首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
In murine schistosomiasis mansoni the cell-mediated immune response to the deposited eggs is mediated by CD4+ delayed-type hypersensitivity effector T (TDH) cells that produce vigorous granulomatous responses in the liver and intestines of acutely infected animals. The response is significantly down-modulated in chronically infected mice by Ag-specific Ts cells. The present study was undertaken to establish an in vitro model by which TDH-Ts cell interactions could be analyzed. To this end, Ts cells were induced in vitro by preculture of chronic or acute infection spleen cells with soluble egg Ag (SEA) for 48 h. The induced cells suppressed the SEA-specific proliferation of acute infection spleen cells by 80 to 95%. The induced suppressor cells were Ag specific in both induction and elicitation of function, and were not cytotoxic to the acute infection splenic target cells. Suppression by the induced cells was manifested within the first 24 h of the SEA-induced response as IL-2 produced by acute infection spleen cells was suppressed 62%. Phenotypic analysis by flow cytometry of the induced suppressor cells showed that CD8+ cells from acute infection spleens and CD4+ and CD8+ cells from chronic infection spleens were effector Ts cells. Taken together, CD4+ and CD8+ SEA-specific Ts cells can be induced in vitro to effectively suppress the SEA-specific lymphoproliferation and IL-2 production of acute infection spleen cells. Establishment of this in vitro model will allow us to further analyze the mechanisms of Ts cell-mediated suppression of TDH cells.  相似文献   

2.
In previous studies the dynamics of IL-2 production by splenic cells of Schistosoma mansoni infected mice was correlated with the intensity of hepatic granulomatous inflammation. To extend those observations, the present studies examined the role of IL-4 on the immune responsiveness of infected mice. The dynamics of IL-4 production by soluble egg Ag-stimulated splenic cells was similar to that of IL-2: minimal levels at the pre-oviposition or early worm egg deposition stages (4 to 6 wk) peak production coincident with maximal granulomatous response (8 wk) followed by a concurrent decline at the chronic stage (18 to 20 wk) in both parameters. Addition of murine rIL-4 to splenocyte cultures of acutely or chronically infected mice did not significantly enhance the soluble egg Ag-elicited proliferative response. Daily injections of rIL-4 (10 to 1000 U) given for 14 days to groups of mice with acute infection, at the high dose-enhanced IL-2, but not IL-4, production. Similar treatment given to chronically infected mice did not augment diminished lymphokine production. Chronically infected mice treated with 10 to 1000 U of rIL-4 showed significantly enhanced liver granulomatous responses compared with untreated animals and the augmented granulomas contained more enlarged macrophages and connective tissue matrix. Repeated injections of anti-IL-4 mAb (11B11) given to acutely infected mice significantly suppressed splenic cell proliferation, IL-2 and IL-4 production, and hepatic granulomatous inflammation. Similar treatment given to chronically infected mice also diminished the down-modulated granulomatous response. These data demonstrate that IL-4 plays an important role in the egg-directed granulomatous response and participates in the regulation of Ag-specific lymphoproliferation, and IL-2 and IL-4 production during the course of the infection.  相似文献   

3.
Down-modulation of the schistosome egg-induced granulomatous response involves various interacting subsets of T suppressor (TS) lymphocytes. In the present study the inductive phase of the process of modulation was analyzed. A soluble, I-J+ granuloma TS cell recruiting factor (Gr-TSRF) derived from spleen cells of chronically infected mice is described. This factor eluted from immunoabsorbent columns coupled with anti-I-Jk alloantisera induced the recruitment and expansion of antigen-specific I-J+ TS cells from a TS precursor cell population in the spleens of acutely infected mice. The recruited TS cells suppressed the granulomatous response of normal recipients in a 2-day adoptive transfer model. The antigenic specificity of the recruited TS cells was demonstrated by their inability to suppress KLH-induced artificial granulomatous response. This mechanism of recruitment described in the current study and illustrated by adoptive transfer experiments is likely to be active in vivo in initiating the process of spontaneous modulation. The I-J+ Gr-TSRF and the I-J+ TS cell described in this paper, together with the previously described H-2 restricted I-C+ factor and the subsets of TS cells (THs, TSe, TSpr), indicate the existence of an intricate, regulatory pathway(s) that operates during the modulation of the granulomatous response.  相似文献   

4.

Background

Virus infections are the major cause of asthma exacerbations. CD8+ T cells have an important role in antiviral immune responses and animal studies suggest a role for CD8+ T cells in the pathogenesis of virus-induced asthma exacerbations. We have previously shown that the presence of IL-4 during stimulation increases the frequency of IL-5-positive cells and CD30 surface staining in CD8+ T cells from healthy, normal subjects. In this study, we investigated whether excess IL-4 during repeated TCR/CD3 stimulation of CD8+ T cells from atopic asthmatic subjects alters the balance of type 1/type 2 cytokine production in favour of the latter.

Methods

Peripheral blood CD8+ T cells from mild atopic asthmatic subjects were stimulated in vitro with anti-CD3 and IL-2 ± excess IL-4 and the expression of activation and adhesion molecules and type 1 and type 2 cytokine production were assessed.

Results

Surface expression of very late antigen-4 [VLA-4] and LFA-1 was decreased and the production of the type 2 cytokines IL-5 and IL-13 was augmented by the presence of IL-4 during stimulation of CD8+ T cells from mild atopic asthmatics.

Conclusion

These data suggest that during a respiratory virus infection activated CD8+ T cells from asthmatic subjects may produce excess type 2 cytokines and may contribute to asthma exacerbation by augmenting allergic inflammation.  相似文献   

5.
A key suppressor role has recently been ascribed to the natural CD4+CD25+ regulatory T cells (Treg), the removal of which leads to the development of autoimmune disease and aggravated pathogen-induced inflammation in otherwise normal hosts. The repertoire of antigen specificities of Treg is as broad as that of naive T cells, recognizing both self and non-self antigens, enabling Treg to control a broad range of immune responses. Although widely acknowledged to play a role in the maintenance of self-tolerance, recent studies indicate that Treg can be activated and expanded against bacterial, viral and parasite antigens in vivo. Such pathogen-specific Treg can prevent infection-induced immunopathology but may also increase the load of infection and prolong pathogen persistence by suppressing protective immune responses. This review discusses the role of Treg in the prevention of exaggerated inflammation favoring chronicity in bacterial or fungal infections and latency in viral infections. Special attention is given to the role of Treg in the modulation of gastric inflammation induced by Helicobacter pylori infection. Findings in both experimentally infected mice and humans with natural infection indicate that Treg are important in protecting the H. pylori-infected host against excessive gastric inflammation and disease symptoms but on the negative side promote bacterial colonization at the gastric and duodenal mucosa which may increase the risk in H. pylori-infected individuals to develop duodenal ulcers.  相似文献   

6.
The repeated injection of low doses of bacterial superantigens (SAg) is known to induce specific T cell unresponsiveness. We show in this study that the spleen of BALB/c mice receiving chronically, staphylococcal enterotoxin B (SEB) contains SEB-specific CD4(+) TCRBV8(+) T cells exerting an immune regulatory function on SEB-specific primary T cell responses. Suppression affects IL-2 and IFN-gamma secretion as well as proliferation of T cells. However, the suppressor cells differ from the natural CD4(+) T regulatory cells, described recently in human and mouse, because they do not express cell surface CD25. They are CD152 (CTLA-4)-negative and their regulatory activity is not associated with expression of the NF Foxp3. By contrast, after repeated SEB injection, CD4(+)CD25(+) splenocytes were heterogenous and contained both effector as well as regulatory cells. In vivo, CD4(+)CD25(-) T regulatory cells prevented SEB-induced death independently of CD4(+)CD25(+) T cells. Nevertheless, SEB-induced tolerance could not be achieved in thymectomized CD25(+) cell-depleted mice because repeated injection of SEB did not avert lethal toxic shock in these animals. Collectively, these data demonstrate that, whereas CD4(+)CD25(+) T regulatory cells are required for the induction of SAg-induced tolerance, CD4(+)CD25(-) T cells exert their regulatory activity at the maintenance stage of SAg-specific unresponsiveness.  相似文献   

7.
There is growing evidence to suggest a regulatory role of IL-4 in the immune system affecting both proliferation and lymphokine production. In the present work we have analyzed the effect of IL-4 on IL-2 and IFN-gamma synthesis by stimulating CD4+ human T cells (+10% accessory cells) with Con A in the presence of several doses (1 to 100 U/ml) of human rIL-4. The results showed an impaired IL-2 and IFN-gamma synthesis in the presence of IL-4. This inhibition was dose dependent and was evident only when IL-4 was added in the first 2 h of culture. Moreover, the external addition of IL-2 did not revert the inhibitory effect of IL-4 on IL-2 and IFN-gamma synthesis induced by Con A. We have also analyzed the effect of IL-4 on the expression of both alpha- and beta-chains of the IL-2R. Although the expression of IL-2R alpha mRNA was not modified after 6 h in culture in the presence of IL-4, a decrease was observed at 24 and 48 h. The addition of rIL-2 showed that the inhibition in IL-2R alpha expression could be explained by an impairment in the up-regulatory signal transmitted through the IL-2R. In addition to this, IL-4 did not modify the IL-2R beta mRNA expression at 6 and 24 h although a decreased expression was observed at 48 h which could be explained by the defective IL-2 production. The differential effect of IL-4 on the up-regulatory effect of IL-2 in the expression of IL-2R alpha and IL-2R beta suggest the existence of different regulatory mechanisms acting on the expression of both chains.  相似文献   

8.
CD4+ T cells, particularly Th2 cells, play a pivotal role in allergic airway inflammation. However, the requirements for interactions between CD4+ and CD8+ T cells in airway allergic inflammation have not been delineated. Sensitized and challenged OT-1 mice in which CD8+ T cells expressing the transgene for the OVA(257-264) peptide (SIINFEKL) failed to develop airway hyperresponsiveness (AHR), airway eosinophilia, Th2 cytokine elevation, or goblet cell metaplasia. OT-1 mice that received naive CD4+IL-4+ T cells but not CD4+IL-4- T cells before sensitization developed all of these responses to the same degree as wild-type mice. Moreover, recipients of CD4+IL-4+ T cells developed significant increases in the number of CD8+IL-13+ T cells in the lung, whereas sensitized OT-1 mice that received primed CD4+ T cells just before challenge failed to develop these responses. Sensitized CD8-deficient mice that received CD8+ T cells from OT-1 mice that received naive CD4+ T cells before sensitization increased AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged with allergen. In contrast, sensitized CD8-deficient mice receiving CD8+ T cells from OT-1 mice without CD4+ T cells developed reduced AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged. These data suggest that interactions between CD4+ and CD8+ T cells, in part through IL-4 during the sensitization phase, are essential to the development of CD8+IL-13+ T cell-dependent AHR and airway allergic inflammation.  相似文献   

9.
10.
Humans and mice have evolved distinct pathways for Th1 cell development. Although IL-12 promotes CD4(+) Th1 development in both murine and human T cells, IFN-alphabeta drives Th1 development only in human cells. This IFN-alphabeta-dependent pathway is not conserved in the mouse species due in part to a specific mutation within murine Stat2. Restoration of this pathway in murine T cells would provide the opportunity to more closely model specific human disease states that rely on CD4(+) T cell responses to IFN-alphabeta. To this end, the C terminus of murine Stat2, harboring the mutation, was replaced with the corresponding human Stat2 sequence by a knockin targeting strategy within murine embryonic stem cells. Chimeric m/h Stat2 knockin mice were healthy, bred normally, and exhibited a normal lymphoid compartment. Furthermore, the murine/human STAT2 protein was expressed in murine CD4(+) T cells and was activated by murine IFN-alpha signaling. However, the murine/human STAT2 protein was insufficient to restore full IFN-alpha-driven Th1 development as defined by IFN-gamma expression. Furthermore, IL-12, but not IFN-alpha, promoted acute IFN-gamma secretion in collaboration with IL-18 stimulation in both CD4(+) and CD8(+) T cells. The inability of T cells to commit to Th1 development correlated with the lack of STAT4 phosphorylation in response to IFN-alpha. This finding suggests that, although the C terminus of human STAT2 is required for STAT4 recruitment and activation by the human type I IFNAR (IFN-alphabetaR), it is not sufficient to restore this process through the murine IFNAR complex.  相似文献   

11.
12.
CD4+ helper T cells are critical orchestrators of immune responses to infection and vaccination. During primary responses, naïve CD8+ T cells may need “CD4 help” for optimal development of memory populations. The immunological factors attributed to CD4 help depend on the context of immunization and vary depending on the priming system. In response to immunization with radiation-attenuated Plasmodium yoelii sporozoites, CD8+ T cells in BALB/c mice fail to generate large numbers of effector cells without help from CD4+ T cells – a defect not observed in most systems. Given this unique early dependence on CD4 help, we evaluated the effects of CD4+ cells on the development of functional properties of CD8+ T cells and on their ability to abolish infection. First, we determined that this effect was not mediated by CD4+ non-T cells and did not involve CD1d-restricted NKT cells. We found that CD8+ T cells induced by sporozoites without CD4 help formed memory populations severely reduced in magnitude that could not limit parasite development in the liver. The inability of these “helpless” memory T cells to protect is not a result of defects in effector function, as their capacity to produce cytokines and undergo cytotoxic degranulation was indistinguishable from control memory T cells. These data indicate that CD4+ T help may not be necessary to develop the functional attributes of CD8+ T cells; however they are crucial to ensure the survival of effector and memory cells induced in primary responses.  相似文献   

13.
CD4(+)CD25(+)FoxP3(+) regulatory T cells (T(reg)) suppress T cell function and protect rodents from autoimmune disease. Regulation of T(reg) during an immune response is of major importance. Enhanced survival of T(reg) is beneficial in autoimmune disease, whereas increased depletion by apoptosis is advantageous in cancer. We show here that freshly isolated FACS-sorted T(reg) are highly sensitive toward CD95-mediated apoptosis, whereas other T cell populations are resistant to CD95-induced apoptosis shortly after isolation. In contrast, TCR restimulation of T(reg) in vitro revealed a reduced sensitivity toward activation-induced cell death compared with CD4(+)CD25(-) T cells. Thus, the apoptosis phenotype of T(reg) is unique in comparison to other T cells, and this might be further explored for novel therapeutic modulations of T(reg).  相似文献   

14.
The role of IL-22-producing CD4(+) T cells in intracellular pathogen infections is poorly characterized. IL-22-producing CD4(+) T cells may express some effector molecules on the membrane, and therefore synergize or contribute to antimicrobial effector function. This hypothesis cannot be tested by conventional approaches manipulating a single IL-22 cytokine at genetic and protein levels, and IL-22(+) T cells cannot be purified for evaluation due to secretion nature of cytokines. In this study, we surprisingly found that upon activation, CD4(+) T cells in Mycobacterium tuberculosis-infected macaques or humans could evolve into T effector cells bearing membrane-bound IL-22 after de novo IL-22 production. Membrane-bound IL-22(+) CD4(+) T effector cells appeared to mature in vivo and sustain membrane distribution in highly inflammatory environments during active M. tuberculosis infection. Near-field scanning optical microscopy/quantum dot-based nanoscale molecular imaging revealed that membrane-bound IL-22, like CD3, distributed in membrane and engaged as ~100-200 nm nanoclusters or ~300-600 nm nanodomains for potential interaction with IL-22R. Importantly, purified membrane-bound IL-22(+) CD4(+) T cells inhibited intracellular M. tuberculosis replication in macrophages. Our findings suggest that IL-22-producing T cells can evolve to retain IL-22 on membrane for prolonged IL-22 t(1/2) and to exert efficient cell-cell interaction for anti-M. tuberculosis effector function.  相似文献   

15.
The mechanisms by which the immune system achieves constant T cell numbers throughout life, thereby controlling autoaggressive cell expansions, are to date not completely understood. Here, we show that the CD25(+) subpopulation of naturally activated (CD45RB(low)) CD4 T cells, but not CD25(-) CD45RB(low) CD4 T cells, inhibits the accumulation of cotransferred CD45RB(high) CD4 T cells in lymphocyte-deficient mice. However, both CD25(+) and CD25(-) CD45RB(low) CD4 T cell subpopulations contain regulatory cells, since they can prevent naive CD4 T cell-induced wasting disease. In the absence of a correlation between disease and the number of recovered CD4(+) cells, we conclude that expansion control and disease prevention are largely independent processes. CD25(+) CD45RB(low) CD4 T cells from IL-10-deficient mice do not protect from disease. They accumulate to a higher cell number and cannot prevent the expansion of CD45RB(high) CD4 T cells upon transfer compared with their wild-type counterparts. Although CD25(+) CD45RB(low) CD4 T cells are capable of expanding when transferred in vivo, they reach a homeostatic equilibrium at lower cell numbers than CD25(-) CD45RB(low) or CD45RB(high) CD4 T cells. We conclude that CD25(+) CD45RB(low) CD4 T cells from nonmanipulated mice control the number of peripheral CD4 T cells through a mechanism involving the production of IL-10 by regulatory T cells.  相似文献   

16.
IL-10 producing T cells inhibit Ag-specific CD8+ T cell responses and may play a role in the immune dysregulation observed in HIV infection. We have previously observed the presence of HIV-specific IL-10-positive CD8+ T cells in advanced HIV disease. In this study, we examined the suppressive function of the Gag-specific IL-10-positive CD8+ T cells. Removal of these IL-10-positive CD8+ T cells resulted in increased cytolysis and IL-2, but not IFN-gamma, production by both HIV- and human CMV-specific CD8+ T cells. In addition, these IL-10-positive CD8+ T cells mediated suppression through direct cell-cell contact, and had a distinct immunophenotypic profile compared with other regulatory T cells. We describe a new suppressor CD8+ T cell population in advanced HIV infection that may contribute to the immune dysfunction observed in HIV infection.  相似文献   

17.
IL-27 is a novel IL-12 family member that plays a role in the early regulation of Th1 initiation, induces proliferation of naive CD4+ T cells, and synergizes with IL-12 in IFN-gamma production. It has been recently reported that IL-27 induces T-bet and IL-12Rbeta2 expression through JAK1/STAT1 activation. In the present study, we further investigated the JAK/STAT signaling molecules activated by IL-27 and also the role of STAT1 in IL-27-mediated responses using STAT1-deficient mice. In addition to JAK1 and STAT1, IL-27-activated JAK2, tyrosine kinase-2, and STAT2, -3, and -5 in naive CD4+ T cells. The activation of STAT2 and STAT5, but not of STAT3, was greatly diminished in STAT1-deficient naive CD4+ T cells. Comparable proliferative response to IL-27 was observed between STAT1-deficient and wild-type naive CD4+ T cells. In contrast, IL-27 hardly induced T-bet and subsequent IL-12Rbeta2 expression, and synergistic IFN-gamma production by IL-27 and IL-12 was impaired in STAT1-deficient naive CD4+ T cells. Moreover, IL-27 augmented the expression of MHC class I on naive CD4+ T cells in a STAT1-dependent manner. These results suggest that IL-27 activates JAK1 and -2, tyrosine kinase-2, STAT1, -2, -3, and -5 in naive CD4+ T cells and that STAT1 plays an indispensable role in IL-27-induced T-bet and subsequent IL-12Rbeta2 expression and MHC class I expression as well but not proliferation, while STAT3 presumably plays an important role in IL-27-induced proliferation.  相似文献   

18.
Memory T cells respond faster and more vigorously than their naive counterparts and are critical for adaptive immunity. However, it is unknown whether and how memory T cells react in the face of irrelevant Ags. It is generally accepted that bystander memory T cells are neutral in immune responsiveness. In this study, we present the first evidence that bystander central memory (TCM), but not effector memory (TEM), CD8+ T cells suppress allograft rejection as well as T cell proliferation in the draining lymph nodes (DLN) of recipient mice. Both bystander TCM and naive T cells, but fewer TEM cells, migrated to DLN, whereas TCM cells exhibited faster turnover than their naive counterparts, suggesting that bystander TCM cells have an advantage over their naive counterparts in suppression. However, bystander TEM cells migrated to inflammatory graft sites, but not DLN, and yet failed to exert their suppression. These findings indicate that bystander memory T cells need to migrate to lymph nodes to exert their suppression by inhibiting responder T cell activation or homeostatic proliferation. Moreover, the suppression mediated by bystander TCM cells was largely dependent on IL-15, as IL-15 was required for their homeostatic proliferation and TCM-mediated suppression of allograft rejection. This suppression also required the presence of TGFbeta1, as TCM cells expressed TGFbeta1 while neutralizing TGFbeta1 abolished their suppression. Thus, bystander TCM, but not TEM, CD8+ T cells are potent suppressors rather than bystanders. This new finding will have an impact on cellular immunology and may have clinic implications for tolerance induction.  相似文献   

19.
To investigate whether CD4+ T cells are predetermined to produce a given pattern of lymphokines, we have used a culture system that allows the controlled induction of either IL-2- or IL-4-producing CD4+ T cells. Single, freshly isolated murine CD4+ T cells were activated with Con A, rIL-2, and APC; the developing clones were split and then cultured for an additional 14 days with either rIL-2 alone or with rIL-2 and anti-CD3 stimulation. Subclones expanded in the presence of rIL-2 alone produced predominantly IL-2, although subclones derived from the same precursor and expanded in the presence of rIL-2 and a mitogenic antibody to CD3 released predominantly IL-4. Subclones expanded for 2 wk in the presence of rIL-2 plus a mitogenic mAb to CD3 released up to 60 times more IL-4 but only 1/90 the amount of IL-2 released by subclones derived from the same precursor cell and expanded with rIL-2. Both phenotypes can be derived from IL-2-producing precursor cells. These results demonstrate that IL-2-producing clones can be derived from the same cells as IL-4-producing clones and are most consistent with the view that the IL-2-producing Th1 or the IL-4-producing Th2 phenotype of a T cell clone is acquired during T cell differentiation and is not secondary to the expansion of distinct subpopulations that are predetermined to produce a specific cytokine pattern.  相似文献   

20.
A CD8+ T cell lymphocytosis in the peripheral blood is associated with the establishment of latency following intranasal infection with murine gammaherpesvirus-68. Remarkably, a large percentage of the activated CD8+ T cells of mice expressing different MHC haplotypes express V beta 4+ TCR. Identification of the ligand driving the V beta 4+CD8+ T cell activation remains elusive, but there is a general correlation between V beta 4+CD8+ T cell stimulatory activity and establishment of latency in the spleen. In the current study, the role of CD4+ T cells in the V beta 4+CD8+ T cell expansion has been addressed. The results show that CD4+ T cells are essential for expansion of the V beta 4+CD8+ subset, but not other V beta subsets, in the peripheral blood. CD4+ T cells are required relatively late in the antiviral response, between 7 and 11 days after infection, and mediate their effect independently of IFN-gamma. Assessment of V beta 4+CD8+ T cell stimulatory activity using murine gammaherpesvirus-68-specific T cell hybridomas generated from latently infected mice supports the idea that CD4+ T cells control levels of the stimulatory ligand that drives the V beta 4+CD8+ T cells. As V beta 4+CD8+ T cell expansion also correlates with levels of activated B cells, these data raise the possibility that CD4+ T cell-mediated B cell activation is required for optimal expression of the stimulatory ligand. In addition, in cases of low ligand expression, there may also be a direct role for CD4+ T cell-mediated help for V beta 4+CD8+ T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号