共查询到20条相似文献,搜索用时 0 毫秒
1.
Nitrilotriacetic acid has been routinely used in protein purification for its high affinity for His-tagged protein in the presence of Ni2+. Here we reported a type of nitrilotriacetic acid chip (NTA-chip) prepared by transferring NTA-DOGS containing a lipid monolayer to a 50 nm thick gold layer deposited on a glass slide. The surface binding ability of His-tagged protein and regeneration of NTA chip were characterized using a synthetic polypeptide P1 (His-His-His-His-His-His--aminohexanoic-Gly-Gly-Arg-Gly-Asp-Ser). The effect of divalent cations on integrin binding affinity for RGD ligand was investigated after P1 had been immobilized onto the sensor chip. The results show that the NTA-chip is a useful tool to immobilize His-tagged protein on the chip surface, and can provide a functional orientation for further investigation. The results also show that removing of Ca2+ bound on low affinity sites or adding of Mn2+ can increase the binding ability of integrin. 相似文献
2.
Hantgan RR Stahle MC Connor JH Lyles DS Horita DA Rocco M Nagaswami C Weisel JW McLane MA 《Journal of molecular biology》2004,342(5):1625-1636
We have employed echistatin, a 5.4 kDa snake venom disintegrin, as a model protein to investigate the paradox that small ligand-mimetics can bind to the resting alphaIIbbeta3 integrin while adhesive macromolecules cannot. We characterized the interactions between purified human alphaIIbbeta3 and two recombinant echistatin variants: rEch (1-49) M28L, chosen for its selectivity toward beta3-integrins, and rEch (1-40) M28L, a carboxy-terminal truncation mutant. While both contain an RGD integrin targeting sequence, only rEch (1-49) M28L was an effective inhibitor of alphaIIbbeta3 function. Electron microscopy of rotary shadowed specimens yielded a variety of alphaIIbbeta3 conformers ranging from compact, spherical particles (maximum dimension 22 nm) to the classical "head with two tails" forms (32 nm). The population of larger particles (42-56 nm) increased from 17% to 28% in the presence of rEch (1-49) M28L, indicative of ligand-induced oligomerization. Sedimentation velocity measurements demonstrated that both full length and truncated echistatin perturbed alphaIIbbeta3's solution structure, yielding slower-sedimenting open conformers. Dynamic light scattering showed that rEch (1-49) M28L protected alphaIIbbeta3 from thermal aggregation, raising its transition mid-point from 46 degrees C to 69 degrees C; a smaller shift resulted with rEch (1-40) M28L. Sedimentation equilibrium demonstrated that both echistatin ligands induced substantial alphaIIbbeta3 dimerization. van't Hoff analysis revealed a pattern of entropy/enthalpy compensation similar to tirofiban, a small RGD ligand-mimetic that binds tightly to alphaIIbbeta3, but yields smaller conformational perturbations than echistatin. We propose that echistatin may serve as a paradigm for understanding multidomain adhesive macromolecules because its ability to modulate alphaIIbbeta3's structure resides on an RGD loop, while full disintegrin activity requires an auxiliary site that includes the carboxy-terminal nine amino acid residues. 相似文献
3.
Substrate-supported phospholipid membranes studied by surface plasmon resonance and surface plasmon fluorescence spectroscopy
下载免费PDF全文

Substrate-supported planar lipid bilayer membranes are attractive model cellular membranes for biotechnological applications such as biochips and sensors. However, reliable fabrication of the lipid membranes on solid surfaces still poses significant technological challenges. In this study, simultaneous surface plasmon resonance (SPR) and surface plasmon fluorescence spectroscopy (SPFS) measurements were applied to the monitoring of adsorption and subsequent reorganization of phospholipid vesicles on solid substrates. The fluorescence intensity of SPFS depends very sensitively on the distance between the gold substrate and the fluorophore because of the excitation energy transfer to gold. By utilizing this distance dependency, we could obtain information about the topography of the adsorbed membranes: Adsorbed vesicles could be clearly distinguished from planar bilayers due to the high fluorescence intensity. SPSF can also incorporate various analytical techniques to evaluate the physicochemical properties of the adsorbed membranes. As an example, we demonstrated that the lateral mobility of lipid molecules could be estimated by observing the recovery of fluorescence after photobleaching. Combined with the film thickness information obtained by SPR, SPR-SPFS proved to be a highly informative technique to monitor the lipid membrane assembly processes on solid substrates. 相似文献
4.
Filizola M Hassan SA Artoni A Coller BS Weinstein H 《The Journal of biological chemistry》2004,279(23):24624-24630
The integrin alpha(IIb)beta(3) plays an important role in platelet function, and abnormalities of this protein result in a serious bleeding disorder, known as Glanzmann thrombasthenia. Although crystallographic data exist for the related integrin alpha(V)beta(3), to date, there are no high resolution structures of integrin alpha(IIb)beta(3) available in the literature. Therefore, it is still unclear how specific elements of the alpha(IIb) subunit contribute to integrin alpha(IIb)beta(3) function. Here we describe a refined model of the alpha(IIb) N-terminal portion of integrin alpha(IIb)beta(3) obtained by using the alpha(V)beta(3) template combined with a new method for predicting the conformations of the unique alpha(IIb) loop regions comprising residues 71-85, 114-125, and 148-164. The refined model was probed based on a structural prediction that differentiates it from standard homology models: specifically, that Lys-118 of alpha(IIb) contacts Glu-171 of beta(3). To test this hypothesis experimentally, the mutant integrin chains alpha(IIb) K118C and beta(3) E171C were cotransfected into HEK 293 cells. We show that the cells expressed the mutants alpha(IIb)beta(3) on their surface as a disulfide-linked dimer, supporting the close proximity between alpha(IIb) Lys-118 and beta(3) Glu-171 predicted from the refined model. This validated model provides a specific structural context for the analysis and interpretation of structure-function relations of integrin alpha(IIb)beta(3). In addition, it suggests mechanistic hypotheses pertaining to both naturally occurring mutations responsible for Glanzmann thrombasthenia and to point mutations that affect ligand binding. 相似文献
5.
Leisner TM Wencel-Drake JD Wang W Lam SC 《The Journal of biological chemistry》1999,274(18):12945-12949
Activation of blood platelets by physiological stimuli (e.g. thrombin, ADP) at sites of vascular injury induces inside-out signaling, resulting in a conformational change of the prototype integrin alphaIIbbeta3 from an inactive to an active state competent to bind soluble fibrinogen. Furthermore, ligand occupancy of alphaIIbbeta3 initiates outside-in signaling and additional conformational changes of the receptor, leading to the exposure of extracellular neoepitopes termed ligand-induced binding sites (LIBS), which are recognized by anti-LIBS monoclonal antibodies. To date, the mechanism of bidirectional transmembrane signaling of alphaIIbbeta3 has not been established. In this study, using our newly developed anti-LIBScyt1 monoclonal antibody, we showed that extracellular ligand binding to alphaIIbbeta3 on blood platelets induces a transmembrane conformational change in alphaIIbbeta3, thereby exposing the LIBScyt1 epitope in the alphaIIb cytoplasmic sequence between Lys994 and Asp1003. In addition, a point mutation at this site (P998A/P999A) renders alphaIIbbeta3 constitutively active to bind extracellular ligands, resulting in fibrinogen-dependent cell-cell aggregation. Taken collectively, these results demonstrated that the extracellular ligand-binding site and a cytoplasmic LIBS epitope in integrin alphaIIbbeta3 are conformationally and functionally coupled. Such bidirectional modulation of alphaIIbbeta3 conformation across the cell membrane may play a key role in inside-out and outside-in signaling via this integrin. 相似文献
6.
Hsp70 chaperones assist protein folding through ATP-regulated transient association with substrates. Substrate binding by Hsp70 is controlled by DnaJ co-chaperones which stimulate Hsp70 to hydrolyze ATP and, consequently, to close its substrate binding cavity allowing trapping of substrates. We analyzed the interaction of the Escherichia coli Hsp70 homologue, DnaK, with DnaJ using surface plasmon resonance (SPR) spectroscopy. Resonance signals of complex kinetic characteristics were detected when DnaK was passed over a sensor chip with coupled DnaJ. This interaction was specific as it was not detected with a functionally defective DnaJ mutant protein, DnaJ259, that carries a mutation in the HPD signature motif of the conserved J-domain. Detectable DnaK-DnaJ interaction required ATP hydrolysis by DnaK and was competitively inhibited by chaperone substrates of DnaK. For DnaK mutant proteins with amino acid substitutions in the substrate binding cavity that affect substrate binding, the strength of detected interaction with DnaJ decreased proportionally with increased strength of the substrate binding defects. These findings indicate that the detected response signals resulted from DnaJ and ATP hydrolysis-dependent association of DnaJ as substrate for DnaK. Although not considered as physiologically relevant, this association allowed us to experimentally unravel the mechanism of DnaJ action. Accordingly, DnaJ stimulates ATP hydrolysis only after association of a substrate with the substrate binding cavity of DnaK. Further analysis revealed that this coupling mechanism required the J-domain of DnaJ and was also functional for natural DnaK substrates, and thus is central to the mechanism of action of the DnaK chaperone system. 相似文献
7.
Han J Lim CJ Watanabe N Soriani A Ratnikov B Calderwood DA Puzon-McLaughlin W Lafuente EM Boussiotis VA Shattil SJ Ginsberg MH 《Current biology : CB》2006,16(18):1796-1806
BACKGROUND: Integrin receptors, composed of transmembrane alpha and beta subunits, are essential for the development and functioning of multicellular animals. Agonist stimulation leads cells to regulate integrin affinity ("activation"), thus controlling cell adhesion and migration, controlling extracellular-matrix assembly, and contributing to angiogenesis, tumor cell metastasis, inflammation, the immune response, and hemostasis. A final step in integrin activation is the binding of talin, a cytoskeletal protein, to integrin beta cytoplasmic domains. Many different signaling molecules that regulate integrin affinity have been described, but a pathway that connects agonist stimulation to talin binding and activation has not been mapped. RESULTS: We used forward, reverse, and synthetic genetics to engineer and order an integrin activation pathway in cells expressing a prototype activatable integrin, platelet alphaIIbbeta3. Phorbol myristate acetate (PMA) activated alphaIIbbeta3 only after the increased expression of both recombinant protein kinase Calpha (PKCalpha) and talin to levels approximating those in platelets. Inhibition of Rap1 GTPase reduced alphaIIbbeta3 activation, whereas activated Rap1A(G12V) bypassed the requirement for PKC, establishing that Rap1 is downstream of PKC. Talin binding to integrins mediates Rap1-induced activation because Rap1A(G12V) failed to activate alphaIIbbeta3 in cells expressing integrin binding-defective talin (W359A). Rap1 activated integrins by forming an integrin-associated complex containing talin in combination with the Rap effector, RIAM. Furthermore, siRNA-mediated knockdown of RIAM blocked integrin activation. CONCLUSIONS: We have, for the first time, ordered a pathway from agonist stimulation to integrin activation and established the Rap1-induced formation of an "integrin activation complex," containing RIAM and talin, that binds to and activates the integrin. 相似文献
8.
Surface plasmon resonance (SPR) biosensors are affinity sensing devices exploiting a special mode of electromagnetic field-surface plasmon-polariton-to detect the binding of analyte molecules from a liquid sample to biomolecular recognition elements immobilized on the surface of the sensor. In this paper, we review advances of SPR biosensor technology towards detection systems for the simultaneous detection of multiple analytes (multi-analyte detection). In addition, we report application of a recently developed multichannel SPR sensor based on spectroscopy of surface plasmons and wavelength division multiplexing of sensing channels to multi-analyte detection. 相似文献
9.
Analysis of mono- and oligosaccharides by multiwavelength surface plasmon resonance (SPR) spectroscopy. 总被引:1,自引:0,他引:1
Surface plasmon resonance (SPR) spectra of different saccharides were collected using a home-made multiwavelength SPR apparatus. Pentoses, hexoses, disaccharides and a trisaccharide were distinguished from one another according to their SPR spectra collected at the same concentration. The spectra were also used for the quantitation of sugars by exploring the linear relationship between resonance wavelength and solute concentration. The dynamic linear ranges for the determination of glucose, sucrose and raffinose are 0.01-0.2, 0.005-0.1 and 0.0025-0.1 mol/L, respectively. The SPR spectrum of a mixture of two components was investigated. While the experiments have not been carried out, the implications from this work are that the technique would be applicable to mixtures containing more than two components. 相似文献
10.
Monolayers of live bacterial cells adsorbed on Ag/Al2O3 film caused surface plasmon resonance angle shifts upon provision of specific gaseous nutrients, probably because of the changes in the cell volume attending the metabolic response. 相似文献
11.
12.
Recent kinetic studies revealed distinct modes of inhibition of mitochondrial Arabidopsis thaliana succinic semialdehyde dehydrogenase (At-SSADH1) by AMP and ATP. Inhibition of SSADH by ATP may represent an important mechanism of feedback regulation of the GABA shunt by the respiratory chain. Here we used two approaches to investigate the interaction of ATP with At-SSADH1. Cofactor displacement studies based on the reduced fluorescence intensity of free NADH versus that of enzyme-bound NADH revealed that both AMP and ATP decreased NADH-At-SSADH1 complex formation. The competitive inhibitor AMP displaced all bound NADH, while ATP, a noncompetitive inhibitor, could not, even in great excess, release all NADH from its binding site. To assess the effect of ATP on NAD-At-SSADH, we employed surface plasmon resonance to monitor nucleotide binding to immobilized At-SSADH1. For this, we used a Strep-tag II modified derivative of At-SSADH1 (designated ST-At-SSADH1). The tagged enzyme was tightly and reversibly captured by StrepTactin, which was covalently immobilized on a CM5 chip. The binding constants for NAD(+) and ATP were determined from titration curves and were in good agreement with the constants obtained from enzyme kinetics. Surface plasmon resonance measurements confirmed that ATP binds to a site different from the binding site for NAD(+). GTP competed with ATP. However, only ATP increased the dissociation constant of NAD(+) from SSADH. This explains the reduced affinity of NAD(+)/NADH to At-SSADH1 in the presence of ATP, as revealed by enzymatic kinetics, and supports our model of feedback regulation of SSADH and the GABA shunt by ATP. 相似文献
13.
Rich RL Cannon MJ Jenkins J Pandian P Sundaram S Magyar R Brockman J Lambert J Myszka DG 《Analytical biochemistry》2008,373(1):112-120
Surface plasmon resonance imaging systems, such as Flexchip from Biacore, are capable of monitoring hundreds of reaction spots simultaneously within a single flow cell. Interpreting the binding kinetics in a large-format flow cell presents a number of potential challenges, including accounting for mass transport effects and spot-to-spot sample depletion. We employed a combination of computer simulations and experimentation to characterize these effects across the spotted array and established that a simple two-compartment model may be used to accurately extract intrinsic rate constants from the array under mass transport-limited conditions. Using antibody systems, we demonstrate that the spot-to-spot variability in the binding kinetics was <9%. We also illustrate the advantage of globally fitting binding data from multiple spots within an array for a system that is mass transport limited. 相似文献
14.
Comparative thermodynamic analysis of DNA--protein interactions using surface plasmon resonance and fluorescence correlation spectroscopy 总被引:5,自引:0,他引:5
We report a kinetic and thermodynamic analysis of interactions between ssDNA and replication protein A (RPA) using surface plasmon resonance (SPR) and fluorescence correlation spectroscopy (FCS) at variable temperature. The two methods yield different values for the Gibbs free energy but nearly the same value for the reaction enthalpy of ssDNA-RPA complex formation. The Gibbs free energy was determined by SPR and FCS to be -62.6 and -54.7 kJ/mol, respectively. The values for the reaction enthalpy are -64.4 and -66.5 kJ/mol. It is concluded that the difference in Gibbs free energy measured by the two methods is due to different reaction entropies. The entropic contribution to the free energy at 25 degrees C is -1.8 kJ/mol for SPR and -11.8 kJ/mol for FCS. In SPR, the reaction is restricted to two dimensions because of immobilization of the DNA molecules to the sensor surface. In contrast, FCS is able to follow complex formation without spatial restrictions. In consequence, the reaction entropy determined from SPR experiments is lower than for FCS experiments. 相似文献
15.
Pranavan Thillaivinayagalingam Julien GommeauxMichael McLoughlin David CollinsAnthony R. Newcombe 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2010,878(2):149-153
Surface plasmon resonance (SPR) permits the quantitative analysis of therapeutic antibody concentrations and impurities including bacteria, Protein A, Protein G and small molecule ligands leached from chromatography media. The use of surface plasmon resonance has gained popularity within the biopharmaceutical industry due to the automated, label free, real time interaction that may be exploited when using this method. The application areas to assess protein interactions and develop analytical methods for biopharmaceutical downstream process development, quality control, and in-process monitoring are reviewed. 相似文献
16.
Neuropeptides interact with glycolipid receptors: a surface plasmon resonance study. 总被引:1,自引:0,他引:1
Using Surface Plasmon Resonance (SPR) we investigated the interaction of seven neuropeptides with different characteristics and beta-amyloid (Abeta42) peptide, with membranes containing gangliosides. A wide range of affinities characterized the bindings (K(D) = 10(-3)- 10(-7) M), following the scheme: for GM1, Abeta42 > DYN > SP = GAL = SOM = BRD > OXY = ENK; for GD1a, Abeta42 = DYN = GAL > SP = SOM = BRD = OXY > ENK and for GT1b, Abeta42 > DYN > SP = GAL > SOM = BRD = OXY > ENK. The ganglioside sugar moiety, specifically the sialic acid, had an important role in the interactions. In general the affinities were higher with polysialo, than with monosialo gangliosides. The sensorgrams describing the interactions of Abeta42 and SP with gangliosides differed from the interactions of the other studied peptides. Ca(2+) promoted changes in peptide-glycolipid interactions. 相似文献
17.
The specificity, the strength, the kinetics and some thermodynamic parameters of sugar-protein interactions are easily assessed by surface plasmon resonance (SPR). This paper intends to present both theoretical and practical considerations. This includes: the principle of SPR, the analysis according to Langmuir and Scatchard, the problems linked either to mass transport limitation, to the heterogeneity of the immobilized ligand density or to the non-linearity due to cluster effects. The non-linearity may be taken into account by either one of two ways: the fractal or the Sips approaches that have been developed with the aim of linearizing the data. In addition, selected data obtained by using either immobilized carbohydrates or immobilized lectins are summarized. The SPR has also been found useful to collect information concerning oligosaccharide structure as well as lectin-sugar specificity and to develop new tools with medical applications. Finally, a series of practical considerations are gathered in the hope of avoiding some of the common pitfalls arising in sugar-lectin interaction studies based on the use of SPR. 相似文献
18.
19.
A. V. Kabashin V. E. Kochergin A. A. Beloglazov P. I. Nikitin 《Biosensors & bioelectronics》1998,13(12):1263-1269
A technique of phase-polarisation contrast (PPC) for the enhancement of the contrast of a surface plasmon resonance (SPR) intensity profile is proposed and experimentally realised. The technique exploits the peculiarities of light phase and polarisation behaviour under SPR. It applies to non-optimum SPR coupling conditions and enables one to lower the resonant minimum of reflected intensity nearly to zero, and hence to increase substantially the ratio of the intensity from the resonance to that at the minimum. We observed the contrast enhancement by more than one order of magnitude when we applied the PPC scheme. The PPC can be efficiently employed in commercial SPR sensors, as it significantly reduces restrictions on allowable parameters of SPR-supporting metal films and biomolecular layers immobilised on them, facilitates SPR observation, and increases the accuracy of SPR shift measurements. 相似文献
20.
R D Harris B J Luff J S Wilkinson J Piehler A Brecht G Gauglitz R A Abuknesha 《Biosensors & bioelectronics》1999,14(4):377-386
This paper presents the detailed design and characterisation of a regenerable integrated optical surface plasmon resonance immunoprobe as a detector for the triazine herbicide simazine. A sensor design theoretically optimised for use in the aqueous environment is presented and its fabrication described. Experimental results on the sensitivity to changes in bulk refractive index of the analyte and on non-specific binding of ovalbumin are presented. Binding inhibition immunoassays were conducted for simazine and the lower limit of detection determined to be 0.16 microgram/l using anti-simazine IgG antibodies and 0.11 microgram/l using anti-simazine Fab fragments. A sample test cycle of 20 min was established. 相似文献