首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 925 毫秒
1.
Cholesterol-rich domains have been observed to exist in cell membranes under physiological and pathological conditions. Their compositions and the microenvironment of their formation vary over a wide range. Very little information is however available on the molecular structure and organization of these domains. The techniques available to provide such structural information are reviewed here first. The possibility of using tailor-made antibodies as reporters of molecular organization in membranes is then considered. The concept of antibodies recognizing molecular organization rather than single molecular epitopes is established, reviewing the existing works on antibody and protein recognition of crystalline molecular arrays. The information that such antibodies could provide in cells is finally examined together with a proof of application.  相似文献   

2.
The lateral organization of biological membranes is of great importance in many biological processes, both for the formation of specific structures such as super-complexes and for function as observed in signal transduction systems. Over the last years, AFM studies, particularly of bacterial photosynthetic membranes, have revealed that certain proteins are able to segregate into functional domains with a specific organization. Furthermore, the extended non-random nature of the organization has been suggested to be important for the energy and redox transport properties of these specialized membranes. In the work reported here, using a coarse-grained Monte Carlo approach, we have investigated the nature of interaction potentials able to drive the formation and segregation of specialized membrane domains from the rest of the membrane and furthermore how the internal organization of the segregated domains can be modulated by the interaction potentials. These simulations show that long-range interactions are necessary to allow formation of membrane domains of realistic structure. We suggest that such possibly non-specific interactions may be of great importance in the lateral organization of biological membranes in general and in photosynthetic systems in particular. Finally, we consider the possible molecular origins of such interactions and suggest a fundamental role for lipid-mediated interactions in driving the formation of specialized photosynthetic membrane domains. We call these lipid-mediated interactions a ‘lipophobic effect.’  相似文献   

3.
Understanding the organization of molecules in naturally occurring ordered arrays (e.g. membranes, protein fibres and DNA strands) is of great importance to understanding biological function. Unfortunately, few biophysical techniques provide detailed structural information on these non-crystalline systems. UV, visible and IR linear dichroism have the potential to provide such information. Recent advances in technology and simulations allow this potential to be fulfilled, and can now provide a detailed understanding of the molecular mechanisms of such fundamental biological processes as amyloid fibre formation and membrane protein folding.  相似文献   

4.
Characterization of membranes and of biological processes occurring within membranes is essential for understanding fundamental cellular behavior. Here we present a detailed biophysical study of a recently developed colorimetric biomimetic membrane assembly constructed from physiological lipid molecules and conjugated polydiacetylene. Various analytical techniques have been applied to characterize the organization of the lipid components in the chromatic vesicles and their contributions to the observed blue-to-red color transitions. Experiments reveal that both the polymerized units as well as the lipids exhibit microscopic phases and form domains whose properties and bilayer organization are interdependent. These domains are interspersed within mixed lipid/polymer vesicles that have a size distribution different from those of aggregates of the individual molecular constituents. The finding that fluidity changes induced within the lipid domains are correlated with the chromatic transitions demonstrates that the colorimetric platform can be used to evaluate the effects of individual molecular components, such as negatively charged lipids and cholesterol, upon membrane fluidity and thermal stability.  相似文献   

5.
Cell membranes have a complex lateral organization featuring domains with distinct composition, also known as rafts, which play an essential role in cellular processes such as signal transduction and protein trafficking. In vivo, perturbations of membrane domains (e.g., by drugs or lipophilic compounds) have major effects on the activity of raft-associated proteins and on signaling pathways, but they are difficult to characterize because of the small size of the domains, typically below optical resolution. Model membranes, instead, can show macroscopic phase separation between liquid-ordered and liquid-disordered domains, and they are often used to investigate the driving forces of membrane lateral organization. Studies in model membranes have shown that some lipophilic compounds perturb membrane domains, but it is not clear which chemical and physical properties determine domain perturbation. The mechanisms of domain stabilization and destabilization are also unknown. Here we describe the effect of six simple hydrophobic compounds on the lateral organization of phase-separated model membranes consisting of saturated and unsaturated phospholipids and cholesterol. Using molecular simulations, we identify two groups of molecules with distinct behavior: aliphatic compounds promote lipid mixing by distributing at the interface between liquid-ordered and liquid-disordered domains; aromatic compounds, instead, stabilize phase separation by partitioning into liquid-disordered domains and excluding cholesterol from the disordered domains. We predict that relatively small concentrations of hydrophobic species can have a broad impact on domain stability in model systems, which suggests possible mechanisms of action for hydrophobic compounds in vivo.  相似文献   

6.
Phosphatidylinositol 4,5-biphosphate (PI[4,5]P(2)) has emerged as an important signaling molecule in the membrane for regulating vesicle exo- and endocytosis and the accompanying actin cytoskeletal rearrangements. Localization studies with GFP-tagged binding domains and antibodies provide new views of the non-uniform, dynamic distribution of PI(4,5)P(2) in membranes and its organization in raft-like domains. The targeting of phosphoinositide kinases by GTPases can coordinate the reactions of membrane fusion and fission with cytoskeletal assembly, providing a basis for membrane movement.  相似文献   

7.
Cholesterol is an essential and representative lipid in higher eukaryotic cellular membranes and is often found distributed nonrandomly in domains in biological membranes. A large body of literature exists on the organization of cholesterol in plasma membranes or membranes with high cholesterol content. However, very little is known about organization of cholesterol in membranes containing low amounts of cholesterol such as the endoplasmic reticulum or inner mitochondrial membranes. In this review, we have traced the discovery and subsequent development of the concept of transbilayer cholesterol dimers (domains) in membranes at low concentrations. We have further discussed the role of membrane curvature and thickness on the transbilayer organization of cholesterol. Interestingly, this type of cholesterol organization could be relevant in cellular sorting and trafficking, and in pathological conditions.  相似文献   

8.
The molecular architectures of enveloped viruses provide a demonstrative example of perfectly arranged macromolecular complexes, which are formed via highly specific interactions of all structural components. Virus morphogenesis is a multistep process that depends on the concerted actions of many viral and cell components, as well as a fitted organization of main viral constituents. The virus envelope is composed of a mixture of lipid raft and nonraft domains. The domains are recruited from the host cell membrane as discrete well-ordered lipid-protein units during virus assembly. The raft-like nature of the influenza virus A envelope was visualized using a novel approach of cold solubilization of detergent-resistant membranes from intact influenza virus A virions with a mixture of NP40 and octyl glucopyranoside, two nonionic detergents drastically differing in their raft-solubilizing activities. The virus envelope is apparently an ensemble of flexibly joint platforms, which are composed of surface glycoproteins (hemagglutinin and neuraminidase), the matrix M1 protein, and lipids. The modern concept of the transmembrane asymmetry of lateral domains in biological membranes was used to explain the solubilization mechanism revealed. Based on the principles of this concept, the M1 protein shell was assumed to provide a structure-forming framework to support asymmetrical rafts in the virus envelope.  相似文献   

9.
In a crowded environment, establishing interactions between different molecular partners can take a long time. Biological membranes have solved this issue, as they simultaneously are fluid and possess compartmentalized domains. This nanoscale organization of the membrane is often based on weak, local, and multivalent interactions between lipids and proteins. However, from local interactions at the nanoscale, different functional properties emerge at the higher scale, and these are critical to regulate and integrate cellular signaling. Rho of Plant (ROP) proteins are small guanosine triphosphate hydrolase enzymes (GTPases) involved in hormonal, biotic, and abiotic signaling, as well as fundamental cell biological properties such as polarity, vesicular trafficking, and cytoskeleton dynamics. Association with the membrane is essential for ROP function, as well as their precise targeting within micrometer-sized polar domains (i.e. microdomains) and nanometer-sized clusters (i.e. nanodomains). Here, we review our current knowledge about the formation and the maintenance of the ROP domains in membranes. Furthermore, we propose a model for ROP membrane targeting and discuss how the nanoscale organization of ROPs in membranes could determine signaling parameters like signal specificity, amplification, and integration.

The nanoscale organization of Rho of Plant proteins creates emergent properties that determine cellular signaling.  相似文献   

10.
Transmembrane (TM) alpha-helical peptides with neutral flanking residues such as tryptophan form highly ordered striated domains when incorporated in gel-state 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers and inspected by atomic force microscopy (AFM) (1). In this study, we analyze the molecular organization of these striated domains using AFM, photo-cross-linking, fluorescence spectroscopy, nuclear magnetic resonance (NMR), and X-ray diffraction techniques on different functionalized TM peptides. The results demonstrate that the striated domains consist of linear arrays of single TM peptides with a dominantly antiparallel organization in which the peptides interact with each other and with lipids. The peptide arrays are regularly spaced by +/-8.5 nm and are separated by somewhat perturbed gel-state lipids with hexagonally organized acyl chains, which have lost their tilt. This system provides an example of how domains of peptides and lipids can be formed in membranes as a result of a combination of specific peptide-peptide and peptide-lipid interactions.  相似文献   

11.
The structural organization of the plasma membrane of eukaryotic cells is briefly revised taking into consideration the organization of proteins and lipids and the concept of microdomains, lipid rafts and detergent resistant membranes. The biochemical data available concerning the presence of microdomains in parasitic protozoa is reviewed and emphasis is given on the identification of special domains recognized by morphological approaches, especially with the use of the freeze-fracture technique.  相似文献   

12.
Elucidating origin, composition, size, and lifetime of microdomains in biological membranes remains a major issue for the understanding of cell biology. For lipid domains, the lack of a direct access to the behaviour of samples at the mesoscopic scale has constituted for long a major obstacle to their characterization, even in simple model systems made of immiscible binary mixtures. By its capacity to image soft surfaces with a resolution that extends from the molecular to the microscopic level, in air as well as under liquid, atomic force microscopy (AFM) has filled this gap and has become an inescapable tool in the study of the surface topography of model membrane domains, the first essential step for the understanding of biomembranes organization. In this review we mainly focus on the type of information on lipid microdomains in model systems that only AFM can provide. We will also examine how AFM can contribute to understand data acquired by a variety of other techniques and present recent developments which might open new avenues in model and biomembrane AFM applications.  相似文献   

13.
This review will focus on computer modeling aimed at providing insights into the existence, structure, size, and thermodynamic stability of localized domains in membranes of heterogeneous composition. Modeling the lateral organization within a membrane is problematic due to the relatively slow lateral diffusion rate for lipid molecules so that microsecond or longer time scales are needed to fully model the formation and stability of a raft in a membrane. Although atomistic simulations currently are not able to reach this scale, they can provide data on the intermolecular forces and correlations that are involved in lateral organization. These data can be used to define coarse grained models that are capable of predictions of lateral organization in membranes. In this paper, we review modeling efforts that use interaction data from MD simulations to construct coarse grained models for heterogeneous bilayers. In this review we will discuss MD simulations done with the aim of gaining the information needed to build accurate coarse-grained models. We will then review some of the coarse-graining work, emphasizing modeling that has resulted from or has a basis in atomistic simulations.  相似文献   

14.
The review is focused on the molecular structure and function of the proteins composing the actin-based cytokeletal cortex, located at the cytoplasmic face of plasma membranes of eucaryotic cells, which stabilizes integral membrane proteins in separate domains of cell membranes. It includes a survey of the molecular properties of teh proteins of the erythrocyte membrane skeleton such as spectrin, ankyrin, protein 4.1, and adducin. The properties of the immunological counterparts of erythroid cortical proteins found in nonerythroid tissues and cells are compared. The structural organization and function of the newly discovered class of calcium-binding proteins, nonerythroid peripheral membrane proteins, calpactins, are also described. Finally, the discussion of some experimental models illustrates that the membrane skeleton of living cells is actively involved in a wide variety of essential biological functions ranging from differentiation, to maintenance of cell polarity and cell shape, and regulation of exocytotic processes.  相似文献   

15.
This review will focus on computer modeling aimed at providing insights into the existence, structure, size, and thermodynamic stability of localized domains in membranes of heterogeneous composition. Modeling the lateral organization within a membrane is problematic due to the relatively slow lateral diffusion rate for lipid molecules so that microsecond or longer time scales are needed to fully model the formation and stability of a raft in a membrane. Although atomistic simulations currently are not able to reach this scale, they can provide data on the intermolecular forces and correlations that are involved in lateral organization. These data can be used to define coarse grained models that are capable of predictions of lateral organization in membranes. In this paper, we review modeling efforts that use interaction data from MD simulations to construct coarse grained models for heterogeneous bilayers. In this review we will discuss MD simulations done with the aim of gaining the information needed to build accurate coarse-grained models. We will then review some of the coarse-graining work, emphasizing modeling that has resulted from or has a basis in atomistic simulations.  相似文献   

16.
Lipid microdomains, also called lipid rafts, consisting of sphingolipids and cholesterol, play important roles in membrane trafficking and in signaling. Despite years of study of the composition, size, half-life and dynamic organization of these domains, many open questions remain about their precise characteristics. To address some of these issues, we have developed a new experimental approach involving the use of specific monoclonal antibodies as recognition tools. One such antibody was raised against a homogeneous, mixed, ordered monolayer phase comprised of 60:40 mol% cholesterol:C16-ceramide, and has been used previously to demonstrate the existence of C16-ceramide/cholesterol domains in the membranes of cultured cells. We now use a combination of quantitative fluorescence microscopy, immuno-transmission electron microscopy and immuno-scanning cryo-electron microscopy, optimized for the study of intracellular lipid antigens. In a variety of cultured cells, C16-ceramide/cholesterol structural domains were found at high levels in late endosomes and in the trans-Golgi network, but were not found at statistically significant levels in early endosomes, lysosomes or the endoplasmic reticulum. We discuss the relevance of these results to understanding the role of lipid lateral organization in biological membranes.  相似文献   

17.
Lateral heterogeneity in terms of co-existing domains with a distinct molecular organization is an area of increasing interest in membrane biology. The structural and dynamic aspects of the in-plane domain organization of lipids are becoming well documented, especially for model membrane systems. Potato ( Solanum tuberosum L. cv. Desirée) callus cells and roots of plantlets from stem node culture were doped with a spin-labeled analog of the methyl ester of palmitic acid bearing the paramagnetic nitroxide group at position C—5 of the acyl chain, which serves as a monitor of membrane fluidity of the region close to the polar phospholipid head groups of the bilayer. Model reconstruction of the line-shapes of the experimental spectra revealed the co-existence of two types of membrane domains with different ordering and dynamics of lipids in the membranes of both callus and root cells. With changes in temperature, relatively small differences were detected in either type of domain in the lipid ordering of the bilayer as characterized by order parameter S . However, the relative population of domains in the bilayer exhibited stronger temperature dependence. Typically, the relative proportion of disordered domains with less molecular order (smaller S ) was larger in the membranes of callus cells compared to those of root cells, indicating higher fluidity throughout the measured temperature range (5–35°C). The Arrhenius activation energies for rearrangement of lipid molecules within the bilayer were found to be higher for root tissue membranes, indicating the ability of root cells to oppose actively any drastic changes of membrane structuring under temperature stress. The distinctions in organization of lateral domains between the callus and root cell membranes may be correlated with differences in growth rate and metabolic activity between these two types of tissue.  相似文献   

18.
Lipopolysaccharides (LPS; endotoxin) activate immunocompetent cells of the host via a transmembrane signaling process. In this study, we investigated the function of the LPS-binding protein (LBP) in this process. The cytoplasmic membrane of the cells was mimicked by lipid liposomes adsorbed on mica, and the lateral organization of LBP in these membranes and its interaction with LPS aggregates were characterized by atomic force microscopy. Using cantilever tips functionalized with anti-LBP antibodies, single LBP molecules were localized in the membrane at low concentrations. At higher concentrations, LBP formed clusters of several molecules and caused cross-linking of lipid bilayers. The addition of LPS to LBP-containing liposomes led to the formation of LPS domains in the membranes, which could be inhibited by anti-LBP antibodies. Thus, LBP mediates the fusion of lipid membranes and LPS aggregates.  相似文献   

19.
Gap junctions consist of clusters of intercellular channels, which enable direct cell-to-cell communication and adhesion in animals. Whereas deuterostomes, including all vertebrates, use members of the connexin and pannexin multiprotein families to assemble gap junction channels, protostomes such as Drosophila and Caenorhabditis elegans use members of the innexin protein family. The molecular composition of innexin-containing gap junctions and the functional significance of innexin oligomerization for development are largely unknown. Here, we report that heteromerization of Drosophila innexins 2 and 3 is crucial for epithelial organization and polarity of the embryonic epidermis. Both innexins colocalize in epithelial cell membranes. Innexin3 is mislocalized to the cytoplasm in innexin2 mutants and is recruited into ectopic expression domains defined by innexin2 misexpression. Conversely, RNA interference (RNAi) knockdown of innexin3 causes mislocalization of innexin2 and of DE-cadherin, causing cell polarity defects in the epidermis. Biochemical interaction studies, surface plasmon resonance analysis, transgenesis, and biochemical fractionation experiments demonstrate that both innexins interact via their C-terminal cytoplasmic domains during the assembly of heteromeric channels. Our data provide the first molecular and functional demonstration that innexin heteromerization occurs in vivo and reveal insight into a molecular mechanism by which innexins may oligomerize into heteromeric gap junction channels.  相似文献   

20.
Detailed molecular dynamics simulations performed to study the nature of lipid raft domains that appear in model membranes are reviewed in this paper. The described simulations were performed on hydrated bilayers containing binary mixtures of cholesterol with phospholipids and also on ternary mixtures containing cholesterol, a phospholipid with a high main transition temperature Tm, and a phospholipid with a low transition temperature Tm. These simulations provide qualitative and semi-quantitative information about cholesterol-lipid interactions and also a testing ground for major assumptions made to explain the nature of lipid rafts in model membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号