 U and so surpasses the fed-batch process reaching 7,530,000 U. The purified enzyme showed highest activity between 50 and 70 °C at pH 7.0 and a preference for short-chain triglycerides (C4-C8). Significantly reduced activity was observed in the presence of hydrophilic esters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号