首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The UT-A1 urea transporter mediates rapid transepithelial urea transport across the inner medullary collecting duct and plays a major role in the urinary concentrating mechanism. To transport urea, UT-A1 must be present in the plasma membrane. The purpose of this study was to screen for UT-A1-interacting proteins and to study the interactions of one of the identified potential binding partners with UT-A1. Using a yeast two-hybrid screen of a human kidney cDNA library with the UT-A1 intracellular loop (residues 409-594) as bait, we identified snapin, a ubiquitously expressed SNARE-associated protein, as a novel UT-A1 binding partner. Deletion analysis indicated that the C-terminal coiled-coil domain (H2) of snapin is required for UT-A1 interaction. Snapin binds to the intracellular loop of UT-A1 but not to the N- or C-terminal fragments. Glutathione S-transferase pulldown experiments and co-immunoprecipitation studies verified that snapin interacts with native UT-A1, SNAP23, and syntaxin-4 (t-SNARE partners), indicating that UT-A1 participates with the SNARE machinery in rat kidney inner medulla. Confocal microscopic analysis of immunofluorescent UT-A1 and snapin showed co-localization in both the cytoplasm and in the plasma membrane. When we co-injected UT-A1 with snapin cRNA in Xenopus oocytes, urea influx was significantly increased. In the absence of snapin, the influx was decreased when UT-A1 was combined with t-SNARE components syntaxin-4 and SNAP23. We conclude that UT-A1 may be linked to the SNARE machinery via snapin and that this interaction may be functionally and physiologically important for urea transport.  相似文献   

2.
Geminiviruses are plant-infecting viruses with small circular single-stranded DNA genomes. These viruses utilize nuclear shuttle proteins (NSPs) and movement proteins (MPs) for trafficking of infectious DNA through the nuclear pore complex and plasmodesmata, respectively. Here, a biochemical approach was used to identify host factors interacting with the NSP and MP of the geminivirus Bean dwarf mosaic virus (BDMV). Based on these studies, we identified and characterized a host nucleoprotein, histone H3, which interacts with both the NSP and MP. The specific nature of the interaction of histone H3 with these viral proteins was established by gel overlay and in vitro and in vivo coimmunoprecipitation (co-IP) assays. The NSP and MP interaction domains were mapped to the N-terminal region of histone H3. These experiments also revealed a direct interaction between the BDMV NSP and MP, as well as interactions between histone H3 and the capsid proteins of various geminiviruses. Transient-expression assays revealed the colocalization of histone H3 and NSP in the nucleus and nucleolus and of histone H3 and MP in the cell periphery and plasmodesmata. Finally, using in vivo co-IP assays with a Myc-tagged histone H3, a complex composed of histone H3, NSP, MP, and viral DNA was recovered. Taken together, these findings implicate the host factor histone H3 in the process by which an infectious geminiviral DNA complex forms within the nucleus for export to the cell periphery and cell-to-cell movement through plasmodesmata.  相似文献   

3.
4.
The small nonstructural protein NS2 of the minute virus of mice (MVM) is required for efficient viral replication, although its mode of action is unclear. Here we demonstrate that NS2 and survival motor neuron protein (Smn) interact in vitro and in vivo. NS2 and Smn also colocalize in infected nuclei at late times following MVM infection.  相似文献   

5.
Prenylated Rab acceptor domain family member 1 (PRAF1), a transmembrane protein whose precise function is unknown, localizes to the Golgi complex, post-Golgi vesicles, lipid rafts, endosomes, and the plasma membrane. VAMP2 and Rab3A are SNARE proteins that interact with PRAF1, and, as part of a SNARE complex, PRAF1 may function in the regulation of docking and fusion of transport vesicles both in the Golgi complex and at the plasma membrane. Alternately, PRAF1 may function as a sorting protein in the Golgi complex. In addition to interacting with SNARE proteins, PRAF1 interacts with rotaviral, retroviral, and herpes viral proteins. The function of viral protein interaction is unknown, but PRAF1 may enhance rotaviral and retroviral assembly. In contrast, PRAF1 may inhibit the herpes virus life cycle.  相似文献   

6.
The hyperimmunoglobulinemia D and periodic fever (hyper-IgD) syndrome is typified by recurrent febrile attacks with abdominal distress, joint involvement (arthralgias/arthritis), headache, skin lesions, and an elevated serum IgD level (>100U/ml). This familial disorder has been diagnosed in 56 subjects worldwide. As the hyper-IgD syndrome resembles familial Mediterranean fever, one could speculate that both result from mutations in the same gene. The gene causing familial Mediterranean fever (MEF) has been located on chromosome 16p. We have studied 10 families with 19 affected and 28 non-affected subjects. The clinical findings and IgD determinations from these families are compatible with autosomal recessive inheritance. Using highly polymorphic markers surrounding the MEF gene, only negative Lod scores were obtained, whereas haplotype analysis excluded this locus as the cause of the hyper-IgD syndrome. In addition, no indication for linkage was obtained with markers from other candidate gene regions on chromosomes 17q and 14q.Participants listed in the appendix  相似文献   

7.
We have used a yeast two-hybrid interaction assay to identify Chromator, a novel chromodomain containing protein that interacts directly with the putative spindle matrix protein Skeletor. Immunocytochemistry demonstrated that Chromator and Skeletor show extensive co-localization throughout the cell cycle. During interphase Chromator is localized on chromosomes to interband chromatin regions in a pattern that overlaps that of Skeletor. However, during mitosis both Chromator and Skeletor detach from the chromosomes and align together in a spindle-like structure. Deletion construct analysis in S2 cells showed that the COOH-terminal half of Chromator without the chromodomain was sufficient for both nuclear as well as spindle localization. Analysis of P-element mutations in the Chromator locus shows that Chromator is an essential protein. Furthermore, RNAi depletion of Chromator in S2 cells leads to abnormal microtubule spindle morphology and to chromosome segregation defects. These findings suggest that Chromator is a nuclear protein that plays a role in proper spindle dynamics during mitosis.  相似文献   

8.
Familial mediterranean fever (FMF) is an autosomal recessive autoinflammatory disorder (MIM# 249100), particularly common in populations of Mediterranean extraction. MEFV gene, responsible for FMF, encoding pyrin has recently been mapped to chromosome 16p13.3. In the present study, 3,341 unrelated patients with the suspicion of FMF in south-east part of Turkey between the years 2009 and 2013 were enrolled and genomic sequences of exon 2 and exon 10 of the MEFV gene were scanned for mutations by direct sequencing. We identified 43 different type of mutations and 9 of them were novel. DNA was amplified by PCR and subjected to direct sequencing for the detection of MEFV gene mutations. Among the 3,341 patients, 1,598 (47.8 %) were males and 1,743 (52.1 %) were females. The mutations were heterozygous in 806 (62.3 %), compound heterozygous in 188 (14.5 %), homozygous in 281 (21.8 %) and mutations had complex genotype in 17 (1.32 %) patients. No mutation was detected in 2,051 (61.4 %) patients. The most frequent mutations were M694V, E148Q, M680I(G/C) and V726A. We could not find any significant differences between the two common mutations according to the gender. Molecular diagnosis of MEFV is a useful tool in clinical practice, thus a future study relating to genotype/phenotype correlation of FMF in more and larger group in Turkish population involving the whole MEFV gene mutations is necessary.  相似文献   

9.
The glutamate transporter (GLT1) regulates glutamate concentrations in glutamatergic synapses and it is expressed in at least two isoforms, GLT1a and GLT1b. In this work, we show that the C-terminus of GLT1b is able to interact with the PDZ domains of a number of proteins. Notably, one of them might be the scaffold protein post-synaptic density (PSD-95). GLT1b formed co-immunoprecipitable complexes with PSD-95 in solubilizated rat brain extracts, complexes that also contained NMDA receptors. Co-transfection of GLT1b, PSD-95, and NMDA receptor subunits in heterologous expression systems recapitulated in vitro the interactions among these proteins that had been observed in the rat brain extracts and revealed the importance of the GLT1b C-terminal PDZ binding motif in tethering this transporter to PSD-95. Significantly, co-expression of GLT1b and PSD-95 increased the V max of the transporter by decreasing the rate of GLT1b endocytosis. Moreover, GLT1b transfected into primary cultured neurons or glia formed protein clusters that co-localized with co-transfected PSD-95, clusters that in these neurons accumulated preferentially in dendritic spines. We hypothesize that the GLT1b/PSD-95 interaction, characterized here in vitro , might anchor this transporter close to the post-synaptic glutamate receptors, thereby permitting the fine regulation of glutamate concentrations in this microenvironment. This tight association might also facilitate the regulation of GLT1b through the signaling pathways initiated by the activation of glutamate receptors.  相似文献   

10.
You LR  Chen CM  Yeh TS  Tsai TY  Mai RT  Lin CH  Lee YH 《Journal of virology》1999,73(4):2841-2853
The nucleocapsid core protein of hepatitis C virus (HCV) has been shown to trans-act on several viral or cellular promoters. To get insight into the trans-action mechanism of HCV core protein, a yeast two-hybrid cloning system was used for identification of core protein-interacting cellular protein. One such cDNA clone encoding the DEAD box family of putative RNA helicase was obtained. This cellular putative RNA helicase, designated CAP-Rf, exhibits more than 95% amino acid sequence identity to other known RNA helicases including human DBX and DBY, mouse mDEAD3, and PL10, a family of proteins generally involved in translation, splicing, development, or cell growth. In vitro binding or in vivo coimmunoprecipitation studies demonstrated the direct interaction of the full-length/matured form and C-terminally truncated variants of HCV core protein with this targeted protein. Additionally, the protein's interaction domains were delineated at the N-terminal 40-amino-acid segment of the HCV core protein and the C-terminal tail of CAP-Rf, which encompassed its RNA-binding and ATP hydrolysis domains. Immunoblotting or indirect immunofluorescence analysis revealed that the endogenous CAP-Rf was mainly localized in the nucleus and to a lesser extent in the cytoplasm, and when fused with FLAG tag, it colocalized with the HCV core protein either in the cytoplasm or in the nucleus. Similar to other RNA helicases, this cellular RNA helicase has nucleoside triphosphatase-deoxynucleoside triphosphatase activity, but this activity is inhibited by various forms of homopolynucleotides and enhanced by the HCV core protein. Moreover, transient expression of HCV core protein in human hepatoma HuH-7 cells significantly potentiated the trans-activation effect of FLAG-tagged CAP-Rf or untagged CAP-Rf on the luciferase reporter plasmid activity. All together, our results indicate that CAP-Rf is involved in regulation of gene expression and that HCV core protein promotes the trans-activation ability of CAP-Rf, likely via the complex formation and the modulation of the ATPase-dATPase activity of CAP-Rf. These findings provide evidence that HCV may have evolved a distinct mechanism in alteration of host cellular gene expression regulation via the interaction of its nucleocapsid core protein and cellular putative RNA helicase known to participate in all aspects of cellular processes involving RNA metabolism. This feature of core protein may impart pleiotropic effects on host cells, which may partially account for its role in HCV pathogenesis.  相似文献   

11.
Familial Mediterranean fever (FMF) is an autosomal recessive disease characterized by attacks of fever and serosal inflammation; the biochemical basis is unknown. We recently reported linkage of the gene causing FMF (designated “MEF”) to two markers on chromosome 16p. To map MEF more precisely, we have now tested nine 16p markers. Two-point and multipoint linkage analysis, as well as a study of recombinant haplotypes, placed MEF between D16S94 and D16S80, a genetic interval of about 9 cM. We also examined rates of homozygosity for markers in this region, among offspring of consanguineous marriages. For eight of nine markers, the rate of homozygosity among 26 affected inbred individuals was higher than that among their 20 unaffected sibs. Localizing MEF more precisely on the basis of homozygosity rates alone would be difficult, for two reasons: First, the high FMF carrier frequency increases the chance that inbred offspring could have the disease without being homozygous by descent at MEF. Second, several of the markers in this region are relatively nonpolymorphic, with a high rate of homozygosity, regardless of their chromosomal location.  相似文献   

12.
GCP170, a member of the golgin family associated with the cytoplasmic face of the Golgi membrane, was found to have a Golgi localization signal at the NH2-terminal region (positions 137-237). Using this domain as bait in the yeast two-hybrid screening system, we identified a novel protein that interacted with GCP170. The 2.0-kilobase mRNA encoding a 137-amino acid protein of 16 kDa designated GCP16 was ubiquitously expressed. Immunofluorescence microscopy showed that GCP16 was co-localized with GCP170 and giantin in the Golgi region. Despite the absence of a hydrophobic domain sufficient for participating in membrane localization, GCP16 was found to be tightly associated with membranes like an integral membrane protein. Labeling experiments with [3H]palmitic acid and mutational analysis demonstrated that GCP16 was acylated at Cys69 and Cys72, accounting for its tight association with the membrane. A mutant without potential acylation sites (C69A/C72A) was no longer localized to the Golgi, indicating that the acylation is prerequisite for the Golgi localization of GCP16. Although the mutant GCP16, even when overexpressed, had no effect on protein transport, overexpression of the wild type GCP16 caused an inhibitory effect on protein transport from the Golgi to the cell surface. Taken together, these results indicate that GCP16 is the acylated membrane protein, associated with GCP170, and possibly involved in vesicular transport from the Golgi to the cell surface.  相似文献   

13.
Mutations of the neurofibromatosis 2 (NF2) tumor suppressor gene have frequently been detected not only in schwannomas and other central nervous system tumors of NF2 patients but also in their sporadic counterparts and malignant tumors unrelated to the NF2 syndrome such as malignant mesothelioma, indicating a broader role for the NF2 gene in human tumorigenesis. However, the mechanisms by which the NF2 product, merlin or schwannomin, is regulated and controls cell proliferation remain elusive. Here, we identify a novel GTP-binding protein, dubbed NGB (referring to NF2-associated GTP binding protein), which binds to merlin. NGB is highly conserved between Saccharomyces cerevisiae, Caenorhabditis elegans, and human cells, and its GTP-binding region is very similar to those found in R-ras and Rap2. However, ectopic expression of NGB inhibits cell growth, cell aggregation, and tumorigenicity in tumorigenic schwanomma cells. Down-regulation and infrequent mutation of NGB were detected in human glioma cell lines and primary tumors. The interaction of NGB with merlin impairs the turnover of merlin, yet merlin does not affect the GTPase nor GTP-binding activity of NGB. Finally, the tumor suppressor functions of NGB require merlin and are linked to its ability to suppress cyclin D1 expression. Collectively, these findings indicate that NGB is a tumor suppressor that regulates and requires merlin to suppress cell proliferation.  相似文献   

14.
We demonstrated previously that the integral membrane protein giantin has the Golgi localization signal at the COOH-terminal cytoplasmic domain (Misumi, Y., Sohda, M., Tashiro, A., Sato, H., and Ikehara, Y. (2001) J. Biol. Chem. 276, 6867-6873). In the present study, using this domain as bait in the yeast two-hybrid screening system, we identified a novel protein interacting with giantin. The 3.6-kilobase mRNA encoding a 528-amino acid protein of 60 kDa designated GCP60 was ubiquitously expressed and was especially abundant in the testis and ovary. Immunofluorescence and immunoelectron microscopy confirmed that GCP60 was co-localized with giantin in the Golgi complex. GCP60 was found to be a peripheral protein associated with the Golgi membrane, where a COOH-terminal domain of GCP60 interacts with the COOH-terminal cytoplasmic domain of giantin. Overexpression of the COOH-terminal domain of GCP60 caused disassembly of the Golgi structure and blocked protein transport from the endoplasmic reticulum to the Golgi. Taken together, these results suggest that GCP60 is involved in the maintenance of the Golgi structure by interacting with giantin, affecting protein transport between the endoplasmic reticulum and the Golgi.  相似文献   

15.
Recent evidence indicates that the glycine transporter-1 (GLYT1) plays a role in regulation of NMDA receptor function through tight control of glycine concentration in its surrounding medium. Immunohistochemical studies have demonstrated that, as well as being found in glial cells, GLYT1 is also associated with the pre- and postsynaptic aspects of glutamatergic synapses. In this article, we describe the interaction between GLYT1 and PSD-95 in the rat brain, PSD-95 being a scaffolding protein that participates in the organization of glutamatergic synapses. Mutational analysis reveals that the C-terminal sequence of GLYT1 (-SRI) is necessary for the transporter to interact with the PDZ domains I and II of PSD-95. This C-terminal tripeptide motif also seems to be involved in the trafficking of GLYT1 to the membrane, although this process does not involve PDZ proteins. GLYT1 is able to recruit PSD-95 to the plasma membrane, but it does not affect its clustering. However, the interaction stabilizes this transporter at the plasma membrane, blocking its internalization and producing a significant increase in the V(max) of glycine uptake. We hypothesize that PSD-95 might act as a scaffold for GLYT1 and NMDA receptors, allowing GLYT1 to regulate the concentrations of glycine in the micro-environment of NMDA receptors.  相似文献   

16.
The significance of furin in the maturation and activation of a wide array of proproteins in the secretory pathway has been well demonstrated. However, despite efforts made to characterize the subcellular locations where furin activates its substrates, doubts on the proprotein-processing compartments still persist. Using in vivo gene delivery, together with high-resolution immunogold electron microscopy, we were able to assign precise subcellular locations to furin. In rat hepatocyte, the enzyme was found concentrated in the Golgi apparatus, along the basolateral (sinusoidal) plasma membrane and in underlying endosomes. An asymmetry was detected in respect to amounts of furin between the basolateral domain and the apical (canalicular) one, favoring the former. The asymmetric recycling of furin through the basolateral domain may be of high importance for the polarized secretion of processed bioactive compounds. Double immunogold labelings indicate that furin colocalizes with the caveolae/raft-marker caveolin-1 in the Golgi apparatus and in the basolateral endosomes. Furthermore, co-immunoprecipitation experiments show the possible interaction of caveolin-1 and furin. Our results suggest that, in addition to the Golgi, furin-/caveolin-1-containing endosomes could represent a compartment where furin processes its substrates at the basolateral domain of the hepatocyte.This work was supported by grants from the Canadian Institutes of Health Research (CIHR) to M.B. (MOP9702) and to G.B. (NFR13052). This article represents part of the work required for the fulfillment of the PhD program of G.M., who is supported in part by studentships from the CIHR, the University of Montreal and Novartis Pharma Canada  相似文献   

17.
Crn7 is a novel cytosolic mammalian WD-repeat protein of unknown function that associates with Golgi membranes. Here, we demonstrate that Crn7 knockdown by small interfering RNA results in dramatic changes in the Golgi morphology and function. First, the Golgi ribbon is disorganized in Crn7 KD cells. Second, the Golgi export of several marker proteins including VSV envelope G glycoprotein is greatly reduced but not the retrograde protein import into the Golgi complex. We further establish that Crn7 co-precipitates with clathrin adaptor AP-1 but is not required for AP-1 targeting to Golgi membranes. We identify tyrosine 288-based motif as part of a canonical YXXPhi sorting signal and a major mu1-adaptin binding site in vitro. This study provides the first insight into the function of mammalian Crn7 protein in the Golgi complex.  相似文献   

18.
Disabled-2 (Dab2) is a widely expressed relative of Disabled-1, a neuron-specific signal-transduction protein that binds to and receives signals from members of the low-density lipoprotein receptor (LDLR) family. Members of the LDLR family internalize through clathrin-coated pits and vesicles to endosomes, from where they return to the cell surface through the secretory pathway. In this study, we show that the Dab2 phosphotyrosine-binding domain binds peptides containing the sequence FXNPXY. This core sequence is found in the intracellular domains of LDLR family members and is important for receptor internalization. Dab2 transiently colocalizes with the LDLR in clathrin-coated pits, but is absent from endosomes and lysosomes. Dab2 is alternatively spliced and its localization depends on a region of the protein that contains two DPF motifs that are present in the p96 Dab2 protein and absent in the p67 splice variant. This region is sufficient to confer Dab2 binding to the α-adaptin subunit of the clathrin adaptor protein, AP-2. Overexpression of p96 but not of p67 Dab2 disrupts the localization of AP-2. These findings suggest that in addition to previously reported signal-transduction functions, Dab2 could also act as an adaptor protein that may regulate protein trafficking.  相似文献   

19.
20.
The gene causing familial Mediterranean fever maps to the short arm of chromosome 16 in Druze and Moslem Arab families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号