首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of the dietary administration of saturated fat and of n-6 and n-3 polyunsaturates on blood pressure, prostaglandin metabolism in small vessels, tissue fatty acid distribution and urinary PGE2 excretion were compared. Rats were divided into three groups. Diets contained 10% hydrogenated coconut oil (HCO), 10% safflower oil (SFO) or 10% cod liver oil (CLO) added to a basic fat free diet for 10 weeks. Systolic blood pressure was increased in the CLO group animals. Urinary PGE2 excretion was decreased in the HCO and CLO groups as compared to that in the SFO group animals. PGE2, 6-keto-PGF1 alpha and thromboxane (Tx) B2 outflow from isolated perfused mesenteric arterial beds were extremely decreased in the CLO group animals, and to a lesser extent in the HCO group as compared to the SFO animals. In the tissue phospholipid, 20:3n-9/20:4n-6 ratios were increased in the HCO group indicating essential fatty acid deficiency, and n-6 and n-3 polyunsaturates were elevated in the SFO and the CLO group animals respectively. Arachidonic acid concentration was highest in the SFO group, while there was no significant differences between the HCO and the CLO group. These results suggest that dietary fatty acid manipulation affects urinary PGE2 excretion and PGI2, PGE2 and TxA2 synthesis in mesenteric arterial beds and also changes the tissue fatty acid distribution. Furthermore, n-3 polyunsaturates caused an extreme reduction of 2-series PGs synthesis in small resistance vessels.  相似文献   

2.
Abdominal aortic aneurysm is associated with infiltration of inflammatory cells into the aortic wall. The inflammatory response is also evident in animal models, such as apolipoprotein E-deficient (ApoE-/-) mice that have been infused with angiotensin II, prior to development of aortic aneurysm. Since omega-3 polyunsaturated fatty acids (n-3 PUFAs) and their metabolites have anti-inflammatory and pro-resolving activity, we hypothesised that dietary supplementation with n-3 PUFAs would protect against inflammatory processes in this mouse model. Twenty C57 and 20 ApoE-/- 3-4 week old male mice were supplemented with a low (0.14%, n = 10/group) or high (0.70%, n = 10/group) n-3 PUFA diet for 8 weeks before 2-day infusion with 0.9% saline or angiotensin II (1000 ng/kg/min). Four ApoE-/- mice on the low n-3 PUFA diet and none of the ApoE-/- mice on the high n-3 PUFA diet showed morphological evidence of abdominal aortic dissection. The plasma concentration of the n-3 PUFA metabolite, resolvin D1 was higher in angiotensin II-infused ApoE-/- mice fed the high, compared to the low n-3 PUFA diet. The number of neutrophils and macrophages infiltrating the abdominal aorta was elevated in ApoE-/- mice on the low n-3 PUFA diet, and this was significantly attenuated in mice that were fed the high n-3 PUFA diet. Most neutrophils and macrophages were associated with dissected aortas. Immunoreactivity of the catalytic subunit of nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase, Nox2, and superoxide were elevated in ApoE-/- mice that were fed the low n-3 PUFA diet, and this was also significantly attenuated in mice that were fed the high n-3 PUFA diet. Together, the findings indicate that supplementation of ApoE-/- mice with a diet high in n-3 PUFA content protected the mice against pro-inflammatory and oxidative stress responses following short-term infusion with angiotensin II.  相似文献   

3.
The effects of dietary cholesterol (CH) and isolation stress on fatty acid compositions of plasma and liver cholesteryl ester and phospholipids were compared in growing rats fed an 18:2n-6 or an 18:3n-6 enriched semisynthetic diet for 2 weeks. Stress, CH-feeding, and dietary fats had no significant effects on plasma CH level, but CH-feeding alone elevated the liver CH concentrations. CH-feeding also modulated the liver polyunsaturated fatty acid compositions, i.e., increasing 18:2n-6 levels, and reducing 20:4n-6 levels, indicating an inhibition of the enzymes, delta-6 and delta-5-desaturases. The extent of these changes was less in rats fed 18:3n-6 than in those fed 18:2n-6. Stress, which alone had no significant effects on plasma and liver fatty acid compositions, attenuated the CH-induced changes of fatty acid levels.  相似文献   

4.
The objective of this study was to investigate if maternal dietary 20:4n-6 arachidonic acid (AA) and 22:6n-3 compared with adequate or low levels of 18:3n-3 linolenic acid (LNA) increases synaptic plasma membrane (SPM) cholesterol and phospholipid content, phospholipid 20:4n-6 and 22:6n-3 content, and Na,K-ATPase kinetics in rat pups at two and five weeks of age. At parturition, Sprague-Dawley rats were fed semi-purified diets containing either AA + docosahexaenoic acid (DHA), adequate LNA (control; 18:2n-6 : 18:3n-3 ratio of 7.1 : 1) or low LNA (18:2n-6 : 18:3n-39 ratio of 835 : 1). During the first two weeks of life, the rat pups received only their dams' milk. After weaning, pups received the same diet as their respective dams to five weeks of age. No significant difference was observed among rat pups fed the diet treatments for SPM cholesterol or total and individual phospholipid content at two and five weeks of age. Fatty acid analysis revealed that maternal dietary AA + DHA, compared with feeding the dams the control diet or the low LNA diet, increased 20:4n-6 in phosphatidylserine and 22:6n-3 content of SPM phospholipids. Rats fed dietary AA + DHA or the control diet exhibited a significantly increased Vmax for SPM Na,K-ATPase. Diet treatment did not alter the Km (affinity) of SPM Na,K-ATPase in rat pups at two and five weeks of age. It is concluded that dietary AA + DHA does not alter SPM cholesterol and phospholipid content but increases the 22:6n-3 content of SPM phospholipids modulating activity of Na,K-ATPase.  相似文献   

5.
Effects of the dietary administration of saturated fat and of n-6 and n-3 polyunsaturates on blood pressure, prostaglandin metabolism in small vessels, tissue fatty acid distribution and urinary PGE2 excretion were compared. Rats were divided into three groups. Diets contained 10% hydrogenated cocunut oil (HCO), 10% safflower oil (SFO) or 10% cod liver oil (CLO) added to a basic fat free diet for 10 weeks. Systolic blood pressure was increased in the CLO group animals. Urinary PGE2 excretion was decreased in the HCO and CLO groups as compared to that in the SFO group animals. PGE2, 6-keto-PGF1 and thromboxane (Tx) B2 outflow from isolated perfused mesenteric arterial beds were extremely decreased in the CLO group animals, and to a lesser extent in the HCO group as compared to the SFO animals. In the tissue phospholipid, 20:3n−9/20:4n−6 ratios were increased in the HCO group indicating essential fatty acid deficiency, and n-6 and n-3 polyunsaturates were elevated in the SFO and the CLO group animals respectively. Arachidonic acid concentration was highest in the SFO group, while there was no significant differences between the HCO and the CLO group. These results suggest that dietary fatty acid manipulation effects urinary PGE2 excretion and PGI2, PGE2 and TxA2 synthesis in mesenteric arterial beds and also changes the tissue fatty acid distribution. Furthermore, n-3 polyunsaturates caused an extreme reduction of 2-series PGs synthesis in small resistance vessels.  相似文献   

6.
2-arachidonoylglycerol (2-AG) is a putative endogenous ligand for cannabinoid receptors and was suggested to play an important role in both physiological and pathological events in the central nervous system (CNS) as well as in peripheral organs. The sequential hydrolysis of arachidonic acid (20:4n-6, AA)-containing phospholipids has been proposed as a major biosynthetic route of 2-AG. On the other hand, the manipulation of the dietary n-3 polyunsaturated fatty acid (PUFA) status changes the AA level in tissue phospholipids. We, therefore, conducted two separate experiments to confirm whether the dietary n-3 PUFA status influences the 2-AG level in the mouse brain. In the first experiment, we fed mice with n-3 PUFA-deficient diet, which resulted in a marked decrease in the docosahexaenoic acid (22:6n-3, DHA) levels without a change in the AA level in brain phospholipids as compared with the mice fed with an n-3 PUFA-sufficient diet. The brain 2-AG level in the n-3 PUFA-deficient group was significantly higher than in the n-3 PUFA sufficient group. In the second experiment, we found that short-term supplementation of DHA-rich fish oil reduced brain 2-AG level as compared with the supplementation with low n-3 PUFA. The decrease in the AA level and the increase in the DHA level in the major phospholipids occurred in the brains of the mice fed the fish oil diet compared with those fed the low n-3 PUFA diet. Our results indicate that the n-3 PUFA deficiency elevates and n-3 PUFA enrichment reduces the brain 2-AG level in mice, suggesting that physiological and pathological events mediated by 2-AG through cannabinoid receptor in the CNS could be modified by the manipulation of the dietary n-3 PUFA status.  相似文献   

7.
Dietary n-3 polyunsaturated fatty acids (PUFA) influence the inductive phase of inflammation but less is known about their effects on the resolution phase. This study examined the effects of dietary fish oil on induction and resolution of antigen-induced inflammation in mice. Mice were fed a control diet with or without 2.8% fish oil, immunized twice with methylated BSA (mBSA) and inflammation induced by intraperitoneal injection of mBSA. Prior to and at different time points after mBSA administration, peritoneal cells were analyzed and expression of surface molecules determined by flow cytometry. Concentration of chemokines, cytokines and soluble cytokine receptors was determined by ELISA. Mice fed the fish oil diet had fewer peritoneal neutrophils, shorter resolution interval and lower levels of pro-inflammatory cytokines and chemokines than mice fed the control diet. In mice fed the fish oil diet there was an early peak in peritoneal levels of the immunosuppressive molecules sIL-6R and TGF-β, that was not seen in mice fed the control diet. In the resolution phase, peritoneal macrophages from mice fed the fish oil diet expressed more of the atypical chemokine receptor D6 and peritoneal TGF-β levels were higher than that in mice fed the control diet. Furthermore, in the late-resolution phase there were more peritoneal eosinophils and macrophages in mice fed the fish oil diet than in mice fed the control diet. These results demonstrate a suppressive effect of n-3 PUFA on the inductive phase of inflammation and indicate an enhancing effect of n-3 PUFA on resolution of inflammation.  相似文献   

8.
The effect of dietary eicosapentaenoic acid (EPA, 20:5(n-3), as the ethyl ester) on plasma lipid levels and the incorporation of EPA into erythrocyte and plasma lipids were investigated in the marmoset monkey. Marmosets were fed high mixed-fat diets (14.5% total fat) supplemented with or without 0.8% EPA for 30 weeks. Markedly elevated plasma cholesterol (16.4 mmol/l) was induced by an atherogenic-type diet but with EPA supplementation, plasma cholesterol increased to only 6.6 mmol/l. Plasma triacylglycerol levels were not elevated with an atherogenic type diet. Substantial EPA incorporation was evident for plasma phospholipid, triacylglycerol and cholesterol ester fractions. The proportion of docosapentaenoic acid (22:5(n-3)) but not docosahexaenoic acid (22:6(n-3)) was also elevated in these plasma lipid fractions. Greatest incorporation of EPA occurred when it was administered with an atherogenic type diet having a P:M:S (polyunsaturated:monounsaturated:saturated) fatty acid ratio of about 0.2:0.6:1.0 in comparison to the control diet of 1.0:1.0:1.0. Incorporation of EPA and 22:5(n-3)) into erythrocyte phospholipids was also apparent and this was at the expense of linoleic acid (18:2(n-6)). These results in the marmoset highlight both the cholesterol-lowering properties of EPA and the extent of its incorporation into plasma lipids and erythrocyte membrane phospholipids with far greater incorporation occurring when the level of dietary linoleic acid was reduced.  相似文献   

9.
The present study was conducted to assess whether the partial replacement of feed energy by vegetable oils containing high medium-chain saturated fatty acids (MCFA) and n-6 polyunsaturated fatty acids (PUFA) would modify lipogenic gene expression and other parameter of fat metabolism in pigs. Eighteen pigs (17-19 kg body weight) received one of three experimental diets for 60 days (six animals per group): (i) Control diet; (ii) a diet with sunflower oil (SO) or (iii) a diet with coconut oil (CO). In diets SO and CO, 10% of the feed energy was replaced by the respective oils. The experimental treatment did not influence the performance of the pigs. In blood serum, an increased content of total cholesterol was observed for SO and CO fed animals, whereas no significant changes for total triglycerides and different lipoprotein fractions were detected. The fatty acid composition of adipose tissue was significantly modified, with an increased content of MCFA and n-6 PUFA in CO and SO fed pigs, respectively. The gene expression for fatty acid synthase was decreased for SO and CO fed pigs; for stearoyl CoA desaturase and sterol regulatory element binding protein, a depression was observed in SO but not in CO fed pigs. The results of present study suggest that the type of dietary fat can modulate the adipose tissue gene expression and fatty acid composition differentially, with minimal effect on serum lipid profile.  相似文献   

10.
Docosapentaenoic acid (DPAn-6, 22:5n-6) is an n-6 polyunsaturated fatty acid (PUFA) whose brain concentration can be increased in rodents by dietary n-3 PUFA deficiency, which may contribute to their behavioral dysfunction. We used our in vivo intravenous infusion method to see if brain DPAn-6 turnover and metabolism also were altered with deprivation. We studied male rats that had been fed for 15weeks post-weaning an n-3 PUFA adequate diet containing 4.6% alpha-linolenic acid (α-LNA, 18:3n-3) or a deficient diet (0.2% α-LNA), each lacking docosahexaenoic acid (22:6n-3) and arachidonic acid (AA, 20:4n-6). [1-(14)C]DPAn-6 was infused intravenously for 5min in unanesthetized rats, after which the brain underwent high-energy microwaving, and then was analyzed. The n-3 PUFA deficient compared with adequate diet increased DPAn-6 and decreased DHA concentrations in plasma and brain, while minimally changing brain AA concentration. Incorporation rates of unesterified DPAn-6 from plasma into individual brain phospholipids were increased 5.2-7.7 fold, while turnover rates were increased 2.1-4.7 fold. The observations suggest that increased metabolism and brain concentrations of DPAn-6 and its metabolites, together with a reduced brain DHA concentration, contribute to behavioral and functional abnormalities reported with dietary n-3 PUFA deprivation in rodents. (196 words).  相似文献   

11.
The effect of in vivo lipid peroxidation on the excretion of immunoreactive prostaglandin E2 (PGE2) in the urine of rats was studied. Weanling, male Sprague-Dawley rats were fed a vitamin E-deficient diet containing 10% tocopherol-stripped corn oil (CO) or 5% cod liver oil (CLO) with or without 40 mg dl-alpha-tocopheryl acetate/kg. To induce a high, sustained level of lipid peroxidation, some rats were injected intraperitoneally with 100 mg of iron as iron dextran after 10 days of feeding. Iron overload stimulated in vivo lipid peroxidation in rats, as measured by the increase in expired ethane and pentane. Dietary vitamin E reversed this effect. Rats fed the CLO diet excreted 9.5-fold more urinary thiobarbituric acid-reactive substances (TBARS) than did rats fed the CO diet. Iron overload increased the excretion of TBARS in the urine of rats fed the CO diet, but not in urine of rats fed the CLO diet. Dietary vitamin E decreased TBARS in the urine of rats fed either the CO or the CLO diet. Iron overload decreased by 40% the urinary excretion of PGE2 by rats fed the CO diet, and dietary vitamin E did not reverse this effect. Iron overload had no statistically significant effect on urinary excretion of PGE2 by rats fed the CLO diet. A high level of lipid peroxidation occurred in iron-treated rats, as evidenced by an increase in alkane production and in TBARS in urine in this study, and by an increase in alkane production by slices of kidney from iron-treated rats in a previous study [V. C. Gavino, C. J. Dillard, and A. L. Tappel (1984) Arch. Biochem. Biophys. 233, 741-747]. Since PGE2 excretion in urine was not correlated with these effects, lipid peroxidation appears not to be a major factor in renal PGE2 flux.  相似文献   

12.
To measure the effects of dietary n-3 polyunsaturated fatty acid (PUFA) supplementation on the reproductive capacity of adult male turkeys in industrial flocks, the males of 22 commercial farms were fed either a standard diet or a fish oil diet enriched in n-3 PUFAs. The fatty acid composition of the spermatozoa and reproductive performance were measured throughout the reproductive period. The fish oil diet very effectively increased the percentage of n-3 fatty acids (FA) (22:5n-3 and 22:6n-3) in spermatozoa and correspondingly decreased the percentage of n-6 PUFAs (20:4-6 and 22:4n-6): the n-3/n-6 ratio in spermatozoa fatty acids were 0.04-0.07 with the standard diet and 0.32-0.4 with the fish oil diet. These changes did not affect the spermatozoa content of n-9 PUFAs, particularly of 22:3n-9 which is abundant in turkey spermatozoa (9-12% of the total fatty acids). The supplementation was effective in the middle as at the end of the reproductive period. The reproductive capacity of males was modified by the diet and the positive effect of the n-3 supplemented diet increased with age (increase in hatching rates of nearly 2 points at 48-58 weeks for males fed fish oil diet). These results indicate that an increase in the dietary ratio of n-3/n-6 PUFAs is valuable to sustain the reproductive capacity of male turkeys especially when they are getting older.  相似文献   

13.
This study was designed to investigate the effect of myristic acid on the biosynthesis and metabolism of highly unsaturated fatty acids, when it is supplied in a narrow physiological range in the diet of the rat (0.2-1.2% of total dietary energy). Three experimental diets were designed, containing 22% of total dietary energy as lipids and increasing doses of myristic acid (0.71, 3.00 and 5.57% of total fatty acids). Saturated fat did not exceed 31% of total fat and the C18:3 n-3 amount in each diet was strictly equal (1.6% of total fatty acids). After 7 weeks, the diets had no effect on plasma cholesterol level but greatly modified the liver, plasma and adipose tissue saturated, monounsaturated and polyunsaturated fatty acid profiles. Firstly, daily intakes of myristic acid resulted in a dose-dependent tissue accumulation of myristic acid itself. Palmitic acid was significantly increased in the tissues of the rats fed the higher dose of myristic acid. A dose-response accumulation of tissue C16:1 n-7 as a function of dietary C14:0 was also shown. Secondly, a main finding was that, among n-3 and n-6 polyunsaturated fatty acids, a dose-response accumulation of liver and plasma C20:5 n-3 and C20:3 n-6 (two precursors of eicosanoids) as a function of dietary C14:0 was shown. This result suggests that dietary myristic acid may participate in the regulation of highly unsaturated fatty acid biosynthesis and metabolism.  相似文献   

14.
Dietary nucleotides affect the maintenance of immune responses, tissue repair and polyunsaturated fatty acid metabolism. Orotate, a pyrimidine nucleotide precursor, induces fatty livers by impairing VLDL hepatic secretion. The aim of this study was to evaluate the changes in the blood levels of fatty acids and prostacyclin (PGI2) and thromboxane (TXA2) in the weanling rat caused by the dietary intake of nucleotides and orotate. Three groups of rats at weaning were fed a control diet, an orotate supplemented diet (O-50) and a nucleotide supplemented diet (N-50) during 4 weeks, respectively. Absolute values of plasma polyunsaturated fatty acids greater than 18 carbon atoms of the n-6 and n-3 series were increased in the N-50 group and decreased in O-50 with regard to the control. However, the relative fatty acid composition of plasma lipid fractions was mostly unaffected. Plasma 6-keto-PGF1 alpha showed a trend to be increased in N-50 and serum TXB2 was significantly increased in that group. Both eicosanoids were unchanged by dietary orotate intake. These results may be explained because of the increased plasma 20:4n-6 found in rats fed a supplemented nucleotide diet. Thus, nucleotides present in foods appear to modulate PUFA conversion and eicosanoids synthesis in early life.  相似文献   

15.
Recent research has implicated dietary fish oils in the reduction of eicosanoids formed from arachidonic acid and amelioration of chronic diseases such as coronary heart disease, atherosclerosis and inflammation. Feeding studies were conducted to determine if the efficacy of dietary n-3 polyunsaturated fatty acids (PUFA) from fish oils was influenced by the quantity of n-6 polyunsaturated fatty acids and the total level of fat in the diet. Groups of mice were fed diets composed of 5 and 20% total fat with varying proportions of linoleic acid as a source of n-6 PUFA. Menhaden oil as a source of n-3 PUFA was fed at two levels of n-6 at each level of total fat. Eicosanoid biosynthesis was stimulated and assayed in the mouse peritoneum using zymosan as an inflammatory stimulus. Production of LTE4 and PGE2 was enhanced by increasing n-6 PUFA in the diet at both levels of total fat. High dietary fat significantly suppressed leukotriene (LT) synthesis. Dietary menhaden oil reduced LTE4 and PGE2 synthesis at both levels of dietary n-6 in the low fat study. In animals on 20% dietary fat menhaden oil significantly reduced LT synthesis only at a relatively low dietary n-6 PUFA. On a high n-6 PUFA high fat diets, menhaden oil did not significant affect LTE4 synthesis in response to zymosan stimulation. The results suggest that the effectiveness of fish oils in reducing eicosanoids in response to specific stimulation is influenced by the level of n-6 and the total quantity of fat in the diet.  相似文献   

16.
Diets replete with n-3 PUFAs (polyunsaturated fatty acids) are known to have therapeutic potential for the heart, although a specifically defined duration of the n-3 PUFA diet required to achieve these effects remains unknown, as does their mechanism of action. The present study was undertaken to establish whether adaptations in mitochondrial function and stress tolerance in the heart is evident following short- (3?weeks) and long- (14?weeks) term dietary intervention of n-3 PUFAs, and to identify novel mechanisms by which these adaptations occur. Mitochondrial respiration [mO2 (mitochondrial O2)], H2O2 emission [mH2O2 (mitochondrial H2O2)] and Ca2+-retention capacity [mCa2+ (mitochondrial Ca2+)] were assessed in mouse hearts following dietary intervention. Mice fed n-3 PUFAs for 14?weeks showed significantly lower mH2O2 and greater mCa2+ compared with all other groups. However, no significant differences were observed after 3?weeks of the n-3 PUFA diet, or in mice fed on an HFC (high-fat control) diet enriched with vegetable shortening, containing almost no n-3 PUFAs, for 14?weeks. Interestingly, expression and activity of key enzymes involved in antioxidant and phase II detoxification pathways, all mediated by Nrf2 (nuclear factor E2-related factor 2), were elevated in hearts from mice fed the n-3 PUFA diet, but not hearts from mice fed the HFC diet, even at 3?weeks. This increase in antioxidant systems in hearts from mice fed the n-3 PUFA diet was paralleled by increased levels of 4-hydroxyhexenal protein adducts, an aldehyde formed from peroxidation of n-3 PUFAs. The findings of the present study demonstrate distinct time-dependent effects of n-3 PUFAs on mitochondrial function and antioxidant response systems in the heart. In addition, they are the first to provide direct evidence that non-enzymatic oxidation products of n-3 PUFAs may be driving mitochondrial and redox-mediated adaptations, thereby revealing a novel mechanism for n-3 PUFA action in the heart.  相似文献   

17.
We tested the hypothesis that dietary supplementation with echium oil (EO), which is enriched in stearidonic acid (SDA; 18:4 n-3), the product of Delta-6 desaturation of 18:3 n-3, will decrease plasma triglyceride (TG) concentrations and result in conversion of SDA to eicosapentaenoic acid (EPA) in the liver. Mildly hypertriglyceridemic mice (apoB100-only LDLrKO) were fed a basal diet containing 10% calories as palm oil (PO) and 0.2% cholesterol for 4 weeks, after which they were randomly assigned to experimental diets consisting of the basal diet plus supplementation of 10% of calories as PO, EO or fish oil (FO) for 8 weeks. The EO and FO experimental diets decreased plasma TG and VLDL lipid concentration, and hepatic TG content compared to PO, and there was a significant correlation between hepatic TG content and plasma TG concentration among diet groups. EO fed mice had plasma and liver lipid EPA enrichment that was greater than PO-fed mice but less than FO-fed mice. Down-regulation of several genes involved in hepatic TG biosynthesis was similar for mice fed EO and FO and significantly lower compared to those fed PO. In conclusion, EO may provide a botanical alternative to FO for reduction of plasma TG concentrations.  相似文献   

18.
ACAT2, the enzyme responsible for the formation of cholesteryl esters incorporated into apolipoprotein B-containing lipoproteins by the small intestine and liver, forms predominantly cholesteryl oleate from acyl-CoA and free cholesterol. The accumulation of cholesteryl oleate in plasma lipoproteins has been found to be predictive of atherosclerosis. Accordingly, a method was developed in which fatty acyl-CoA subspecies could be extracted from mouse liver and quantified. Analyses were performed on liver tissue from mice fed one of four diets enriched with one particular type of dietary fatty acid: saturated, monounsaturated, n-3 polyunsaturated, or n-6 polyunsaturated. We found that the hepatic fatty acyl-CoA pools reflected the fatty acid composition of the diet fed. The highest percentage of fatty acyl-CoAs across all diet groups was in monoacyl-CoAs, and values were 36% and 46% for the n-3 and n-6 polyunsaturated diet groups and 55% and 62% in the saturated and monounsaturated diet groups, respectively. The percentage of hepatic acyl-CoA as oleoyl-CoA was also highly correlated to liver cholesteryl ester, plasma cholesterol, LDL molecular weight, and atherosclerosis extent. These data suggest that replacing monounsaturated with polyunsaturated fat can benefit coronary heart disease by reducing the availability of oleoyl-CoA in the substrate pool of hepatic ACAT2, thereby reducing cholesteryl oleate secretion and accumulation in plasma lipoproteins.  相似文献   

19.
The influence of dietary polyunsaturated fatty acids on fatty acid composition, cholesterol and phospholipid content as well as 'fluidity' (assessed by fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) probes) of brain synaptic plasma membranes (SPM) and their interactions with chronic ethanol effects were studied in rats fed for two generations with diets either devoid of (n-3) fatty acids (sunflower oil diet), rich in alpha-linolenic acid (soya oil diet) or in long chain (n-3) fatty acids (sunflower + cod liver oil diet). Results were compared with rats fed standard lab chow. Sunflower oil led to an increase in the (n-6)/(n-3) ratio in the membranes with an increase of the 'fluidity' at membrane apolar level; sunflower + cod liver oil decreased the (n-6)/(n-3) ratio without affecting membrane 'fluidity' while no difference was seen between the SPM of rats fed soya oil and standard diet. After 3 weeks alcohol intoxication in rat fed the standard diet: oleic alpha-linoleic acids and cholesterol levels were increased, arachidonic acid and the double bond index/saturated fatty acids were decreased and there was a decrease of 'fluidity' in the lipid core of the SPM. Soya oil almost totally abolished these usually observed changes in the SPM fatty acids composition but increased oleic acid and cholesterol without any change in fluidity. Sunflower oil led to the same general alterations of fatty acid as seen with standard diet but to a greater extent, with decrease of the 'fluidity" at the apolar level and in the region probed by TMA-DPH. When sunflower oil was supplemented with cod liver oil, oleic and alpha-linoleic acids were increased while the 'fluidity' of the apolar core of SPM was decreased. So, the small changes in fatty acid pattern seem able to modulate neural properties i.e. the responses to a neurotoxic like ethanol. A structurally specific role of PUFA is demonstrated by the pernicious effects of the alpha-linolenic acid deficient diet which are not totally prevented by the supply of long chain (n-3) PUFA.  相似文献   

20.
Essential fatty acid deficient male Sprague Dawley rats were fed for 7 days a fat-free semi-synthetic diet supplemented with 10% by weight of different oil supplements. The oil supplement was a mixture of olive, safflower and linseed oils prepared at different proportions so the dietary n-9/n-6/n-3 ratios were approximate 2/1/1, 1/2/1, 1/1/2, and 1/1/1. The fatty acid compositions of plasma and liver lipids were then examined. Our results show polyunsaturated n-6 and n-3 fatty acids were selectively incorporated into plasma and liver phospholipids, and also into plasma cholesteryl esters. A preferential incorporation of n-6 over n-3 fatty acids into plasma cholesteryl esters and phospholipids was also observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号